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ABSTRACT 

A large class of problems of sequential decision-making 
can be modeled as Markov or Semi-Markov Decision 
Problems, which can be solved by classical methods of dy-
namic programming. However, the computational com-
plexity of the classical MDP algorithms, such as value it-
eration and policy iteration, is prohibitive and will grow 
intractably with the size of problems. Furthermore, they 
require for each action the one step transition probability 
and reward matrices, which is often unrealistic to obtain 
for large and complex systems. Here, we provide the deci-
sion-maker a sequential decision-making enviroment by 
establishing a virtual reality simulation system, where the 
uncertainty property of system can also be shown. In order 
to obtain the optimal or near optimal policy of sequential 
decision problem, simulation optimization algorithms as 
infinitesimal perturbation analysis are applied to complex 
queuing systems. We present a detailed study of this 
method on the sequential decision-making problem in Boe-
ing-737 assembling process. 

1 INTRODUCTION 

Sequential decision-making means that the decision-maker 
makes a series of actions according to the system status as 
well as his preference to form a decision policy. Many 
problems of sequential decision-making under uncertainty 
ranging from manufacturing to computer communication, 
of which the underlying probability structure is a Markov 
process, can be modeled as Markov or Semi-Markov Deci-
sion Problems (MDPs or SMDPs). Such problems can be 
solved by classical methods of stochastic dynamic pro-
gramming. The framework of dynamic programming and 
MDPs developed by Bellmen (1957) and extended by Kar-
lin (1955), Howard (1960), Blackwell (1965) is quite ex-
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tensive and rigorous. Well known algorithms, such as val-
ue iteration, policy iteration, and linear programming can 
find optimal solution of MDPs. However, they require 
computation of the corresponding one step transition prob-
ability matrix and the one step transition reward matrix us-
ing the distributions of the random variables that govern 
the stochastic processes underlying the system. For com-
plex systems with large state spaces, the burden of devel-
oping the expressions for transition probabilities and re-
wards could be enormous (Das et al. 1999). Also, dynamic 
programming suffers from the curse of dimensionality and 
from the curse of modeling, which is why it is of little use 
in solving problems with a large state space and complex 
probability structures. In the absence of better approaches, 
problem-specific heuristic algorithms are often used to 
reach acceptable near-optimal solutions.  

Recently, computer simulation-based reinforcement 
learning (RL) methods of stochastic approximation have 
been proposed as viable alternatives for obtaining near-
optimal policies for large scale MDPs with considerably 
less computational effort than what is required for dynamic 
programming (DP) algorithm. RL has two distinct advan-
tages over DP. Firstly, it avoids the need for computing the 
transition probability and the reward matrices. The reason 
being that it uses discrete event simulation (Law and Kel-
ton 1991) as its modeling tool, which requires only the 
probability distribution of the process random variables but 
the one-step transition probabilities. Secondly, RL methods 
can handle problems with very large state spaces since its 
computational burden is related only to value function es-
timation, that is just the advantage of computer simulation 
(Das et al. 1999). 

However, the decision-making rules are predefined in 
RL method that means the fixed actions should be made 
according to corresponding states. So it can not reflect the 
prejudice of decision-maker and limit his freedom in the 
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sequential decision-making process. In this paper, a new 
decision mode (3W+N) of simulation-based sequential de-
cision is proposed and a virtual reality (VR) simulation en-
vironment is designed for solving such problems. This new 
Interactive VR simulation system is especially derived 
from research of sequential decision-making, and it is also 
built and tested in local network (Wang 2000).  

In this paper, we first discuss the new decision mode 
(3W+N) of simulation-based sequential decision, and then 
the simulation optimization algorithm on sequential deci-
sion-making under VR simulation enviroment is proposed. 
How to realize the VR enviroment and simulation optimi-
zation in such enviroment is also discussed. At last, the ex-
periment for solving sequential decision problem involving 
Boeing-737 section-48 assembling manufacturing process 
is presented, which is one of the joint ventures between 
China and U.S in the area of aircraft manufacturing. 

2 3W+N DECISION MODE 

Decision-maker can take a serial of actions in accordance 
with the system states and his preference in sequential de-
cision-making process. By this way, the risk in sequential 
decision-making process should be less than that making 
decisions before the implementation of the system. Many 
sequential decision-making problems in engineering can be 
modeled as Markov or Semi-Markov Decision Problems, 
which can be solved by classical methods of dynamic pro-
gramming in theory. But dynamic programming suffers 
from the curse of dimensionality and from the curse of 
modeling, which is why it is of little use in solving prob-
lems with a large state space and complex probability 
structures in real-life.  

So a new decision mode (3W+N) based on experiment 
for such research is proposed. It is designed for solving 
Markov Decision Problems under VR simulation environ-
ment. Virtual Reality (VR) is a rapidly developed inte-
grated technology in recent years. It is a way for decision-
makers to visualize, manipulate and interact with com-
puters and extremely complex data. By this way, the vir-
tual space is created to provide the interaction between 
human and virtual “real” system displayed on computer. In 
this virtual world, users can experience the interactive be-
havior such as looking, hearing, moving and so on. More-
over, the interactive dynamic three-dimensional (3D) simu-
lation under VR environment is constructed by combining 
computer simulation and VR technique that is called VR 
simulation mechanism. In this virtual “real” world, deci-
sion-maker can obtain the dynamic states of system run-
ning and “enter” it to make series of decisions according to 
the system states and his preference, the decision epochs is 
no longer determined by predefined criterion. Therefore, 
decision-maker can obtain more useful information from 
this near real-world system to make the sequential decision 
process more intuitive and reliable.  
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In this way, we propose the 3W+N decision mode that 
means Where, What, When and Number of decisions. 
All of which depend on the current states of the system and 
the preference of the decision-makers.  

 
• Where is to choose the place where the decision-

maker to make an action. A properly chosen deci-
sion-making place can greatly represent the deci-
sion-maker’s taste or preference. 

• What is to decide to take which kind of actions 
and the intensity of actions, all the actions will 
construct a decision set, from which the sequential 
policy will be given. 

•  When and Number is to decide the time to make 
decision and how many times in the decision 
process.  
 

Hence, this kind of decision model is different from 
the traditional one, because it can really represent the true 
life. Such more agile and intuitive decision mode can re-
flect the random and nonperiodic property of sequential 
decision in real-life.  

It is obvious that the decision place, time, numbers and 
actions intensity are all stochastic in 3W+N decision mode. 
Then such decision process can be viewed as the combina-
tion of two processes.  

First one is formal Markov Process, it can be shown as:  
 

{ }m
tttt sssS ,,, 21 …=                        (1) 

 
where ts  denotes the system state at the t  decision-
making epoch. At decision making epoch t , where 

SiiSt ∈=  ,  and the decision taken is XxxX t ∈=  , , tX  
denotes the set of possible actions at time t .  

In the second process, suppose that tx  is the decision 
taken at epoch t . Then the next decision is taken at epochs 

τ+t  where τ  is a random variable between the decision 
period. Suppose that tX  and tS  be finite set, the transi-

tion probability from i
ts  at epoch t  to j

ts τ+  at decision ep-
och τ+t  is independent to the “past” states, i.e. 
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where nt SS =  provided that Tt = . The implication is 

that such stochastic decision process is a Markov chain too. 
Howard (1960) has proposed the proof that the Bellman 
Theory (1957) is also applicable to stochastic decision pro-
cess.  

To construct a whole decision mode, a performance 
criteria is necessary, which can sum over the time horizon 
and represent the result of sequential decisions. For in-
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stance, the value of WIP (work-in-process) is the most im-
portant performance for manufacturing system. Indeed 
only the criteria represented the effect of 3W+N can be 
chosen as the system performance criteria. 

3 SEQUENTIAL DECISION  
OPTIMIZATION ALGORITHM  

Perturbation analysis (PA) is a kind of gradient-based esti-
mation method in optimization, the most famous one is in-
finitesimal perturbation analysis (IPA) by which all partial 
gradients of an objective function are estimated from a sin-
gle simulation run. The idea is that if an input variable into a 
system is perturbed by an infinitesimal amount, the sensitiv-
ity of the output variable to the parameter can be estimated 
by tracing its pattern of propagation. This will be a function 
of the fraction of propagations that diminished  before hav-
ing a significant effect on the response of interest. IPA as-
sumes that an infinitesimal perturbation in an input variable 
does not affect the sequence of events but only makes their 
occurrence times slide smoothly. The fact that all derivatives 
can be derived from a single simulation run, which repre-
sents a significant advantage in terms of computational effi-
ciency. On the other hand, the estimators derived using IPA 
are often biased and inconsistent (Yolanda and Anu 1997). 
IPA estimation will be unbiased provided that the structured 
condition is satisfied. The essential of such condition is that 
if the events occurred in succession exchange the occurrence 
sequence because of perturbation, system states will keep 
immovability (Huang 1997). 

Such four basic problems is involved in IPA algo-
rithm: rules of perturbation generation, rules of perturba-
tion propagation, computation of sample gradient and the 
statistics properties of sample gradient related to perform-
ance gradient. In simulation enviroment, the perturbation 
generation process can be synchronously treated with ran-
dom variables (RV) sampling process. Assumed that the 
interested parameter is θ  and ),( θxF  is the cumulative 
distributed function (CDF) of RV X , then the sampling 
process can be realized by using inverse-transform method  
— the sampling of X  is ),(1 θ= − uFx , where u  is the 
sampling of uniform distributed RV U  in interval (0,1) 
(Law and Kelton 1991). If the parameter perturbation is 

θ∆ , then the sampling corresponding to θ∆+θ  is 
),(1 θ∆+θ=∆+ − uFxx , i.e. the sampling perturbation of 

RV X  is x∆ . When the parameter perturbation is infini-
tesimal, the ratio of RV perturbation on the parameter per-
turbation is: 

 
FDFDuFDxD xθ

−
θθ −=θ= ),(1                (3) 

 
then the perturbation of parameter is transformed to the 
sampling gradient of RV.   
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In our research, IPA is applied to assembling queuing 
network. Boeing-737 48-section consists of 9 subassem-
blies, which are composed of hundreds of components or 
parts. Those subassemblies, components and parts are as-
sembled on the special jigs and equipment named as “FAJ” 
and “FME” and each subassembly possesses its own “FAJ” 
and “FME”. Then an assembling queuing network is con-
structed that subassemblies, components and parts can be 
viewed as customers and “FAJ” and “FME” as servers. 
The product structure tree is also provided as Figure 1. 

 
Obviously it is a very complex queuing network, we 

choose the “Texas Star” assembling queuing system as the 

research object on sequential decision to expatiate the algo-
rithm for simplicity. “Texas star” assembling process is 
shown as Figure 2: 

 

 
The manufacturing equipment named with their codes 

used in assembling process as servers are shown in Figure 
2. Left X-beam and Right X-beam are all composed of two 
beams, so the first beams of them are processed on 
FAJ9801L and FAJ9801R separately. Then Left X-beam 
and Right X-beam are assembled with two beams on 
2FAJ9801L and 2FAJ9801R. The matching process of Left 
and Right X-beam and the Back Beam to form Texas star 
is in succession. After refined processing on FBOF9805 
and inspecting, the whole process ends. There are two sets 
of equipments to assembling Left and Right X-beam and 
Texas star, one of them are standby. The detail assembling 
process can be viewed in Figure 5. According to 3W+N 
decision mode, the key working procedure and equipment 
can be chosen as decision making place (Where), as well 
starting or stopping standby equipment and assembling 
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process and changing the arrival rate or service rate can be 
chosen as actions or decisions (What) in this assembling 
model. Decision-maker can make actions at the epochs of 
equipment failure or deficiency of assembling ability 
(When) and decide the decision numbers (Number) accord-
ing to the system states and his preference. Here, the per-
formance measure includes the value of WIP C(W) that 
can be expressed as i

i
i Nv∑ , where iN  and iv  are the 

number and cost of the ith part or component in system. We 
can use the average sojourn time to compute WIP in simu-
lation. At the same time, it also should include the variable 
cost derived from decision C(D), such as the running cost 
of standby equipment and the salary of workers that can be 
expressed as j

j
j Mv∑ , where jM  and jv  are the num-

ber of jth equipment and the corresponding cost on this 
equipment. Usually, decreasing the value of WIP will 
cause the increasing of variable cost. So our objective 
function is: 

 
                         { })()( DCWCCC min += .                     (4) 

 
Here, define the system before the perturbation is 

added as Nominal System (NS) and the sample path of NS 
as Nominal Path (NP). The relevant system and sample 
path to perturbation are PS and PP. Define the Generalized 
Busy Period (GBP) provided that Q≥n, where Q is the 
number of customers in system and n is the number of 
servers. Then in decision model, the actions made as 
changing the arrival rate or service rate and starting or 
stopping the standby equipment at certain working proce-
dure will affect the system in 3 aspects in this decision 
model. The first aspect is perturbation generation to the 
number of parts at currently working procedure, the second 
is direct perturbation propagation to the number of parts at 
working procedure just after the former one and the third is 
indirect perturbation propagation to the number at other 
working procedure. Such 3 type perturbations have their 
algorithm separately. Here, the second algorithm is present 
to explain the PA method on the direct perturbation propa-
gated working procedure: 

 
Step 1.Define the variables in system: arrival time of 

customer (ARRT) and its perturbation (PARR), the 
reference time of PA (NTIM), the arrival time 
increment of the first customer in PP (NARR), the 
time increment while service begins (NSER), the 
adjust of dispatch interval (BTDP), the number of 
served customer (M) and the perturbation of wait-
ing time (PAWT) and its total time (SPAWT).  

Step 2. Mark the value of INDEX of arriving custom-
ers type: (1)Q<n or (2)Q≥n. 
908
Step 3. According to the INDEX to decide the operat-
ing type when the customer is served, then go to 
step INDEX+3. 

Step4. NTIM=ARRT, NARR=PARR, NSER=PARR, 
PAWT=0, BTDP= the service time of customer, 
then go to step 7.  

Step 5. If this customer is served in PP in advance, i.e. 
ARRT+PARR<NTIM+NARR, then 

{if this customer is the firstly arriving in GBP, then 
    {NSER=ARRT+PARR-NTIM} 
 else 
    {NSER=max{NSER, ARRT+PARR-NTIM},  
     the waiting time of customer in PP  
     is NSER+NTIM-ARRT-PARR, 
     PAWT= waiting time in PP - waiting time in NP} 
} 
else 
{if the immediately predecessor customer is served in 

PP in advance, then 
    {NSER=NSER+BTDP} 
 else 
    { NSER=NSER+ the dispatch interval of the cus-

tomer in NP, 
      NSER=max{NSER, ARRT+PARR-NTIM} 
      PAWT = NSER-NARR- waiting time in NP} 
} 
Step 6. If this customer is not served in PP in advance, 

then 
{ if n>1, then 
      {BTDP=2*service time of customer/(n-1)} 
else  
     { BTDP= the dispatch interval of the customer in 

NP} 
} 
Step 7. SPAWT=SPAWT+PAWT when service ends, 

M=M+1, If simulation ends, the expected pertur-
bation of sojourn time at this server is SPAWT/M; 
else, go to step 2.  

 
Then we can obtain the gradient sampling from the pa-

rameter perturbation to performance measure of system. In 
the step n of iteration, assume that the iteration step length 
is nα  and estimation of iterated direction nd  from the per-
turbation process, the iterated parameter 1+θn  in iteration 
step n+1 can be received as: 

 
                                 nnnn dαθθ −=+1 .                           (5) 

 
Usually, iteration is processed once after the predefined 
number of entities have been served in simulation and the 
terminated condition is often expressed as: 

 
                                  εθθ <−+ nn 1                                 (6) 
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where ε  is a predefined small positive number. Then the 
latest estimation of parameter 1+θn  is used to estimate the 
performance measure as the optimal parameter in simula-
tion. Here, the gradient sampling or estimation of iterated 
direction in each step is obtained by PA.  

In sequential decision process, decision-maker wants 
to receive reasonable support from simulation optimization 
technique such as IPA. For example, if decision-maker is 
not satisfied with the processing capability according to the 
VR simulation system states and his preference and then he 
will make a decision to change the system parameter such 
as service rate. IPA can provide the improved system pa-
rameters at such decision epochs. Between two successive 
decision epochs, IPA can get an iteration result to modify 
the system parameters at present epoch according to the 
optimization regulation. In the formal optimization regula-
tion, iteration occurs when a predefined number of entities 
have been served. Because of the randomness of sequential 
decision, the iteration number is not a constant and then it 
will be determined according to the decision epochs. If the 
time is too short between two epochs, then the sample size 
is not enough to estimate the gradient and modify the pa-
rameters. So this is a noticeable problem in solving sequen-
tial decision problem using IPA. But as a Single Running 
Optimization (SRO) method, we take advantage from its 
executing efficiency. 

4 VR SIMULATION-BASED DECISIONS AND  
ITS OPTIMIZATION ENVIROMENT  
AND EXPERIMENT RESULT 

In order to realize such decision-making system under vir-
tual reality simulation, a new interactive VR simulation 
system is established. This system is simulation based with 
the focus on the representation and participation. Now 
many VR systems have been presented, but most of them 
need expensive equipment, group of experts, lots of time to 
construct a perfect complex VR system. However, the most 
important role is simulation in our research. We need simu-
lation to provide decision-maker the statistical information 
of the system being modeled and give the system states 
automatically. The major function of the VR system is to 
provide the decision-maker a near real world 3D animation 
to observe the running of system. Basing on this opinion, 
VRML (Virtual Reality Modeling Language) is selected to 
establish such virtual reality environment, which is an 
easy, economic and powerful tool to construct the VR 
world. Then we can focus on the simulation aspect and 
spend little time to code it and realize the Virtual Reality 
Simulation. Because of being designed for Web, VRML 
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has no strict requirement for hardware. But it needs a web 
explorer plug-in to explain the VRML file and show the 
VR scene, this plug-in is called VRML player such as 
Cosmo Player an so on. With the explanation to VRML 
file, users can observe the virtual world from the monitor 
and control the moving objects and making decisions in the 
VR scene by using keyboard or mouse. 

Moreover, VRML provides the external interface to 
realize the application of simulation just as our demand. 
Because of the web property of VRML, it provides the 
JAVA class as External Application Interface (EAI). By 
using its external classes, users can obtain the handle of 
system object Browser. Some methods of browser object 
are very useful, such as: getBrowser(), createVrmlFrom-
String(), getNode(), addRoute() and deleteRoute(). From 
the browser, we can get the handle of object in VRML 
scene by methods getBrowser() and control its behavior, 
and display the simulation process by VRML. Combining 
these method and field addChildren and removeChildren 
in VRML nodes, entities can be added and removed dy-
namically in the virtual world. Using the correct combina-
tion of TimeSensor, PositionInterpolator and Orientation-
Interpolator Node, the Route() method can drive the object 
move as the proper logic at the suitable time. (Wang 2000 
and Marrin 1997). Moreover, simulation programming has 
the natural interface to JAVA, and the latter is an object-
oriented programming language. Many JAVA-based simu-
lation programs have appeared, such as JavaSim(Little, 
M.C, 1996 ), SimJava (McNab, R., 1996), etc. They pro-
vide the chance to combine the Java-based simulation pro-
gram and VRML file, the latter two can be integrated into 
one web page to display the simulation animation process. 
The VRML browser reads and explains the VRML file and 
builds a 3D virtual world. The VRML file just tells the 
browser how to build the predefined virtual world, the 
simulator accomplishes the simulation work and drives the 
virtual world to run dynamically. Then simulation pro-
gramming can combine the VRML by importing VRML 
external interface and JAVA-based simulations class to 
construct VR simulation system easily (The VRML Con-
sortium Incorporated 1997). 

In our research, such VR simulation system is con-
structed to provide the function to making sequential deci-
sion and optimizing the parameters with above algorithm. 
All these functions can be realized through the Java Applet 
in HTML pages and JDBC driver support to access data-
base used to store the simulation data and display the im-
proved parameters. The system framework can be viewed 
as Figure 3 and the VR simulation-based system is shown 
in Figure 4. 
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In the VR simulation enviroment shown in Figure 4, 
the separate 3D objects in this scene are established with 
3DSMax, the famous 3D animation software, and can be 
convert into the VRML file format by using the function 
“Export to…. “ Some other software as Internet 3D Space 
Builder, AC-3D etc., can also provide such function. By 
this way, we can build complex 3D models more easily but 
the size of these files is often bigger than that directly built 
in VRML. There is a tip to settle this problem partially: in 
some 3D building software, a function is provided —
”Optimize” to remove some duplicate vertices and surfaces 
from objects and do not influence their 3D effect. Then the 
converted file size will be reduced. In VRML file, the 
world coordinate space for all objects is defined, and all 
objects included in the file by the “Inline” node. And the 
animation according to simulation result is realized with 
the method of combining VRML EAI and Java-based 
simulator as mentioned above. In Figure 4, the left scene in 
Internet Explorer is a VR scene and the right one is Java 
Applet where the input parameter can be changed for deci-
sion-making and the simulation output is displaying. The 
buttons in Applet are used to start animated or numeric 
simulation, pause simulation, restart simulation and run op-
timization to obtain improved parameters. 

By using such simulation system a model was devel-
oped for practical assembling system “Texas Star” as men-
tioned above, which saves lots of cost and time for the co-
operated factory. In this assembling process, the supervisor 
should take account of the restrictions of the loading ca-
pacities, and decide whether the backup machine should be 
start or not when the main assembling machine is failed or 
the production capacity is not enough. The supervisor will 
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Figure 3: Mechanism of VR Simulation-Based 
Decision and Optimization System 
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Figure 4: VR Simulation-based System of Boeing-737 
“Texas Star” Assembling 

 
decide the next action based on present working status and 
final objectives. In this assembling model, we have set 5 
decision-making place (where), 10 kinds of decisions 
(what), and the decision epochs and times can be decide by 
the supervisor to make the minimal performance measure 
C in formula (4).  

Then an experiment of such sequential decision and op-
timization under VR simulation enviroment is presented. In 
this experiment, actions include changing the arrival rate of 
Left X-beam, Right X-beam and Back Beam, starting the 
standby equipment of X-beam and suspending certain as-
sembling service and so on. The initial experiment condition 
of average arrival and service rate is shown in Table 1. 

 
Table 1: Arrival and Service Rate of Parts and Equipment 

Left X-
beam 

Right X-
beam 

Back 
Beam 

FAJ9801L/
R 

30 35 45 25 
Standby 

FAJ9801L/
R 

FAJ9800 
Standby 
FAJ9800 FBOF9805 

25 30 30 35 
 
The numbers in Table 1 marked with Left X-beam, 

Right X-beam and Back Beam are their average arrival rate 
and the numbers marked with the name of equipment are 
their average service rate. The arrival of customers is Pois-
son process and service time is subject to exponential dis-
tribution.  

By running simulation in VR enviroment, we can get 
the information from VR scene and simulation output in 
Applet that the assembling capacity of Left, Right X-beam 
and Back Beam is absence to match that of refined process-
ing on “Texas Star”. The length of queues increases rapidly 
to make the overstock of WIP, which is shown in Figure 5. 
 

0
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The vertical axis shows the number of WIP and the 

horizontal one shows the number of products completed 
assembling in simulation.  

In order to solve such problem, sequential decision is 
made as following sequence shown in Table 2: 

 
Table 2: Decision Sequence in Experiment 

Sequence Place Action Time 

1 Standby  
FAJ9801L/R  

Starting standby  
equipment 1317 

2 FAJ9800 Decreasing arrival rate  
of Back Beam 1968 

3 Standby  
FAJ9801L/R  

Starting standby  
equipment 3541 

4 FBOF9805 Suspending service 5500 

5 FAJ9801L/R  Decreasing arrival rate  
of Left X- Beam 5734 

 
From sequential decision as above and run optimiza-

tion at decision epochs with IPA, we can obtain new result 
of simulation running as Table 3 and Figure 6: 
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Figure 5: Number of WIP in Initial Simulation 
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Figure 6: Number of WIP in Modified Simulation 
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Table 3: The comparing experiment results 
 Initial 

Experiment 
Modified 

Experiment 
Total number of products 160 160 

Simulation length 8294.9 7020.7 
Number of WIP 82.5 28.5 

Queue length of Left X-beam 12 8 
Queue length of Right X-beam 8 5 

Queue length of Back Beam 8 5 
Queue length of Refined “Star” 3 1 
 

The numbers of WIP, Queue length of Left X-beam, 
Right X-beam, Back Beam and Refined “Star” in Table 3 
are all their average in the simulation. It can be viewed that 
the simulation result processed with sequential decision 
and optimization is better that initial one.  

5 CONCLUSION 

This paper proposes the optimization algorithm on sequen-
tial decision problem based on VR simulation system. By 
using such simulation system, a model about real system 
was developed to provide the decision-maker a virtual 
world to making decisions with the support of optimization 
algorithm. The VR Boeing-737 48-section assembling 
simulation system makes our cooperation factory save lots 
of cost and time in establishing the assembling line. The 
properties of man-computer interaction in VR and describ-
ing the uncertainty in simulation provide the feasible 
method and convenient experiment space to analyze the 
man-in-the-loop decision problem. This simulation system 
can be not only used to train decision-makers: either nov-
ice decision-makers or potentially established decision-
makers by comparing the decision result to optimized one, 
but also to operate the real-life facility. Then we can see 
this special simulation environment is the new trends of 
today’s simulation software, Visual Simulation and VR 
Simulation. As for further development, the integrated de-
velopment environment is under establishing. In such VR 
simulation system, every simulation user can easily code 
and compile the model and construct the VR scene accord-
ing to his demand. 
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