
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

SIMULATION OF SHIPBUILDING OPERATIONS

Charles McLean
Guodong Shao

Manufacturing Simulation and Visualization Group

National Institute of Standards and Technology (NIST)
100 Bureau Drive, MS 8260

Gaithersburg, MD 20899, U.S.A.

ABSTRACT

This paper discusses the objectives and requirements for a
shipbuilding simulation. It presents an overview of a
generic simulation of shipbuilding operations. The
shipbuilding simulation model can be used as a tool to
analyze the schedule impact of new workload, evaluate
production scenarios, and identify resource problems. The
simulation helps identify resource constraints and conflicts
between competing jobs. The simulation can be used to
show expected results of inserting new technologies or
equipment into the shipyard, particularly with respect to
operating costs and schedule impact. The use of DOD High
Level Architecture (HLA) and Run Time Infrastructure
(RTI) as an integration mechanism for distributed
simulation is also discussed briefly.

1 INTRODUCTION

Scientists and engineers working on the Manufacturing
Simulation and Visualization Program at the National
Institute of Standard and Technology (NIST) performed
the research presented in this paper. The goal of the
Manufacturing Simulation and Visualization Program is to
develop data interfaces and test methods for integrating
manufacturing simulation and visualization applications to
improve the accessibility and interoperability of this
technology for U.S. industry.

The National Shipbuilding Research Program (NSRP)
in part sponsored the research presented in this paper. The
NSRP is a five-year program to achieve significant
technology and process improvements in the U.S.
shipbuilding industry. NRSP is being carried out as a
collaboration among U.S. shipyards, government, industry
and academia.
 The NSRP has six focus areas, which are listed below:

• Shipyard Production Process Technologies
• Business Process Technologies

870
• Product Design and Material Technologies
• System Technologies
• Facilities and Tooling
• Crosscut Initiatives.

The Shipyard Production Process Technologies is a

major initiative that addresses all production processes
used to transform raw material, components, and
equipment into completed products (NSRP 2001). The
simulation of shipbuilding operations presented in this
paper was carried out as part of this initiative. For
background on shipbuilding operation, see (Storch 1995).

The objective of the simulation model for shipbuilding
operations is to provide data to support shipyard
management decisions including:

• Analysis of schedule impact due to additional

projects, differing production scenarios, and so
forth

• Identification of labor resource conflicts by craft
and skill level

• Analysis of cost and effects of exercising
overtime, new hire, and/or subcontractor to cover
labor shortages

• Analysis of cost tradeoffs of holding over
employees without work, versus lay-off, rehires
and new hires

• Prediction of optimum staffing levels based sales
and labor demand forecasts

• Demonstration of the expected results of inserting
new technology or equipment into shipyard,
particularly with respect to operating costs and
schedule impact

• Visual display of work location, resources, and
identification resource constraints and conflicts
between competing jobs (including cranes and
forklifts)

McLean and Shao

• Archiving of simulation runs as files to preserve
historical data.

2 SHIPBUILDING SIMULATION OVERVIEW

2.1 Functional Requirements

Simulation models can help to identify project and
resource management issues that have a major cost impact
for manufacturing industry. Project management systems
can realistically provide only a static view of project
definition, resource, and constraint data. Simulation can be
used to model and evaluate complex interactions between
overall project workload and available resources. It also
can be used to identify resource conflicts, “labor-hiding,”
and obtain a big picture of overall operations that is not
available by other means. Multiple runs of models can
provide sensitivity data on the potential impact of random
variations in operations.

The next section outlines the simulation system
architectures from the views of simulator, control logic,
user interface, and internal data management.

2.2 Simulation System Architecture

Simulation system is used to refer to not only the
simulation model and the simulation engine, but also the
other software applications that are used to generate data
for the model, a user interface system, and associated data
files. The simulation system is divided into the following
component elements:

• Simulator
• Control Logic
• User interface
• Internal Data Management.

 These elements are briefly introduced below.

Simulator – The simulation engine used to implement
the simulation system in this paper is ProModel 4.22.
ProModel is a commercial simulator that can be used for
evaluating, planning, or re-designing manufacturing,
warehousing, and logistics systems. The simulator allows
users to build a graphical representation of an application
system and test it in a variety of scenarios to provide better
solution for the problems in the organization. The
graphical animation and reports are useful tools for
visualizing, understanding, and improving the real system.
The development simulator includes functions for
developing and running models. A separate graphics
library is used to generate displays. A Microsoft COM
interface is included that allows the simulator to execute
external code. The COM interface was used to implement a
remote user interface (PRG 1996).
871
Control Logic – The control logic is the “brain” of the
simulation model. It is customized code and data
developed to model the production process of the shipyard.
The control logic for the simulation model manages the
execution of the following modules:

• Graphical user interface
• Data input
• Job and task management
• Production area allocation and space management
• Labor allocation
• Resource allocation
• Calendar and clock
• Report generator
• Remote user interface.

 All of the capabilities of these modules are functions
built on top of basic ProModel capabilities. More details
are provided in Section 2.3.

 User Interface – The user interface is the “face” of the
simulation model, the animated graphic display allows the
user to interactively use the simulation model to evaluate
and analyze the production process model of the shipyard.
Nine user interface screens were developed as showed in
Figure 1 (PUG 1996), including:

• Simulation status
• Space allocation
• Location status
• Production schedule
• Job status
• Task status
• Resource allocation
• Part and inventory status
• Statistical data summary.

 These simulation screens can be used to monitor the
system remotely by using distributed simulation
mechanisms discussed in section 2.5.

Internal Data Management – Four types of data files
are currently used by the simulation system:

• Project management data (one for each project)
• Schedule loading (one for each simulation run)
• Labor configuration file
• Resource configuration file.

 The primary sources for generating data for the
simulation are Microsoft Excel and project management
applications such as Primavera or Microsoft Project. The
project management data for the simulation includes
project task decompositions, precedence relationships
between tasks, resource requirements, timing data such as
due dates and duration, other scheduling data such as

McLean and Shao

project loading for the shipyard, project due dates,
production area assignment options, and resource
configuration data.

The preprocessor is a NIST-developed software
module, written in the C programming language, that is used
to translate project data into a form that can be easily read
into ProModel. The data files are read into the simulator
during the initialization phase of the simulation run.

2.3 Shipbuilding Control Logic

Most manufacturing simulations concentrate on modeling
material flow. The shipyard simulation is different in that
it concentrates on modeling the flow of work through
various planning and processing stages. In the shipbuilding
simulation discussed here, jobs and tasks are defined as
logical entities in the simulation flow to simulate the
production process. Each job is decomposed into many
tasks. The following subsections discuss the detailed
control logic.

As showed in Figure 2, Job orders are created and
placed at a Jobs_Arrival location. Once the job data is
initialized from data files, it is moved to the
Unstarted_jobs location.

At the Unstarted_jobs location, if current date is later
than or equal to the job start date, the job is moved to the

872
Job_area_selection location. Otherwise, the job remains at
the schedule location waiting for its start date to arrive.

At the Job_area_selection location, the production
area where the job will be processed is determined.
Production areas are assigned in order of most - late to
least-late job. A lateness attribute is set on the job by
subtracting the start date from the current date. The
Job_area_selection location will attempt to select a
production area for the most - late job first. The required
space for the primary production area is computed. An
attempt is made to allocate the required space in the
primary production area. If the allocation is successful the
job moves to the Task_initialization location for the
selected production area. There is a unique set of “task ”
locations that is associated with each major production
area. If the allocation of a production area is unsuccessful,
the job remains at the Job_area_selection location until
sufficient free space can be found in an appropriate
production area for the job. The system rechecks for free
space each simulation clock cycle.

The subroutines in this module are responsible for
dynamically allocating and releasing chunks of workspace
within the production area. The space required is
determined by job length and width data for the job that is
contained in an external data file.

Figure 1: Shipyard Simulation User Interface

McLean and Shao

Unstarted Jobs
Location

Job Area
Selection
Location

Job processiing Completed Jobs
Location

Jobs Exit
Location

Task Initialization
Location

Task Evaluation
Location

Task Labor
Allocation
Location

Task Processing
Location

Task Completion
Location

Jobs Arrival
Location

Production area N

Figure 2: Entity Processing Locations within the Shipyard Simulation

At the Task_initialization location, another data file is

used to identify the task decomposition of the job, the labor
requirements, and bill of materials. The production area
that has been selected and the job type determine which
data set will be used. A precedent network array is filled
in for all of the tasks in the job decomposition. Work
duration is computed for each task in the job. Random
number generators and constraint information is used to
generate varying durations for each task. Totals are
generated for the entire job. A unique task entity is created
for each task in the job. Task attributes are set and all
entities move to the Task_evaluation location for the
selected working area.

At the Task_evaluation location is where a
determination is made as to whether the task is ready to
start. Readiness is determined by whether or not there are
any precedent conditions that are not satisfied. Precedent
conditions include the satisfaction of overlapping task
constraints (e.g., start-to-start relationships). Ready tasks
are moved to the Task_labor_allocation location. Tasks
that are not ready remain at the Task_evaluation location
until their precedent tasks have completed. Tasks
remaining at this location are re-evaluated every clock
cycle.

Each task is defined by its total work duration, work
duration remaining, the labor skill category required,
staffing constraints, number of workers currently assigned,
and material handling (crane) requirements. These
parameters are stored on the task - entity and/or task - data
arrays. Work duration is maintained as the total number of
minutes required to complete the task. Remaining work
content refers to the work that still must be performed.
Remaining work content is updated as appropriate at the
start of task processing, task completion, and/or at the end
of the shift. Number of workers assigned refers to the
number of workers allocated to the task for the current
shift. The number may change from shift to shift
depending on the relative lateness of the task. Crane
requirements are specified as a percentage of the total
duration beginning at the start of task.
873
Four types of precedence relationships may be defined
in the project management data file:

• Finish-to-start (FS)
• Start-to-start (SS)
• Finish-to-finish (FF)
• Start-to-finish (SF).

 Given tasks A and B, the relationship FS means that
task B cannot start until task A finishes. The relationship
SS means that task B cannot start until task A starts. FF
means that task B cannot finish until task A finishes. SF
means that task B cannot finish until task A starts.
Furthermore, a relationship may be indicated as one of the
following types plus or minus a percentage of the task
duration. For an example, an SS + 50% relationship
indicates that task B can start after 50% of the duration
since the start of A has passed.

At the Task_labor_allocation location, workers are
allocated from the labor pool to each task. Priorities for
labor allocation are determined by the lateness of the job.
Labor allocation decisions are revisited for all jobs’ tasks
within a production area at the beginning of each shift.
Labor is allocated to tasks at the location at the beginning
of each shift. Labor allocated to a task will remain on the
task until either the task completes or the shift ends,
whichever comes first. When tasks complete, labor is
reassigned to the pool until it is allocated to the next set of
tasks that are ready to start or continue. Low priority tasks
may not receive a new allocation in subsequent shifts. At
the end of each shift, all tasks in the working area are
routed back to the Task_labor_allocation location. This
logic ensures that jobs that have recently become late or
gotten ahead of schedule will receive an appropriate labor
allocation.

Various scoring mechanisms for evaluating job
lateness and performing resource allocation have been
implemented. One mechanism is described here. In this
mechanism, lateness is determined by comparing the
percentage of work content that has completed against the
percentage of the job duration that has passed. Labor pool
data, i.e., availability of workers in each labor pool, is

McLean and Shao

initialized at startup from an external file. Calculations
used to determine lateness are as follows:

• Scheduled job time = Job due date – Job start date
• Percent job time elapsed = (Current date – Job

start date) / Scheduled job time %
• Percent job completed = 100% – (Work content

remaining / Total work content)%
• Lateness score = Percent job time elapsed –

percent completed.

 For example, a Lateness_score of 100% would mean
that the job is past due and no work has been performed.
On the other hand, a Lateness_score of –100% would
mean that work is completed, but its scheduled start date
has not arrived. A Lateness_score of 0% means that the job
is on schedule.

All tasks that received a labor allocation are moved to
the Task_processing location. Tasks that did not receive a
labor allocation remain at the location until labor resources
can be allocated.

At the Task_processing location, the task waits until
either the work content is completed or the shift ends. The
current time to complete the work content is determined by
dividing the total task work content by the number of
workers assigned. If the work completes before the end of
the shift, the remaining work content for the task is set to
zero and the task is moved to the Task_completion
location. If the shift ends before the work is completed,
the work accomplished during the shift is subtracted from
the remaining work content and the task is moved back to
the Task_labor_allocation location. The work
accomplished during the shift equals the shift duration
multiplied by the number of workers assigned.

2.4 Shipyard Input Data Files Processing

This module converts shipyard data files into appropriate
formats for initialization of internal simulation data
structures. The shipyard input data for the simulation may
initially reside in Microsoft Excel spreadsheets, Microsoft
Project files, Primavera project files, Microsoft Access
databases, and Comma-Separated Value (CSV) text files.
The data types used in shipyard source data files or
databases are not the representation required for internal
use within the ProModel simulator. The data files are
preprocessed to put them in a format of the internal
representation that is used to represent the data within
ProModel. In this version of ProModel, all data must
essentially be represented as an integer or real numbers.

Input data conversion utilities are implemented using
C, Microsoft Access, and Microsoft Excel macro
programming capabilities. The data file used for input into
ProModel is structured to facilitate the use of its input
functions, i.e.; it is converted to appropriate integer and
874
real formats. The following major sets of data are required
to configure and run the shipyard simulation models:

• Schedule file
• Shipbuilding project plans
• Labor configuration data
• Calendar and shift information.

Each of the data sets is briefly described below.
Schedule file – The schedule is used to identify the

jobs to be run during a particular run of the simulation.
Two schedule file formats have been implemented. The
first format supports construction jobs within the shipyard.
The second format supports repair and conversion jobs at
shipyard piers. The schedule file is maintained in comma-
separated-value (CSV) format. For example, the repair and
conversion file format is a table that contains: the project id
number, scheduled start day, month, year, scheduled end
day, month and year, ship length, width, draft, and three
possible pier assignments in priority order.

Shipbuilding project plans – Project planning data for
the shipyard is maintained in a project management file
that contains task identifiers, activity descriptions, total
staff hours, remaining staff hours, early start date, early
finish date, craft code, staff per shift, a calendar identifier,
and precedence relationships between activities. A unique
identifier is assigned for each project and job (subproject
or group of activities/tasks). The identifier is used to
reference the input data files and track the project/job
through the simulation.

Labor configuration data - The shipyard configuration
data file is used to identify shipyard labor, material
handling, machine, and space resources that are available
during a particular simulation run. The file identifies the
number of each craft type and skill level that is available
on each shift during a typical day. It specifies labor rates
by craft type and skill level, whether new hires or
contractors may augment labor pools, and simple rules for
laying-off idle workers. An Excel spreadsheet may be used
for data entry. ASCII CSV files are exported from Excel
and read into the ProModel simulation.

Calendar and shift information - This data is currently
updated using the development interface. It includes
production calendar information, i.e., holidays, shift
schedules, overtime constraints, etc.

2.5 HLA Interface

The High Level Architecture (HLA) was developed by the
U.S. Department of Defense’s Defense Modeling and
Simulation Office (DMSO) to provide a consistent
approach for integrating distributed, defense - department
simulations (Kuhl 1999). In this project, the HLA
integration mechanisms were used to manage
communication and synchronization among simulation

McLean and Shao

models. Integration is achieved through the use of the
NIST-developed High Level Architecture (HLA) adapter.
The HLA adapter is a software module that acts as an
interface between the simulations and the HLA Run-Time
Infrastructure (RTI). The NIST HLA adapter provides a
simplified interface for using the HLA RTI communication
mechanisms.

An HLA-based distributed simulation is called a
federation. Each simulation application that is integrated
by the HLA RTI is called a federate. One common data
definition is created for domain data that is shared across
the entire federation. It is called the federation object
model (FOM). Each federate has a simulation object
model that defines the elements of the FOM that it
implements (McLean and Riddick 2000).
 A DMS Adapter Module is incorporated into each
DMS federate. The DMS Adapter handles the
transmission, receipt, and internal updates to all FOM
objects used by a federate. Figure 3 illustrates the
relationship between the various elements of the
distributed manufacturing simulation execution
environment. For the shipyard simulation, multiple
visualization federates were implemented to run with a
single simulation engine and manufacturing model. The
DMS Adapter and the HLA RTI provided remote updates
of shipyard simulation data to remote user interface
screens.

3 CONCLUSIONS

This document has provided a brief overview of the
simulation of shipbuilding operations that is being

875
developed as a part of the NSRP Project by staff of the
NIST Manufacturing Simulation and Visualization
Program. By using simulation in shipbuilding operation,
traditional problems in a shipyard can be solved. The
simulation model enables the analysis of

• Schedule impact due to additional projects
• Differing production scenarios and identification

of Labor resource problems
• Identification resource constraints and conflicts

between competing jobs (including cranes and
forklifts)

• Demonstration of the expected results of inserting
new technology or equipment into shipyard,
particularly with respect to operating costs and
schedule impact.

 The animated and graphical display of work location,
resources, production flows, and simulation results will
help shipyards to make better production management and
resource allocation decisions. Formatted report and log
files archive the simulation runs to preserve historical data
for later use.

The integration with the other simulation models using
DOD High Level Architecture and Run Time
Infrastructure as an integrating infrastructure currently
enables remote interfaces and will ultimately enable the
implementation of larger and larger distributed models of
the entire shipyard manufacturing system.
Manufacturing Simulation
Federation Manager

Distributed
Manufacturing Data

Repository

HLA Run-Time
Infrastructure and
Communications

Network

Simulation
Visualization

Federate

DMS Adapter

Manufacturing
Simulation
Federate

DMS Adapter

Real Manufacturing
System

Federate

DMS Adapter

Simulation Output
Data Analysis

Federate

DMS Adapter

Figure 3: Distributed Manufacturing Simulation Environment Elements Integrated by the
HLA Run Time Infrastructure

McLean and Shao

DISCLAIMER

No approval or endorsement of any commercial product by
the National Institute of Standards and Technology is
intended or implied. The work described was funded by
the United States Government and is not subject to
copyright.

ACKNOWLEDGMENTS

Work described in this paper was sponsored by the
National Shipbuilding Research Program (NSRP) ASE and
the NIST Systems Integration for Manufacturing
Applications (SIMA) Program. The authors would like to
express thanks to Mike Iuliano, Young Jun Son, Khadija
Moultalis, Swee Leong, Tina Lee and Saumitra Chopade
for their efforts in the project.

REFERENCES

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating
Computer Simulations: An Introduction to the High
Level Architecture. Prentice Hall: Upper Saddle River,
NJ

McLean and Riddick. 2000. The IMS MISSION
Architecture for Distributed Manufacturing
Simulation. Proceedings of the 2000 Winter
Simulation Conference, Edited by Joines J. A Barton
R. R. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers. Or via ‹http://
www.informs-cs.org›

ProModel Manufacturing Simulation Software Reference
Guide (PRG), 1996, Orem, UT

ProModel Manufacturing Simulation Software User’s
Guide (PUG), 1996, Orem, UT

Storch, Hammon, Bunch and Richard C. 1995. Ship
Production, 2nd Edition. Cornell Maritime Press, Inc.

The National Shipbuilding Research Program (NSRP)
WebPages <http://www.nsrp.org>

AUTHOR BIOGRAPHIES

CHUCK MCLEAN is Leader of the Manufacturing
Simulation and Visualization Group in the U.S. National
Institute of Standards and Technology (NIST)
Manufacturing Systems Integration Division. He has
managed research programs in manufacturing simulation,
engineering tool integration, product data standards, and
manufacturing automation at NIST since 1982. He has
authored more than 50 papers on topics in these areas. He
holds a Master's Degree in Information Engineering from
University of Illinois at Chicago and Bachelor's Degree
from Cornell University. His e-mail address is
<mclean@cme.nist.gov>

876
GUODONG SHAO is a research engineer from Intelligent
Automation Inc. and a contractor in the Manufacturing
Simulation and Visualization Group in the U.S. National
Institute of Standards and Technology (NIST)
Manufacturing Systems Integration Division. He has
participated in research relating to FMS, CIMS, and
manufacturing simulation integration for years. He holds
a Master's Degree from University of Maryland at College
Park. He is a Ph.D. student in Graphics Laboratory at
George Mason University. His e-mail address is
<gshao@cme.nist.gov>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

