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ABSTRACT 

Multitrajectory Simulation allows random events in a 
simulation to generate multiple trajectories.  Management 
techniques have been developed to manage the choices of 
trajectories to be continued as combinatorial explosion and 
limited resources prevents continuing all of them.  One of 
the seemingly most promising methods used trajectory 
probability as a criterion, so that higher probability 
trajectories were preferentially continued, resulting in a 
more even distribution of (surviving) trajectory 
probabilities, and better than stochastic approximation to a 
reference outcome.  It was also found that this 
management technique introduced a failed ergodicity 
assumption.  The higher and lower probability trajectories 
behave differently to a significant extent.  The effect is to 
limit the number of trajectories which can usefully be 
applied to the problem, such that additional runs would fail 
to converge further toward the definitive reference 
outcome set.  This may be a useful model for 
understanding other simulation modeling limitations. 

1 BACKGROUND 

The goal of multitrajectory simulation is to explore the 
outcome space of a simulation, that is, the set of all 
possible outcomes, more systematically and less 
expensively (for a given quality of understanding) than can 
be achieved with conventional stochastic simulation.  
(Gilmer and Sullivan 1998).  The heart of the proposed 
method is to explicitly track each possible simulation 
trajectory, as illustrated in Figure 1.  When an event that 
would normally be stochastic occurs, instead of one 
outcome, multiple outcomes are generated, each 
constituting a trajectory having its own state.  Because the 
trajectory bifurcates, this is also referred to as “splitting”, 
with “cloning” of the state.  In concept, such a multiple 
trajectory simulation is integrated with its support system 
in such a way that its use provides outcomes with 
probabilities associated with each, and an accounting for 
the key events or circumstances leading to the differences. 
797
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Figure 1: Concept of Explicitly Tracking Trajectories 
 

The peril in this approach is combinatorial explosion 
as the number of events becomes large.  We have assumed 
a simulation context in which only relatively important 
events are treated in this manner, perhaps hundreds in a 
typical trajectory.  However, even then, there must be 
pruning of the tree of possible trajectories.  The method 
which has been used is the “truncation” of trajectories.   
Event management policy implemented by a control 
method explicitly decides, for each event in some 
trajectory, whether to resolve the event in multitrajectory 
fashion (resulting in the creation of a new trajectory) or to 
instead resolve it deterministically or stochastically.  The 
case of stochastic resolution with only one continuing state 
corresponds to the “Russian Roulette” used in conjunction 
with “splitting” as a variance reduction technique. 

This approach has been explored in the context of 
force on force military simulations.  In many scenarios, 
multitrajectory methods which managed the events did 
quite well, better than runs having significantly  larger 
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quite well, better than runs having significantly  larger 
numbers of stochastic replications.  However, the 
multitrajectory runs also seemed to reach a plateau of 
performance (described later), where increasing numbers of 
trajectories yielded no benefit.  The problem tended to 
occur most often in the simpler, smaller scenarios, and was 
noticed most in the “two division” scenario (referred to 
henceforth as “scenario 2”), shown Figure 2.  The problem 
remained unexplained until the discovery of the 
ergodicity pitfall reported in this paper. 

 
 

Figure 2: Two Division Scenario 
 
2 THE MULTITRAJECTORY SIMULATION 

This research has been conducted using a simplified, 
unclassified surrogate for the military simulations of 
interest.  The simulation “eaglet” was designed to 
resemble the Corps level simulation “Eagle” in important 
respects, but to be of manageable simplicity.  It includes 
Lanchester square law combat, movement by nominally 
battalion sized units along routes with multiple paths, 
decisionmaking, and artillery support.  Figure 3 illustrates 
the smallest scenario we have used with “eaglet”; it is the 
one in which the problem reported here was most clearly 
manifest.  In addition to the planned routes shown, units 
have some alternative routes (not shown).  This scenario 
was originally constructed for illustrative purposes to 
show a situation where perverse results can occur in a 
simulation.  A Blue reconnaissance unit encounters a Red 
unit in defense, then withdraws.  A larger Blue force then 
attacks.  The results of the reconnaissance encounter, if it 
leads to an ineffective Red force, is that a stronger Red 
unit moves  up  to  the  defensive position.  Thus, initial 
success  
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by Blue can cause a later attack to be made under 
disadvantageous conditions.  As a result, this scenario has 
a very wide variety of possible outcomes, and shows a 
more pronounced nonmonotonicity (or “chaos”) in its 
response than any of the others examined. 
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Figure 3: Simplest “eaglet” Scenario 
 

3 THE CONVERGENCE ISSUE 
 
The earlier project to assess multitrajectory performance 
focused on two particular Measures of Effectiveness, Blue 
Losses and Loss Exchange ratio, and compared how well 
multitrajectory techniques do relative to stochastic 
simulation at approaching a definitive reference.  The 
methodology is outlined in Figure 4 below.  The reference 
is generated by making a huge number of stochastic 
replications (5M originally, and later as many as 50M). 
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Figure 4: The Analysis Process Used to Compare 
Multitrajectory and Stochastic Runs 

 
In the earlier project, it was found that the simpler 

multitrajectory methods did not converge on the 
stochastic reference as rapidly as traditional stochastic 
simulation.  This was particularly true for the policy 
identified as “mt4” where all choices are multitrajectory 
(with :”splitting”) up to a given state limit, and all further 
choices are stochastic (random).  The plots appeared 
“grainy”.  Figures 5, 6, and 7 illustrate for Scenario 2 the 
MOE plots generated with 5M stochastic trajectories, 10K 
stochastic trajectories, and 10K mt4 trajectories. 



Gilmer, Jr. and Sullivan 
 

 

 
Figure 5: Scenario 2 Stochastic 5M Trajectory Reference 

 
Figure 6: Scenario 2 10K Stochastic Trajectories 

The reason for this measured poorer performance by 
the multitrajectory method “mt4” became apparent.  The 
multitrajectory states have a very wide range of 
probabilities, and the less important ones count for very 
little in assessing distances to the reference.  The more 
probable ones carry more weight and contribute to a 
pronounced quantization effect.  In contrast, the stochastic 
run trajectories all have the same probability weight, and 
do not suffer this problem.  In information theory terms, 
the wide range of probabilities means that the set of 
trajectories cannot convey as much information.  This 
problem led to the development of a new multitrajectory 
management method “mt6”, intended to “fix” the problem.  
In this method, there is a “soft” state limit, typically 1% to 
10% of the ultimate state limit, beyond which only the 
 799
high probability trajectories (those with a probability of 
1/(m*c) or greater are treated in multitrajectory fashion, 
where m is the maximum state limit and c is a parameter 
chosen by the analyst.  (Values of c much larger than 1 can 
limit the final state count to less than m.)  Lower 
probability trajectories use a stochastic choice.  It was 
thought that the random choices for the low probability 
trajectories and “splitting” of the high probability 
trajectories would result in an accurate distribution better 
than for purely random (stochastic) choices. 

 

Figure 7: Scenario 2 10K Multitrajectory “mt4” 
Trajectories 

 
Method “mt6” was shown to perform better than 

stochastic simulation in at least some cases, assuming that 
the criterion parameter c and soft state limits are well 
chosen.  The MOE plots appear indistinguishable from the 
stochastic ones to the eye.  Table 1 shows what can be 
achieved in this (two division) scenario with a well chosen 
“soft” state limit and criterion factor c.  Two different 
smooths were applied to the plots prior to making the 
comparisons to minimize the effect of quantization grain.   

The multitrajectory method performs better than 
stochastic methods for this scenario for some settings, 
although not by much of a margin.   (The multitrajectory 
method did considerably better in the cases of larger 
scenarios of four and eight divisions.)  Based on these 
data, it was thought that the problem encountered earlier 
was indeed fixed. 
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Table 1: Scenario 2 Distance Measurements for 10K 
Trajectories (mt6) compared to the Reference 

 
10K trajectory runs (with varying soft limits.  c=1.42): 

 unsmoothe
d 

3 x 3 sm 11 x 11 
sm 

stochastic: 2.69e-05 0.99e-05 2.59e-06 
MT6 1: 2.75e-05 1.05e-05 2.91e-06 

(c= .1) 
MT6 32: 2.85e-05 1.05e-05 2.53e-06 
MT6 128: 2.74e-05 1.10e-05 2.52e-06 
MT6 512: 2.63e-05 0.98e-05 2.24e-06 

MT6 1024: 2.73e-05 0.97e-05 2.41e-06 
MT6 2048: 2.81e-05 1.05e-05 2.94e-06 

When scenario 0 was first developed as a tutorial 
example, it was studied using the MOE convergence 
methods in order to gain an understanding of its behavior.  
To our surprise, Scenario 0 performed rather “badly” in a 
number of respects.  Figure 8 shows an MOE plot for 50 
Million stochastic replications.  Several peculiarities are of 
note.  Larger scenarios had MOE plots (for large numbers 
of replications) that were fairly smooth and regular, almost 
Gaussian.  This was decidedly not the case for Scenario 0.  
The surface is uneven, and fairly high concentrations of 
outcomes appear at various points at the periphery of the 
pattern.  Variations in probability include both fine and 
coarser components.  In some areas there is a blurred, or 
smoothed, effect.  In others, there are sharp boundaries. 

In addition, the multitrajectory plots consistently 
compared badly with stochastic plots.  Figure 9 shows an 
MOE plot for a 5M “mt6” multitrajectory run.  This may 
look very similar to the 50M stochastic reference, but it 
differs significantly.  Stochastic runs converge on the 50M 
stochastic reference as the number of replications 
increases.  The “mt6” runs do not.  Beyond about 10K 
replications the distance to the reference remains constant, 
and poorer than that for same sized stochastic runs.  This is 
not obvious.  By taking a difference between the two 
histograms, we can see large scale differences that conform 
to a peculiar pattern, as seen in Figures 10 and 11. 
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Figure 8:  MOE Histogram for Scenario 0, 
50M Stochastic Replications Used as a 
Reference 
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Figure 9: MOE Histogram for Scenario 0, 5M 
Trajectories, Method “mt6” 
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Figure 10: Unsmoothed Difference Plot 
Between the Stochastic 50M Reference and 5M 
mt6 Histograms 

Scenario_0 
Difference between 
50M sto and 5M 
mt6 
histograms, with 
11 x 11 cell smooth

0 80Blue Losses

Lo
ss

 E
xc

ha
ng

e 
R

at
io

5.0

0.0

 
Figure 11: Smoothed Difference Plot Between 
the Stochastic 50M Reference and 5M mt6 
Histograms 

 
4 ANALYSIS 

Ultimately, analysis showed that the fundamental problem 
was that trajectories bound for different parts of the MOE 
plot had significantly different average probabilities.  
Figure 12 shows a plot of average probability per 
trajectory for the 5M trajectory mt6 composite run. 
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Figure 12: Probability per Trajectory for Scenario 
0, mt6 
 

The “mt6” method preferentially continues 
trajectories with higher probabilities in order to achieve a 
small spread in trajectory probabilities.  The variations in 
probability per trajectory are small.  The variations seen 
correlated with the discrepancies in the MOE plots.  This 
same kind of discrepancy pattern was seen over a large 
number of different conditions, including some runs using 
techniques more complex than mt6, but was particularly 
characteristic of mt6.  (The 5M histograms are shown 
because this was the largest mt6 data set available.  It is a 
composite of ten 500K runs.)  A plot of trajectory 
probability for stochastic runs would be uniform over the 
region having outcomes, because each stochastic 
trajectory is assumed to carry the same weight. 

The mt6 method, by using a probability sensitive 
criterion for multitrajectory resolution, also subtly 
changed the distribution function itself.  This hypothesis 
was tested by looking at results from a large “mt4” run, in 
which probability of a trajectory plays no role in the 
decision whether to continue a trajectory or not.  
Trajectories are spawned until the state limit is reached.  
This final limit is, of course, reached much earlier than for 
mt6 runs.  Once the limit is reached, stochastic resolution 
is used.  Figure 12 shows the MOE plot for an “mt4” 800K 
trajectory run.  Neither mt4 nor stochastic choices would 
be biased by any consideration of trajectory probability.  
Thus, we can see how trajectory probability might 
correlate with where on the MOE plot trajectories are 
found.  Figure 13 below shows the original mt4 plot.  Keep 
in mind that this is a much smaller set than the 5M mt6 
plot, although even at the same number of trajectories mt4 
gives a much “grainier” (more noisy) plot that does not 
approach the stochastic reference as well as mt6. 
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Figure 13: Scenario 0 MOE Histogram for 800K 
Trajectories, Method mt4 

 
The remarkable insight from the mt4 run is seen in the 

plot of average probability per trajectory, seen in Figure 
14.  Here we see dramatic differences in the probabilities of 
trajectories bound for different parts of the MOE plot.  The 
shadings show a range from 1/20 the average of 1/N to 20 
times the 1/N average trajectory probability, with many 
cells of the histogram exceeding the factor of 20.  The 
regions of low probability (lighter shading) per trajectory 
correlate with regions in which the mt6 runs came out 
short of the stochastic reference: those areas that are 
lightly shaded in Figure 11 earlier.  What has happened is 
that most of these trajectories have been lost under method 
mt6, with a resulting higher concentration of trajectories in 
the areas of the MOE plot having high probability per 
trajectory. 

A test of this hypothesis is a difference plot between 
the mt4 histogram and the stochastic reference.  It should 
not show the distinctive difference pattern that the mt6 
method did, and should not show much of a pattern at all.  
Figures 15 and 16 show the unsmoothed and smoothed 
difference plots.  

The unsmoothed difference plot seems to show no 
discernible pattern, in contrast to the unsmoothed mt6 
pattern.  The mt4 run is much smaller than the mt6 run 
seen earlier, and approximates the stochastic reference less 
well due to the wide probability range.  With that 
considered, the smoothed difference plot shows 
differences, but of a seemingly random nature as might 
arise from noise, and certainly not conforming to the mt6 
characteristic discrepancy pattern. 
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Figure 14: Scenario 0 Histogram Probability 
per Trajectory for mt4 

 
What we have is, essentially, an ergodic assumption 

gone awry.  The mt4 method, which was not sensitive to 
probability, did not suffer from this problem.  But the mt4 
method was even less satisfactory than mt6 with respect to 
distance from the stochastic reference due to the 
granularity problem described earlier. 

The nature of this problem was not apparent until we 
looked at Scenario 0 runs.  This line of inquiry revealed an 
important potential pitfall in multitrajectory methods.  
How pervasive this problem might be is not known, since 
time and resources to pursue it further were not available.  
The very small size and wide range of possible outcomes 
for this scenario are unusual.  There was no indication that 
the other scenarios were affected by this phenomenon 
nearly as much, if at all.  However, it may be that this 
problem is most likely to occur for precisely those 
scenarios where analysis is most important: those in which 
the issue is in doubt and may swing on relatively few 
critical events which are, a-priori, not well understood. 

5 CONCLUSIONS 
 
Currently, we must conclude that the stochastic behavior 
of military simulations is not yet sufficiently well 
understood to recommend the implementation of 
multitrajectory methods in operational analytic simulation 
tools.  This effort proceeded with the assumption that this 
might  be the outcome, and used an experimental method 
to assess the potential benefits.  This experimental method 
has so far not been undergirded with a firm theoretic 
understanding of the simulations of interest.  
Consequently, it is not possible at this time to suggest 
exactly what might be done to make trajectory 
2
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management more effective.  Rather, a deeper 
investigation into the stochastic nature of combat 
simulations seems to be needed, together with a more 
precise definition of those attributes of a simulation 
outcome set that most benefit analysis. 
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Figure 15: Unsmoothed Histogram Differences 
for 800K mt4 Run Compared to 50M Stochastic 
Reference 
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Figure 16: Smoothed Histogram Differences for 
800K mt4 Run Compared to 50M Stochastic 
Reference 
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In particular, there are significant ergodicity issues in 
combat simulations, if it can be accepted that eaglet is at 
all representative.  Some parts of the response surface may 
be populated by many very small probability outcomes, 
other parts having about the same probability density are 
populated by fewer higher probability trajectories.  
Techniques (such as our mt6 method) which try to 
maximize coverage by focusing on higher probability 
outcomes will distort the understanding of the outcome 
set, at least when the number of trajectories gets large 
enough that quantum effects are small.  This issue could be 
very important in the context of planning systems, where 
there is a temptation to prune unlikely possibilities to 
conserve planning resources. 

We consider this a “non-ergodic” effect, in which 
assumptions that some outside variable (time, or in our 
case, probability), is unimportant, turns out to be wrong.  
The discovery that this effect was significant was an 
unpleasant surprise in the course of a project focused on 
other objectives.  It did prove interesting that the 
particular effect could measured in terms of a number of 
replications which beyond which no improvement could 
be achieved.  This relationship between a shortcoming of 
the model and the number of worthwhile replications may 
prove quite useful.  For example, a modeling decision to 
use deterministic rather than stochastic representation of 
some event is also an assumption that the random effects 
will balance out, that is, it is an ergodicity assumption 
similar in character to what we have investigated here.  It 
may prove possible to characterize each such assumption 
in terms of its effect on the fidelity of the model as an 
impact on the maximum number of useful replications.  
Further development of this concept would seem to be 
worthwhile. 
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