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ABSTRACT 

Scalability and input domain explosion make it impossible 
to exhaustively test simulation systems. Improved methods 
such as statistical usage testing are needed to provide quan-
titative support for test planning and test management.  
This paper describes the challenges and the state of the 
practice of testing simulation systems. A brief introduction 
to statistical usage testing is provided. An approach to de-
veloping an abstract usage model structure appropriate for 
testing military simulation systems is suggested and illus-
trated. This approach supports the creation and analysis of 
test scenarios that are flexible enough to handle a wide 
range of uses in military simulations. 

1 INTRODUCTION 

A variety of authors have written in the publicly available 
literature concerning the challenges in testing simulation 
systems. (For example: Balchi 1995, Birta and Ozmizrak 
1996, Gonzalez and Dankel 1993, Hartley 1997, Hopkin-
son and Sepulveda 1995, Jacobson and Yucesan 1992, 
Page and Smith 1998, Shannon 1992, and Smith 1998.) 
Three major challenges are scalability, size of the input and 
output domains, and the need to tailor the verification and 
validation processes to meet individual needs. As discussed 
in Section 2, these and other challenges make it impossible 
to exhaustively test simulation systems. Improved methods 
are needed to provide quantitative support for test planning 
and test management.  

The DMSO Recommended Practice Guide (2001) de-
fines validation of simulations as “the process of determin-
ing the degree to which a model or simulation is an accurate 
representation of the real world from the perspective of the 
intended uses of the model or simulation.”  According to 
Hartley (1997), the proper motive for validation and verifi-
cation is the intended use of the model. Robinson (1997) 
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states that a model can only be shown valid if it is demon-
strated to be accurate for the intended purpose.  Sargent 
(1998) echoes the DMSO definition by describing validity 
as being “concerned with determining that the model’s out-
put behavior has the accuracy required for the model’s in-
tended purpose over the domain of its intended applicabil-
ity.” According to DMSO (2001), validation scenarios 
should “sufficiently characterize the probability distributions 
representing areas where the simulation’s behavior is sto-
chastic”, and validation scenarios should “sufficiently char-
acterize the behavior of the simulation that the application 
will use most and, therefore, will introduce the greatest 
probability of errors occurring.” 

The DMSO Recommended Practice Guide (2001) fur-
ther states that:  “Good scenarios will produce testing results 
that sample a simulation’s behavior sufficiently enough to 
enable accurate assessments of a simulation’s validity for 
some application.  A simulation with poorly understood be-
havior requires scenario designs that generate enough data to 
sufficiently characterize those regions where a simulation 
behaves well and poorly.”  

The benefits of statistical usage testing for supporting 
test planning, test generation, test automation, and software 
certification have been demonstrated in numerous industry 
and government software development projects in a variety 
of domains. (For example: Agrawal and Whittaker 1993, 
Sherer and Walton 1998, Walton et al. 1995). These suc-
cesses and the above statements from the DMSO Recom-
mended Practice Guide on Validation and Verification jus-
tify the investigation of the applicability to statistical usage 
testing to military simulation systems.  

2 TESTING CHALLENGES 

In military simulations it is possible that many different 
groups of objects exist at one time, with each group possi-
bly a different size.  There is a scalability issue with regard 
to the number of different objects that can coexist in the 
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simulation at one time.  There is also a scalability issue 
with regard to the number of objects of the same type that 
can coexist.  Each of these scalability issues can create a 
combinatorial explosion of objects to be tested. For large 
systems, due to time and resource constraints, not all com-
binations can be tested. For instance, suppose a tester 
chooses to have four different kinds of objects with two 
objects of each kind.  The simulation system may be able 
handle this configuration successfully, but may not be able 
to handle the addition of a fifth different kind of object.  If 
the tester only tests four kinds of objects, the defect that 
causes the system to fail at the fifth kind of object will not 
be surfaced. To complicate matters, military simulations 
can cover a wide variety of terrain.  As a result, to fully test 
the simulation system, all the combinations of different 
types of objects and number of objects must be combined 
with the each of the different types of terrain.   

A related problem to scalability is the problem of the 
size of the input and output domains.  As a military simula-
tion scales up, the input domain can grow exponentially.  
For example, the simulation can include any of a variety of 
vehicles, troops, and structures that can be combined in a va-
riety of ways.  In addition, there are many mission types and 
terrains on which the vehicles, troops, and structures may be 
used.  Furthermore, there are a wide variety of environ-
mental conditions such as night, day, and type of weather 
that may be added to the simulation.  Each object has a vari-
ety of behaviors that it can perform.  Even for a very small-
scale simulation, the combination of these input factors is 
quite large.  When the simulation is scaled upward, the input 
domain will scale at a much faster rate. 

The output domain may not grow as quickly as the in-
put domain.  However, information about the output domain 
may be incomplete, and there can be multiple possible re-
sponses for the same input data. For example, when a simu-
lation runs with human-in-the-loop, the outcome for a given 
set of input data can be different each time the simulation is 
run. In addition, when a simulation includes models of fu-
ture environments, scenarios, or weapons, field testing is not 
possible and the expected output may not be completely 
specified. Furthermore, the details of some combat scenarios 
may not be well understood, and their outcomes can be de-
termined by or influenced by a human decision making 
process that is not well understood.  Consequently it is often 
difficult, if not impossible, to completely identify the output 
domain. 

When it is not possible to determine whether the out-
come of a simulation is correct, the verification and valida-
tion process is used to build the user’s confidence in the 
simulation system.  This motivates verification and valida-
tion plans tailored to the user’s needs and emphasizing the 
issues most important to the user.  
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3 CURRENT TESTING PRACTICE 

A variety of verification and validation techniques have 
been developed and employed on simulation systems.  
These techniques have been categorized in different ways 
by (Balci 1994 and Sargent 1998)  Most of the validation 
and verification techniques discussed in the simulation lit-
erature are standard software engineering techniques.  
These will not be discussed here.  However, a few tech-
niques specific to simulation systems have been reported.  
These simulation specific techniques are generically cate-
gorized by (Sargent 1998) as either subjective or objective. 
Important issues of each category are summarized below.  

3.1 Subjective Testing  

Subjective testing approaches rely heavily on expert opin-
ions, or third party evaluation.  The simulation is run; the 
expert evaluates the simulation experience and results 
based on some specific criteria such as Turing tests or face 
validity; and comparison to other valid models may be per-
formed. (Sargent 1998)   

The advantage of the subjective approach is that there 
are some aspects of a simulation that cannot be performed 
objectively, or cannot be specified in a detailed manner such 
as the audio or visual aspects of a simulation.  For instance, 
suppose a military simulation employed the sound of gunfire 
as part of the simulation.  How do you objectively evaluate 
that a rifle does not sound like a small handgun?  How do 
you specify in a detailed manner or objectively evaluate that 
a machine gun does not sound like a drum roll? 

One disadvantage of the subjective approach is that 
some aspects of the system may be inadvertently over-
looked.  Another disadvantage is that the evaluation of the 
simulation may change depending on which “expert” is 
asked to do the evaluation.  Another consideration is the 
number and type of experts used.  Some simulations may be 
so large and complex that a variety of experts in different 
fields may be needed.  Consequently, the results of their re-
view may vary, making it difficult to determine the overall 
validity of the simulation.  Despite these drawbacks, the use 
of expert opinion or third party evaluation provide an in-
valuable approach to validating and verifying aspects of a 
simulation to which there is no alternative approach, espe-
cially for human-in-the-loop systems such as military simu-
lations. 

3.2 Objective Testing  

Objective testing approaches rely less on expert opinions 
and more on statistical and automated methods.  These ap-
proaches typically require that the system be observable, 
meaning that data of particular variables can be recorded as 
the simulation is running.  This data that is recorded can then 
be statistically compared to a set of data that has been re-
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corded from the real system, or can be analyzed in some 
other way by domain experts.  For military simulations, this 
approach can be particularly useful for comparing such 
things as a weapon’s rate of fire, the hit/miss ratio, the speed 
of a vehicle over a particular terrain, or environmental 
conditions.  Statistical techniques provide insight into the 
accuracy of input-output data sets of the simulation.  There 
exist a variety of statistical approaches that can be 
successfully used, including confidence intervals, hypothesis 
tests, data plots, and multivariate statistical approaches. 

Another approach is the use of a validation knowledge 
base (VKB) (Birta and Ozmizrak 1996).  This approach in-
corporates expert knowledge along with any observable data 
from the system to determine validity of a simulation.  One 
advantage of this technique is that it attempts to formally 
collect all aspects of the expected behavior as determined by 
experts and then compare the expected behavior with the ob-
served data.  Another advantage is that this approach can be 
easily automated so that test results can very quickly be ana-
lyzed. 

However, there are several disadvantages to using a 
validation knowledge base.  First, there is the experiment 
design problem described by Birta and Ozmizrak (1996).  
Once the knowledge based expert system has been devel-
oped, how does one choose experiments such that the 
knowledge base is covered efficiently and effectively?  Ac-
cording to Birat and Ozmizrak, validation "requires generat-
ing all possible behavior instances which, of course, is not 
possible in practice. Therefore, from a practical point of 
view, it is necessary to regard validation as the process of 
showing that any particular subset of a dynamic object's be-
havior is consistent with its VKB."  

The subset of behavior should cover as much of the 
VKB as possible. The subset should also minimize the num-
ber of tests that need to be done since each test will be quite 
lengthy and consume substantial resources.  This is a diffi-
cult problem. Birta and Ozmizrak suggest that a solution can 
be achieved by properly setting up an experiment design 
problem and, with additional restrictions, as a constraint sat-
isfaction problem.  More than one optimal subset may need 
to be determined depending on testing objectives, the fault-
finding abilities of the subset, and the cost-effectiveness of 
the subset.  Another disadvantage is that the VKB inherits 
all the challenges of the development and validation of an 
expert system. 

Expert systems have also been applied to the validation 
of military simulation training systems.  According to Hop-
kinson and Sepulveda (1995), expert systems provide an ex-
cellent method for real-time evaluation of a trainee’s per-
formance.  Their expert system was developed using case-
based reasoning to evaluate the trainee’s decisions as the 
simulation progressed.  The approach to developing the ex-
pert system was to identify the invalid techniques, which led 
to favorable outcomes.   Hopkinson and Sepulveda (1995) 
refer to this as a “sandbox” approach, which encourages 
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creativity on the part of the trainee but without letting the 
trainee go outside specific boundaries.  An advantage of this 
approach is that real-time evaluation of a trainee can be per-
formed automatically.  Also, by focusing on invalid uses and 
techniques, the number of test cases needed to effectively 
and efficiently cover the known input domain can be signifi-
cantly reduced.  A disadvantage of this system is that case-
based reasoning systems are restricted to variations of 
known problems.  This can potentially cause the validation 
of such a simulation to be unnecessarily biased toward or 
against particular problems.  In addition, this approach does 
not assist with the test planning process or with test scenario 
generation. 

These techniques each attempt to address a specific as-
pect of testing simulation systems.  They each have advan-
tages and disadvantages.  When viewed as a whole, they 
cover a very broad spectrum of the problems with testing 
simulation systems.  However, from the discussion of tech-
niques in the literature, it is evident that the problem of ef-
fectively and efficiently validating the behavior of a simula-
tion system and the need to use domain-specific knowledge 
persists. 

3.3 Improvements Needed 

Increasing the user’s confidence is one of the primary goals 
of validation and verification of simulation systems. Thus, 
an improved testing approach would be to identify fewer test 
cases that cover the requirements but are more general in na-
ture with respect to the requirements, providing a better ap-
proximation to the way in which the user will use the sys-
tem.  By doing this, the tester may be more likely to identify 
problems that the user will find.  If these problems can be 
caught and fixed before the user sees them, then the confi-
dence of the user in the system can be increased.   

Current simulation testing methods often make little use 
of automation.  As a result, very little testing can be accom-
plished in a given amount of time because each test case can 
be tedious to setup, and it can be time consuming to execute 
each test case and record the results.  A considerable amount 
of time is also required to analyze and understand the results 
and to determine if an error found in the results is caused by 
an improper conceptual model or improper implementation 
of that model.  Thus, any automation of any step in the test-
ing process could provide invaluable benefits in terms of 
time and cost savings. 

4 STATISTICAL USAGE TESTING 

From the user's perspective, a software system is essen-
tially a translator.  The user provides input, and the system 
translates this input into some set of output.  To the user, 
how the system performs this translation does not matter, 
as long as the desired output is produced.  Testing a soft-
ware system according to inputs and outputs is called black 
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box testing, or functional testing.  Essentially, the black 
box testing process provides the system with a specified set 
of inputs and compares the output with the desired output 
to determine accuracy and precision. 

One drawback to black box testing is that the number of 
possible inputs can grow exponentially as the complexity of 
the system grows.  Testing all possible inputs very quickly 
becomes impractical.  However, because there are certain 
inputs in the input domain that the user may never use, it is 
possible to help reduce the number of inputs that need test-
ing by considering the way in which the user will use the 
system.  By doing this, the tester can perform fewer tests 
while simultaneously gaining an understanding of the in-
tended use of the system and its expected reliability.  This 
type of testing is known as usage testing.   

The justification for usage testing is well grounded in 
software engineering theory and practice. Adams (1984) 
showed that the vast majority of software failures observed 
during operation of software are caused by a small propor-
tion of software faults, and a great proportion of latent soft-
ware faults will very rarely, if ever, result in observed fail-
ures of the software in practice. Adams confirmed this 
failure/fault distribution across nine different major com-
mercial systems developed by IBM. Mills (1992), Musa 
(1993), and others (for example, Walton et al. 1995) built on 
Adams' findings and observed that targeted testing towards 
high usage software can be very successful in reducing the 
number of operational failures. Fenton and Ohlsson (2000) 
verified Adams' findings on two major consecutive releases 
of a large legacy project developing switching systems.  

An efficient method for developing a plan for usage 
testing is to create a model of the intended use or behavior of 
the system.  Such a model can be used to automatically 
generate a series of test cases.   

Military simulations are stochastic in nature.  Markov 
chain usage models are also stochastic in nature, and the test 
cases that are generated from a Markov chain usage model 
will reflect this. The testing process for military simulations 
should take advantage of this commonality.   

Markov chain usage testing is a well-defined, rigorous 
method, which readily lends itself to automation.  If the us-
age model is implemented as a Markov chain, the model and 
the test cases can be analyzed using Markov chain mathe-
matics to determine such things as reliability, mean time to 
failure, and confidence values concerning how much testing 
of the system's uses is included in the series of test cases 
(Whittaker and Poore 1993, Whittaker and Thomason 1994).  

Markov chains are comprised of states and arcs, which 
graphically describe the expected operational use of the soft-
ware system. In the software engineering literature, the 
states are often states of use of the software and the arcs de-
fine an ordering that determines the event space, or se-
quences, of the experiment.  

Figure 1 shows a Markov chain usage model that  de-
scribes a greatly simplified operational profile for a US 
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Army Computer Generated Forces (CFG) simulation sys-
tem. Table 1 lists a subset of state designations used in the 
model of Figure 1. 

 

 

Figure 1: CGF Simulation System Markov Chain Model. 
 

Table 1: State Definitions for Figure 1 
State Definition 

1 System ready for instruction 
2 Select “New Scenario” 
3 Select “Load Saved Scenario” 
4 Open Unit Editor and create vehicle 
5 Open Unit Editor and create platoon 
6 Open Unit Editor and create company 
7 Assign vehicle task 

… … 
25 End Scenario 

 
Markov chain usage models can support the quantita-

tive analysis of test plans and test results. For example, Ta-
ble 2 shows a sample of the Markov chain analysis results 
for Figure 1 when state-to-state transition probabilities were 
based on the author's experience working with the CGF 
simulation users. 

 
Table 2: Markov Chain Analysis Results for Figure 1 

Expected Script Length 8.80 
Long run probability for state ‘S2’ 0.1020 
Long run probability for state ‘S3’ 0.0110 
Long run probability for state ‘S4’ 0.0300 

 
Markov chain models can be used to automatically gen-

erate statistically correct samples of test cases.  Simply by 
changing the arc probability values, the tester can signifi-
cantly alter the kind of test cases that can be generated.  This 
greatly reduces the time spent on creating test cases and al-
lows more time to be spent on the analysis of test results.   

Testing based on Markov chain usage models yields in-
formation that can be used to identify and document the as-
pects of the software that have been tested, how often they 
have been tested, and which aspects have been ignored.  For 
regression testing, this information can be invaluable. It can 
be tedious and difficult to identify which parts of a knowl-
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edge base have been tested.  With Markov chain usage mod-
els, the tester can very clearly identify what areas of the 
models and what percentage of the model has been covered.   

Domain specific knowledge can be used to help build 
usage models, which are then used to test the software.  
Domain knowledge can be quite valuable in that it provides 
the tester with knowledge of potential weaknesses in the 
software and insight into the way in which the software will 
be used.  Furthermore, usage models can be based on proce-
dures that explicitly define behavior or use of the system 
such as control systems, or they can be based on some ab-
straction of the behavior of the system.  Thus, usage model-
ing can be used to support both functional verification and 
system validation. 

With the application of usage modeling and Markov 
chain analyses, the test plan can focus separately on different 
use cases of the user’s domains.  Markov chain usage mod-
els can also be used to model different types of missions 
where the behavior will change based on the mission, type 
of terrain, and time of day.  For example, a usage model can 
reflect whether a mission is a reconnaissance, search and de-
stroy, or search and rescue mission.   

By carefully applying Markov chain based usage test-
ing, we expect that test scenarios can automatically be gen-
erated that achieve the goals and guidelines set forth by the 
DMSO.  This practice should ultimately improve the state of 
the practice of testing military simulation systems. However, 
an analysis of the model of Figure 1 indicates that, using this 
type of model syntax, the number of states could quickly 
grow out of control. Useful abstractions and usage model 
syntax are needed. A means to address this issue is discussed 
in the following section. 

5 USAGE MODEL GUIDELINES AND SYNTAX 

Usage models directly affect the level of effectiveness and 
efficiency of the testing process.  Consequently, it is im-
perative that usage models be carefully developed accord-
ing to the user’s point of view and that usage models pro-
vide flexibility to the tester. 

A number of challenges exist when developing usage 
models.  If there is too much detail, the model may not have 
the flexibility to be reused.  However, if there is not enough 
detail, the model may not sufficiently test all aspects of the 
use of the system.  Clearly, the perfect amount of detail can 
be elusive.   

Usage models for military simulations must sufficiently 
model the scenarios that are of interest to the user.  Accord-
ing to the HLA Federation Development and Execution 
Process document (2001), the primary input to the activity of 
developing scenarios is “the operational context constraints 
specified in the objectives statement.”  In addition, this HLA 
document states:  “A federation scenario includes the types 
and numbers of major entities that must be represented by 
the federation, a functional description of the capabilities, 
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behavior, and relationships between these major entities over 
time, and a specification of relevant environmental condi-
tions that impact or are impacted by entities in the federa-
tion.  Initial conditions (e.g., force lay downs), termination 
conditions, and specific geographic regions should also be 
provided.” 

An effective usage model must promote dialogue be-
tween the customer, developers, and testers.  This dialogue 
should enhance the clarity of the requirements, which ulti-
mately will reduce development and testing costs.  If the us-
age models are to be used to verify requirements with the 
customer, then the usage models should be simplistic 
enough to be understood by the customer, but capable of be-
ing used by the testing team.  Finally, the usage models need 
to be easily verified, reused, and maintained.  Usage models 
that cannot be easily verified run the risk of not accurately 
portraying the use of the software. 

Walton et al. (1995) provided the following guidelines 
for creating effective usage models: 

 
1. Identify the test objectives. 
2. Identify the test constraints. 
3. Determine test environment and automation is-

sues. 
4. Define the boundaries of each test. 
5. Define "user" and "use" for the purpose of each 

test. 
6. Determine appropriate usage model strata. 
7. Develop and document usage model structure for 

each model. 
8. Determine transition probabilities for each model. 
9. Verify the model. 
10. Iterate as needed. 
 
For usage models of military simulation systems, we 

recommend the following additional guidelines for use when 
performing steps 6 and 7. 

 
• Specify a specific geographic location at the be-

ginning. Do not change this location at any point 
in the usage model. 

• Identify force lay downs at the beginning. 
• Weather conditions can change at various points 

in the usage model. 
• Formation can change at various points in the us-

age model. 
• Number and type of targets can change at various 

points in the usage model. 
• Change the model structure as needed to add real-

ism, randomness, and variety of scenarios. 
• Use mission types, mission objectives, and loca-

tion of mission to determine usage model strata. 
• Use tactics and procedures to determine and ver-

ify the model structure. 
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• Change the model probabilities to reflect test ob-
jectives and constraints. 

• Use uniform arc probabilities to increase model 
entropy. 

 
When performing steps 6 and 7, it must be understood 

that, when executing test scripts derived from usage models, 
the amount of detail given in the model is a critical issue.  
Thus, a significant amount of thought is needed for deter-
mining the model strata and transition probabilities.  As re-
ported in the literature, there are a variety of syntactic ways 
to develop usage model structures.  Usage models have been 
developed for user interfaces (For example, Sherer and 
Walton 1998), and for control systems in which the structure 
of the behavior and inputs to the system were already clearly 
documented (For example, Agrawal and Whittaker 1993).  
For these examples, the states represent internal states of the 
software and the transitions between states represent differ-
ent input to the system. 

While these approaches are useful, they do not always 
appropriately handle military simulations.  Consequently, 
we suggest a new syntactic approach: 

 
• Identify the states of a usage model with the basic 

behavioral units of a simulation system. 
• Transitions to these states are given labels that de-

scribe how those basic behavioral units should be 
performed. 

 
When developing models for simulation systems, we 

recommend that the states represent the functions or behaviors 
of interest in the software being tested and the arcs represent 
the different sequences or combinations of those functions.  
The states and arcs comprise the structure of the model. 

This approach to developing the usage model structure 
helps to reduce the number of necessary states, and helps 
create test scenarios that are flexible enough to handle the 
wide range of uses in military simulations.  This proposed 
syntactic approach is demonstrated in the following section. 

6 EXAMPLE USAGE MODEL 

According to Smith (1998), a generic model that is used in 
the development of military simulations is that of “Move-
Look-Shoot.” This sequence of events attempts to model 
the general behavior of men and machines during combat.  
Basically, a unit moves from its point of origin to some 
specific location, looks for targets, and then shoots at tar-
gets.  This sequence can be repeated multiple times, or per-
formed in a variety of sequences. 

The usage model shown in Figure 2 was developed 
based on this generic model.  The structure of the model for 
this example is intended to be simplistic. As appropriate, the 
model can be made more complex and realistic using do-
main specific knowledge for a particular simulation system.  
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The model consists of five states: Start, Move, Look, Shoot, 
and End. (For continuous application of the model, there is 
an implied arc from "End" to "Start".) 

 

S ta r t

M o v e

L o o k S h o o t

E n d

 

Figure 2: Usage Model of Move-Look-Shoot Behavior 
 
Each of the Move, Look, and Shoot states could be 

composite states in which there is a more detailed model 
contained within the state.  For instance, there may be dif-
ferent movement techniques based on the mission type.  
Also, the entire five-state model of Figure 2 could be con-
tained within a higher abstraction layer. 

In Figure 3 below, we have extended the usage model 
of Figure 2 according to the guidelines previously specified. 

 
Start

Move

<1>Decrease speed

Look Shoot

End

<0> <.9>Throw
grenade

<1>Mountainous
Terrain, Night

<1>Desert Terrain, Wedge Formation

<.5>
Reload

<.0001>
Game
Over

<1.75>Use
weapon scope

<2.25>Target: tank,
Weapon Bazooka

<0><2.1>
Full

Speed

<2.75>Target:
infantry, Weapon rifle

<2.3>Half Speed

<1>Use
infrared
sensors

<0>

 
 

Figure 3: Move-Look-Shoot with Uniform Arc Values 
 
Markov chain analysis techniques (as described in 

Walton and Poore 2000, Walton et al. 1995, Whittaker and 
Poore, 1993, and Whittaker and Thomason 1994) are ap-
plied to the model. We examine the long run probability 
values for the three major states (Move, Look, and Shoot), 
and also the expected test scenario length.  As indicated in 
Table 3 below, the state ‘Look’ has the highest long run 
probability. This means that 'Look' is more likely to show up 
in the generated test scripts than the other states, and, for use 
of the software as described by this usage model, the soft-
ware will spend most of its time in the 'Look' state. 
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Table 3: Markov Chain Analysis Results 
Expected Script Length 95207.00 
Long run probability for state ‘Move’ 0.3235 
Long run probability for state ‘Look’ 0.3456 
Long run probability for state ‘Shoot’ 0.3309 
 
The model of Figure 3 focused on fairly generic behav-

ior model that is applicable to a variety of vehicles and sol-
diers.  However, there are some units in military simulations 
whose behavior or use cannot be modeled in such a way.  
An example of such a unit is an air defense unit.  These units 
are typically either non-moving units or units which move 
infrequently.  They are composed on some type of radar and 
weapon.  Furthermore, air defense units only target aircraft 
and typically do not have any ground defense of their own.  
To handle units such as this, the usage model of Figure 3 has 
been revised by adding another level of detail to the ‘Look’ 
state.  The revisions are illustrated in Figure 4. 

 

S ta r t

M o v e

L o o k

S ta r t L o o k in g

S e a rc
h

A c q u ir

T ra c
k E n d

L o o k in g

S h o o t

E n d

S e a rc h A c q u ire

T ra c k

 
      Figure 4: Simple Usage Model for Air Defense Units 

 
The structure of the simple usage model of Figure 4 as-

sumes that the Fire command is not automated. Air defense 
units begin by searching for new targets.  Once a target is 
within range of the radar, the air defense unit acquires the 
target and begins tracking it.  Once a target is being tracked, 
a fire command is issued, and the air defense unit begins fir-
ing at the target.   

Transitions between these states are dependent strictly 
upon three types of input.  The first type of input is the target 
aircraft.  The target aircraft must be flying within range of 
the radar and without an unobstructed line of sight.  In addi-
tion, for certain types of air defense units, the aircraft must 
be flying a specific altitude. (as described by the Air De-
fense Artillery web site 2001)  The second type of input is 
the terrain.  Depending on the terrain, an aircraft may tempo-
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rarily be invisible to the radar despite being within range of 
the radar.  For example, in a mountainous terrain, an aircraft 
may become visible to the radar, but then become invisible 
if the aircraft moves below the mountaintops such that the 
mountains obstruct the line of sight of the radar.  The third 
type of input is the fire command.  A fire command deter-
mines when to fire and at which target to fire.  On some 
units, this may be automated. 

Arc labels and arc probabilities can be added to the 
model to provide more descriptions about the input neces-
sary to transition between states. Depending on the prob-
abilities selected, the average test case length will increase 
or decrease. Furthermore, changes in probabilities will 
change the long-run probability  of occurrence of each state 
in test cases generated from the model. A careful analysis of 
Markov chain mathematical results with respect to test ob-
jectives will assist the tester in selecting arc probabilities. 

More detailed usage models are easily developed and 
documented by the addition of lower-level models and addi-
tional arcs to describe data partitions of the input domain at 
the desired level of detail. Generated test scripts from this 
sort of abstract model were similar to test cases developed 
by hand for the functional testing of the Army OneSAF 
Testbed Baseline program.  

7 CONCLUSIONS 

Usage testing methods based on Markov chain models can 
support effective and efficient validation of the behavior of 
military simulation systems. An effective usage model is 
built from domain-specific knowledge and incorporates 
test management objectives and constraints. The modeling 
process promotes dialogue between the customers, devel-
opers, and testers. This dialogue should enhance the clarity 
of the requirements, which ultimately will reduce devel-
opment and testing costs and risks. Markov chain model-
based usage testing can support increased test automation 
and quantitative analyses of test plans and testing results. 
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