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ABSTRACT 

The military develops simulations to analyze nearly every 
aspect of defense. How accurate are these simulations and 
to what extent do they produce dependable results?  Most 
guidance available to DoD analysts provides broad rec-
ommendations geared towards management and coordina-
tion of the validation processes. Here, we focus on practi-
cal validation from the analyst’s perspective in the form of 
a case study. The platform used is the theater missile de-
fense (TMD) aspects of Extended Air Defense Simulation 
(EADSIM) and a new simulation called Wargame 2000. 
The focus is not to validate Wargame 2000 but to develop 
real, usable tools for analysis. Measures of effectiveness 
include defense battery search, engagement and intercept 
times against threat missiles. Insight is provided into de-
velopmental and data production issues making the valida-
tion process more effective and meaningful. 

1 INTRODUCTION 

Simulation effectively analyzed and supported can save 
money on acquisition and reduce more costly live-fire test-
ing to verify results. Indeed there are military applications 
where simulation may be the only method of quantitative 
analysis when enemy equipment or technology specifica-
tions are required for real-world tests.  Validation of a simu-
lation makes its results more acceptable to analysts and deci-
sion makers.  However, the process can be very intricate and 
extremely cumbersome depending on the level of accuracy 
and detail of expected results.  Additionally, while numerous 
publications address need for validation, we know of none 
that deal directly with analysis of model output in specific 
formats, or that even present methodologies, metrics or pro-
grams for validating simulation output.  
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This study addresses the simulation of defending 
against a ballistic missile attack.  National missile defense 
(NMD) and theater missile defense are the pillars of the 
United States’ ballistic missile defense program. NMD was 
intended to provide a shield of protection across the territory 
of the United States to intercept long-range missiles. TMD 
has grown out of the NMD efforts. Theoretically, TMD es-
tablishes an umbrella of protection for a theater of operations 
much smaller than the United States. Each of these defenses 
relies on integration of detection and intercept systems to 
engage and destroy inbound ballistic missiles. 

Presented here is a case study intended to develop and 
illustrate a bottoms-up approach to simulation validation by 
using specific measures of effectiveness (MOE) and fairly 
simple graphical and statistical methods. The secondary ob-
jective is to begin a body of practical case studies that can be 
used to support a move toward validation commonality 
among Department of Defense modeling and simulation.  

2 SIMULATION OF THEATER  
BALLISTIC MISSILE DEFENSE 

This study centered on the analysis of two combat simula-
tions.  EADSIM was considered the baseline system, while 
a new simulation called Wargame 2000 (WG2K) was 
evaluated and its output compared to EADSIM output. 

2.1 EADSIM 

EADSIM is a workstation-hosted, system-level simulation 
that is used to assess the effectiveness of theater missile de-
fense and air defense systems against the full spectrum of 
extended air threats. EADSIM provides a many-on-many 
theater-level simulation of air and missile warfare, an inte-
grated analysis tool to support joint and combined force 
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operations and a tool to provide realistic air defense train-
ing to maneuver force exercises. EADSIM models fixed- 
and rotary-wing aircraft, tactical ballistic missiles, cruise 
missiles, infrared and radar sensors, satellites, command 
and control structures and fire support in a dynamic envi-
ronment which includes the effects of terrain and attrition 
on the outcome of the battle.  

2.2 Wargame 2000 

The department of defense is developing a software simu-
lation for ballistic missile defense that can be used for 
command and control analysis, provide insight into tech-
nology development and provide a training platform for 
system operators/users. Wargame 2000 is a virtual, real-
time, discrete event, command and control missile defense 
simulation used to investigate human interactions. It is the 
successor to the Advanced Real-time Gaming Universal 
Simulation (ARGUS) that has been used for years. WG2K 
is intended to provide a simulated combat environment that 
allows war-fighting commanders, their staffs and the ac-
quisition community to examine missile and air defense 
concepts of operation. This is accomplished through the 
use of human-in-the-loop experiments and other events. 

WG2K has been under development since 1997 and is 
half way through its developmental lifecycle. It is prudent 
at this point in development to assess the simulation’s ac-
curacy and ability to perform required tasks. Primary atten-
tion has been paid to NMD in the past and now develop-
ment is shifting focus to include TMD (Deis, 2000). 

3 MODEL VALIDATION 

3.1 Purpose and Necessity 

The policy of the Department of Defense is that all its 
components establish VV&A policies and procedures for 
modeling and simulation projects they develop and/or 
manage. Thus, the DoD stresses an effort to establish stan-
dards and guidelines promoting VV&A procedural com-
monality. Furthermore, VV&A is required to be part of all 
modeling and simulation developments (DoD 5000.61 
2000).  

3.2 Selection of Measures 

The obvious MOE to use in a timeline comparison is time. 
Clearly, there are multiple physics based characteristics of 
missile performance not associated with time (e.g. thrust or 
radar sensitivity). However, only critical times and associ-
ated ranges were produced as output during this early stage 
of development. Typically, time-to-go until some critical 
event, such as impact, is useful for comparison – as op-
posed to time after some critical event, such as launch. The 
percentage difference between the two simulations is more 
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meaningful and the accuracy demand increases as the mis-
sile progresses. For instance, 10 percent of the time-to-go-
to-impact gets smaller as impact approaches, demanding a 
better match, while 10 percent of time-after-launch be-
comes large. This is to say that accuracy near impact is 
more important than accuracy near launch if the objective 
is to avoid impact. However, impact time is not one of the 
reported fields for the baseline EADSIM data and time 
since launch was used under the assumption that detection 
and intercept occur early enough in flight for time-since-
launch to be equally significant as time-until-impact.  

Six MOE’s for three batteries against six threats were 
adopted: detection time, detection range, 1st launch time, 1st 
intercept time, last launch time, last intercept time (see 
Figure 1). This leads to potentially 3·6·6=108 comparisons 
of output variables between EADSIM and WG2K. There 
are those cases among the batteries and threats where no 
engagement occurs because the threat was beyond the ca-
pability or range of the battery and some cases where no 
values were reported; this reduced the data set and analy-
sis. Ultimately only 76 output variables were collected.  
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Figure 1: Input Parameter and Output MOE Combinations. 

3.3 Planning Data Collection 

Threat data is based on current intelligence estimates of 
ballistic missiles and is considered to be valid for the in-
tended use. However, few of these missiles have ever been 
engaged, monitored or possibly even launched in any set-
ting other than fielding tests. Thus, the baseline data for 
combat is, in most cases, extrapolated from small samples 
collected under artificial conditions.  

National and theater missile defense have very differ-
ent parameters and expected engagement scenarios. 
BMDO must ensure the simulation accurately portrays a 
United States defensive response to ballistic missiles 
within theater by using output from EADSIM. If there is 
no significant difference between WG2K when compared 
to EADSIM, WG2K may be validated with respect to 
TMD. Results are taken from each model and compared 
using statistical analysis. Also, this work provides insight 
into developmental and data production issues which make 
the validation process more effective and meaningful.  
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4 DATA  

4.1 Summary of Data 

Data was collected in two phases. The Applied Physics 
Laboratory at The Johns Hopkins University collected 
baseline data from EADSIM. For each of six different sce-
narios (with different input parameters), one hundred repli-
cations were recorded where detection time varied ran-
domly. The Joint National Test Facility ran Wargame 2000 
stochastically but collected only one set of output data for 
each scenario due to fiscal constraints.  

The primary focus for initial simulation runs is high fi-
delity range and time performance behavior for the sensor 
and interceptor. This is to imply that interceptor probability 
of kill Pk is not important in the consideration of physics 
based flight. The data is structured so each battery will en-
gage each threat missile separately. Additionally, each threat 
could assume any of the different geometries: front, back, 
side and direct. That would be a maximum of 6·4·3 = 72 to-
tal runs of the system producing multiple output values each 
to get all possible combinations for the three batteries. The 
objective is to demonstrate single missile, detailed timeline 
performance and behaviors in an uncluttered situation (Deis, 
2000). All data collected was for one-on-one tests where a 
single threat missile was detected, tracked and engaged by a 
single battery.  Each of the interceptor systems was posi-
tioned in a location determined to represent a valid real-
world location. From this location, the defensive radar 
scanned for threat missiles. In some cases the defense sys-
tem was placed such that it would not engage threats in or-
der to examine detection only.  

Data was collected and recorded for flight times in 
seconds. This data, representing flight time of both missiles 
and interceptors, reflects the actual performance character-
istics of the modeled entities. As such, the recorded times 
are classified and are not available in this document. Nor-
malized data representing percentages of the total threat 
missile flight time is presented here to mask identifiable 
characteristics defense batteries. 

4.2 Derivation of the Database 

EADSIM and WG2K were loaded with identical threat 
characteristics, threat positions, interceptor performance 
parameters and defensive battery locations. Thus, the radar 
cross-section (RCS), trajectory and geographic reference 
remain constant for each threat or battery across all runs 
involving that system. For these runs, detection and en-
gagement (if any) occur at the same location. Detection 
data is reported for missiles not engaged.  

The development of baseline or control data must not 
be taken for granted. This data set is considered ground-
truth for the systems and attention must be given to its 
verification. The principle concern with baseline data is 
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that it accurately reflects the input parameters that will be 
provided to the perspective new simulation. Initially, a face 
validation or common sense check must be conducted of 
the baseline output to ensure the performance characteris-
tics represent the expected performance of the actual sys-
tem and that critical functions of the real system are mod-
eled and reported by the simulation. One of the first 
baseline runs produced detection and engagement output 
shown in Figure 2. 
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Figure 2: Initial Output from System #2 
 
The few instances where launch and intercept are the 

same in Figure 2 standout as incorrect. But, it is not clear 
what the problem is or how to correct it from an initial 
look. This example is easily identified by inspection; most 
are not this obvious. Subtle discrepancies can pass unde-
tected through the control data set and derail an otherwise 
solid validation effort.   

Defensive batteries analyzed are identified as systems 
#1, #2 and #3 for easy reference. The actual identification 
of defense and threat systems has been classified by the 
source and has no bearing on the comparative statistics 
used or methodology recommended here. Defending bat-
teries were taken from a set of allied systems and six threat 
missiles were selected from a data set of all known threat 
ballistic missiles developed by the special projects center at 
the JNTF and approved by the Defense Intelligence 
Agency (DIA). Thus, no discussion or explanation of threat 
characteristics such as RCS, velocity or range is included 
here. The modeling of threat systems was done by the 
JNTF and provided as input for both simulations. 

4.3 Description of EADSIM Output 

Each system was placed in a location near an area of inter-
est designated as the impact point. Batteries were assigned 
the mission of searching a sector of sky from which a 
known threat would appear.  The radar’s measure of effec-



Simpkins, Paulo, and Whitaker  

 
tiveness is not whether it found the threat but when and 
with how much delay it identified and began tracking.  

The defense was established as one-on-one; even 
though a threat was detected by radar and tracked, it is pos-
sible the threat was not engaged if the flight path toward 
the impact point was beyond the defended area of the bat-
tery. An interceptor missile was launched when a detected 
threat entered the defended area or when a threat already in 
the defended area was detected based on the limitations of 
the individual system.  

Characteristic output between systems is shown be-
low. Figure 3 shows invariability of interceptor launch and 
engagement times that imply the interceptor is limiting the 
system (i.e. the interceptor’s region of coverage is smaller 
than the radar’s area of coverage). Figure 4 demonstrates 
high variance in both launch and engagement that indicates 
it is limited by radar performance.   
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Figure 3: Interceptor Limitations Lead to Small Variance 
in Launch and Intercept 
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Figure 4: Radar Limitations Produce Immediate Launch 
and High Variance 
761
4.4 Scope and Limitations 

Only one-on-one scenarios are considered at this stage of 
WG2K development. There is no hand-off between radar 
systems as would happen if threats were detected early by a 
system and then ‘passed’ to another system with higher Pk. 
Therefore, no interaction between threats or interceptors is 
found. It is anticipated that there will be dependence on 
threat and interceptor type when there are multiple systems.  

WG2K essentially has one random variable: stochastic ra-
dar detection using a Normal distribution with almost no vari-
ability. EADSIM uses two stochastic variables, radar detection 
which is Normal and sensor frame time, which is Uniform, 
producing detection times distributed with a convolution of the 
two input distributions. In other cases only one stochastic vari-
able is used, sensor frame time which is uniform. Interceptor 
flyout is always deterministic in both simulations. 

5 RESULTS 

5.1 Exploratory Data Analysis 

We assumed that the 100 runs for each scenario are in fact 
independent. As a quick check for independence of 
EADSIM output, a test was used to see if MOE times from 
EADSIM were truly independent. Here, a ‘runs test’ for 
above and below the median is used to test the null hy-
pothesis that the sequence of detection times for the 100 
iterations of the simulation is indeed independent. Specifi-
cally a sequence of 100 binary variables is constructed 
where the ith variable takes value 1 if the MOE time of the 
corresponding ith simulation run is above the median, and 0 
otherwise. The number of runs above the median m, below 
the median n and the total number of runs R = m + n are 
computed. In the example of Figure 5 there are three runs 
of ones (of lengths 2,3,3) and two runs of zeros.  
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Figure 5: Example of MOE Times Indicating Distribution 
Above and Below the Median 
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where γ = m/n, has a standard Normal null distribution 
(Lehaman, D’Abrera, 1975). At 5% level of significance 
none of the 76 sets of simulation runs failed the test for 
randomness. 
 As illustrated in Figures 6 and 7, the mean and vari-
ance of detection times differed significantly between sys-
tems. This may be attributed to specific limitations of the 
batteries. The distribution of detection times also differed 
from system to system.  
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Figure 6: Detection Times for System #1 
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Figure 7: Detection Times for System #2 
 
There is a clear difference between these two systems 

depicted in Figures 6 and 7. Both batteries are positioned 
in the same place and threats follow the same flight path 
against them. Figure 6 shows an average near 80% of 
threat flight time for three missiles while Figure 7 shows 
none of the detection times above 50%.Variance for Threat  
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4 is three times higher in System #2 than System #1. Vari-
ance in detection times is acceptable. However, critical to 
analysis by comparison is that WG2K demonstrate similar 
behavior when modeling the same combinations. Graphic 
analysis can quickly identify areas of interest or anomalies 
within the data. But, when provided with a single output 
value, graphic analysis is limited in comparing the two 
simulations. An interesting observation taken from the 
Figures 6 and 7 is that for most threats variance in detec-
tion is the same for each system even though System #1 
takes twice as long to detect on average. 

Stochastic models can be viewed in two distinct 
classes. The first class involves sampling from a probabil-
ity distribution of inputs such that, once a sample of inputs 
is generated, the model is deterministic. In this situation, 
no random events occur within the simulation. The second 
class contains those models in which events during the 
simulated course of battle are affected by the results of dy-
namically generated random numbers. Of course, models 
can contain both a random sample of inputs and have in-
ternal random events (Lucas, 2000). 

Simulations modeling the TMD environment contain 
both stochastic classes. The outcome of many simulation 
runs will vary across a spectrum of values, even when the 
model is provided deterministic input. It is expected that a 
valid model will produce output MOE’s that tend to cover 
the entire range of the model’s capabilities but are concen-
trated near the expected value of the functions producing 
them.  Knowing the distribution functions of the model is 
important when determining how close the simulation has 
come to producing the expected outcome.  
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Figure 8: Distribution of Random Detection Times for Sys-
tem #1 Against Threat 5 
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Figure 9: Distribution of Random Detection Times for Sys-
tem #1 Against Threat 1 

 
In the case of WG2K, only one run of the simulation is 

provided so a complete analysis of the output cannot be 
compared to a distribution function. An analysis of the dis-
tributions resulting from EADSIM provides some insight 
into the expected behavior of WG2K. Histograms in Fig-
ures 8 and 9 contrast detection time distributions from one 
system against two separate threats.   

However, comparing Figure 8 and 9, it is clear detec-
tion times do not come from the same distribution. What 
can be causing such a dramatic shift in detection time dis-
tribution for the same system against similar threats? The 
battery modeled here has a search pattern that makes its de-
tection time highly dependent on threat flight trajectory. 
Threat missiles launched from far away are detected nor-
mally as they enter the top of the radar coverage (Figure 8) 
while threats launched from close range are detected uni-
formly as they enter the bottom of the radar coverage (Fig-
ure 9). It is sufficient to say that the distribution of detec-
tion times cannot be assumed normal and that no regularly 
used parametric distribution captures all of the detection 
time distributions. This type of disparity among time pa-
rameter distributions relating MOE’s is common to many 
systems/threat combinations.  

5.2 Comparing Wargame 2000 with EADSIM 

5.2.1 Graphic Analysis 

The spread of times can be further broken down into quar-
tiles separating the 100 observations into groups of 25 
separated in sequence by the 1st, 2nd (the median) and 3rd 
quartiles. One expects the result provided by WG2K to fall 
between the 1st and 3rd quartile of EADSIM implying the 
value is relatively close to that expected for validation.  
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A box plot places a box around the middle 50% of the 
data, with the upper edge at the 3rd quartile and lower edge 
at the 1st quartile (Devore, 1995). The whiskers in box 
plots for all MOE’s extend from the box up to the largest 
observation and down to the smallest observation. In gen-
eral, extreme observations are reported as points beyond 
the whiskers, no such extreme values were observed in this 
study. The most visual feature is the box that shows the 
limits of the middle half of the data. Box plots not only 
show the location and spread of data but indicate skewness, 
as well. Box plots for EADSIM parameters were compared 
to WG2K values as shown in Figure 10. Each parameter 
that had output was compared by plotting the WG2K result 
on the horizontal axis against the EADSIM spread on the 
vertical axis. Ideally, a line with 45o slope will intersect the 
box plot at the mean indicating a one-to-one match be-
tween the WG2K result and the average EADSIM result.  

Figure 10 displays several comparisons where EADSIM 
and WG2K outputs agree and are statistically similar. Even 
System #1’s first launch times compare nicely although 
EADSIM exhibits zero variance as represented by the flat 
line in-lieu of a box plot. Small deviation, as shown in Sys-
tem #3’s first intercept times by the intersection of the box 
and line, is acceptable. In general, Figure 10 is good news 
for the new simulation. A preliminary look at these compari-
sons indicates WG2K is producing detection, launch and in-
tercept times very close to EADSIM.  
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Figure 10: Box Plots Reveal Trends when Compared 
 
Further inspection of the data reveals system/threat 

combinations with larger variability however. Figure 11 
indicates two detection times far outside the baseline dis-
tribution for two of the threats. One of the threats was not 
detected by WG2K leaving only five; this further con-
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founds the results and implies simulation issues larger than 
interceptor flight time such as sensor detection modeling or 
sensitivity parameters. 
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Figure 11: Box Plot Showing Detection Delays in WG2K 
for a Specific System 
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Figure 12: Box Plot Showing System Delays in WG2K for 
a Specific Threat 

 
It should be noted that poor performance was not con-

sistent with any system or threat combination. The overrid-
ing consistency was in WG2K’s inability to identically en-
gage threats EADSIM engaged. Furthermore, there were 
two cases where WG2K engaged threats that EADSIM 
never engaged.  

Time for single systems can be compared as in Figure 
12, which shows results across all measures of effective-
ness for System #2. The boxes represent the individual 
MOE’s beginning with detection in the lower left corner 
and moving forward in time through last intercept in the 
upper right. Each of these measures exceeds the baseline. 
All WG2K events occur much later than expected for this 
system/threat combination.  
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5.2.2 Inference 

Although each scenario was replicated 100 times for 
EADSIM, because WG2K is run in real-time, only one re-
alization of WG2K is available for each scenario.   

Often, there is the temptation to treat the output of 
such a run as an expected value (i.e. to treat a detection 
time as the expected detection time). This seems reason-
able because WG2K has little to no variability among input 
variables as discussed. However, for each run the output 
MOE’s of WG2K are certainly non-linear functions of the 
input. In general, the expected value of a non-linear func-
tion is not equal to the function of the expected value of 
those random variables. In practical terms this means that 
the average detection time over many replications of 
WG2K will not be the same as one detection time with av-
erage input. Thus, the output of one run of WG2K and in-
deed one run of any model run in small input variance 
should not be considered to be the expected output. 

Another approach, and the one adopted here, is to treat 
WG2K output as one realization of WG2K had it been run 
in true stochastic mode. This is not an entirely appropriate 
model since some inputs are constant rather than random. 
However, it will provide a more realistic comparison.  

5.2.3 Re-Sampling from the Baseline 

Wargame 2000 is striving to match the fidelity of 
EADSIM. Thus, if WG2K is in fact reproducing EADSIM 
the distributions of output parameters (under the same in-
put conditions) should be the same. This implies that the 
mean and variance of output should also be the same for 
both simulations. The difficulty with comparing the mean 
and variance is that WG2K was only run one time in each 
scenario. A bootstrapping approach is used to test the null 
hypothesis that WG2K has the same output distribution as 
EADSIM. The empirical distribution of the 100 values 
from EADSIM is used as an estimate of the null distribu-
tion for both EADSIM and WG2K. With bootstrapping we 
can approximate the null distribution of a test statistic us-
ing Monte Carlo simulation. In this case, the simulation in-
volves repeatedly “drawing” a sample of 101 from 
EADSIM. These repeated draws of 101 observations do 
not require re-running EADSIM or WG2K. They are inde-
pendent 101 psuedo-random detection times generated 
from the empirical distribution of the 100 actual EADSIM 
detection times. Note that generating the WG2K psuedo-
detection time from the empirical distribution of EADSIM 
detection times is consistent with the null hypothesis that 
WG2K and EADSIM have the same output distributions. 

The percentage difference in mean detection times for 
each scenario for both models can be computed to compare 
WG2K with EADSIM. In particular, for a scenario let YE 
and YW represent the average detection time from 100 runs 
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of EADSIM and the detection time from one run of WG2K 
respectively. They define the test statistic: 

 

E

W
E

stat Y
YYT −

=
 

The test statistic (Tstat) represents the percent difference 
between EADSIM’s percent of total flight time for each 
MOE and WG2K’s.  

Bootstrapping is used to estimate the sampling 
distribution of Tstat under the null hypothesis. Sampling 
from the empirical distribution of EADSIM detection times 
is equivalent to draws with replacement from the 100 ac-
tual EADSIM values. In total 1000·(100 + 1) draws with 
replacement were made from the 100 EADSIM values. 
The results are depicted in Figure 13; XEi i = 1,2,…, 1000, 
are the 1000 averages of 100 draws each while XWi con-
sists of individual 1000 draws. 

From the XEi, Xi, the bootstrapped value of the test sta-
tistic Ti is computed as in Figure 13. Figure 14 depicts this 
process; shaded areas near the tails represent the proportion 
of observations more extreme than Tstat. This area is one 
half of the p-values for a two-sided test. 
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Figure 13: Re-Sampling for P-Values 
 
The 1000 bootstrapped values of Ti i = 1,2,…,1000, 

and the actual value of the test statistic Tstat are used to ap-
proximate a p-value for the test where FW and FE are the 
MOE distributions for WG2K and EADSIM respectively. 
The p-value is approximated as the proportion of boot-
strapped Ti that are more extreme than the actual observed 
Tstat. These p-values indicate the strength of evidence 
against the null hypothesis that WG2K’s result represents a 
possible result from EADSIM. There are examples sup-
porting both acceptance and rejection of the null hypothe-
sis. High p-values for system #3 accept the null hypothesis 
in all cases where data is recorded for both simulations. 
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However, there are very low p-values for system #1, indi-
cating rejection for nearly every MOE clearly based on the 
invariability of EADSIM. System #2 showed mixed results 
depending on the MOE. 
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Figure 14: Using P-Values and Test Statistics to Identify 
Extreme Points. 

 
There are several cases where EADSIM exhibits zero 

variance. This is expected as most of the many random 
variables available in EADSIM are set for zero variance. In 
these cases it is difficult to determine whether WG2K is 
accurately reflecting EADSIM or not. The simulation out-
puts differ very little and it may be that the developer con-
siders a zero variance in WG2K at its current value to be 
within an acceptable range. 

It is important to note that in general, the test statistic 
chosen here, the fact that only one realization of WG2K is 
used and the non-parametric nature of the bootstrapping 
procedure all contribute to a testing procedure that is not 
powerful against all alternatives to the null hypothesis. 
Thus, this procedure will not be able to detect all types of 
differences between WG2K and EADSIM. In particular, 
because only one realization of WG2K is available, there is 
no way to tell if the variability in times simulated by 
WG2K will be the same as the variability of those simu-
lated by EADSIM. 

6 CONCLUSIONS 

WG2K has many capabilities and accepts diverse input from 
which it builds a TMD scenario. The challenge of validating 
a simulation model early in its development comes from en-
suring that a small set of capabilities and data produced fit 
into the big picture of the model using all capabilities; this is 
not unique to WG2K. Very little is available, published in 
the open literature or from DoD, that gives specific guidance 
for how to validate a simulation model based on the limited 
data usually available in such attempts. Formulating such an 
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approach applicable to the majority of validation attempts 
would be extremely difficult. Thus, although case studies are 
situation dependent, they are vital for providing practical 
guidance for validation. 

6.1 Summary of Results 

Presented here is a straightforward approach to validation 
that uses various methods to examine simulation output. 
This begins by choosing a small number of appropriate 
MOE’s. Limiting the MOE’s examined can ignore signifi-
cant ranges of output but allows the analyst to focus on those 
most relevant to simulation performance. A graphic, ex-
planatory analysis is used which is supported by subsequent 
inferential statistics. The challenge in this particular case 
study is that WG2K scenarios are replicated only one time. 

The importance of graphic analysis should not be 
overlooked. Graphics allow quick, accurate analysis as 
long as appropriate comparisons are depicted. The box-
plots used in this study clearly show differences between 
EADSIM and WG2K. The informed eye can discriminate 
very small differences. These must be confirmed but a 
clearly thought-out, accurate graphic representation of the 
data can narrow one’s focus by identifying those areas re-
quiring effort. 

A non-parametric bootstrap is used to test the null hy-
pothesis that the distributions of specific MOE’s are the 
same for both models. The results of this inference confirm 
the graphical analysis. Note though that this procedure is 
conservative in that rejecting the null hypothesis (i.e. find-
ing differences between the models) does provide evidence 
that the models differ while failing to reject does not pro-
vide evidence that they are the same. With only one run per 
scenario from WG2K it is not possible to draw the conclu-
sion that the distributions of MOE’s are the same for 
WG2K and EADSIM. 

6.2  Recommendations 

The most important recommendation is that a series of case 
studies, such as this one, need to be compiled and made 
available to those analysts actually doing validation. These 
case studies need to show by example practical but simple 
approaches to sorting through and making sense of complex 
simulation output. It is clear that a single document that tries 
to take a top down approach and that encompasses all types 
of validation and possible output is impractical. This ap-
proach leads to volumes of general guidance but nothing 
specific enough to be useful to the analyst in practice. A case 
study approach tackles the problem of practical analytical 
guidance from the bottom up. With a number of such case 
studies, available in one place, patterns of what approaches 
prove most useful should emerge rather quickly. 
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