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ABSTRACT 

This paper investigates the dimensionality characteristics 
of the outcome space of a combat simulation.  The inde-
pendent state variables of all of the outcome states for a 
simulation run for given event management policies were 
analyzed using techniques based on Principal Component 
Analysis and Singular Value Decomposition, to give met-
rics for dimensionality.  The number of dimensions in the 
outcome space is indicative of  variety of possible out-
comes, a property potentially important in hierarchical 
simulation.  Events were managed using random choices, 
multitrajectory methods designed to give greater prefer-
ence to high probability trajectories, and by various meth-
ods guided by analysis of the impact of the various events.  
The number of dimensions could not be increased greatly 
by the event management techniques used for selecting 
event outcomes for multitrajectory resolution.  Beyond 
1000 replication runs, the size of the state space did not 
even strongly influence the metrics. 

1 BACKGROUND 

Combat simulations are often used in a hierarchical man-
ner, where a higher resolution simulation is used to pro-
duce a library of possible outcomes used in a more aggre-
gated, higher scope simulation.  This is illustrated in Figure 
1 in extremely simplified form.  At the Center for Army 
Analysis, for example, the higher resolution simulation of 
approximately brigade or division scope is used to develop 
killer-victim scoreboards for a theater scope simulation.  
For this purpose, the higher resolution simulation runs 
need to include a large variety of possible circumstances 
which may arise in the larger scope simulation.  Variety in 
the outcome set is desirable, not so much because the total 
set would be indicative of the mean outcome as might usu-
ally be the case in simulation based analysis, but in order to 
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produce as much variety as possible so that the results ta-
bles will be richer. 
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Figure 1: The Hierarchical Simulation Context 
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The hypothesis that a greater number of dimensions in 
the outcome space will benefit hierarchical simulation by 
producing better results was beyond the scope of this 
study.  (By "outcome space," we refer to the collection of 
all state variables for all simulation trajectories.)  The focus 
here is on the measurement of "dimensionality" of this out-
come space as a metric for indicating variety, and examina-
tion of possible means to increase this variety through the 
management of how random event outcomes are chosen 
within individual trajectories. 

The technique used for event management, "Multitra-
jectory Simulation", provides for "splitting" of states which 
encounter random events so that both (or multiple) out-
comes of the event can be followed (Gilmer and Sullivan 
1998).  Figure 2 illustrates the concept.  It is also possible 
to choose one outcome or the other for a given event based 
on some choice policy that reflects the interests of the ana-
lyst.  Ultimately, some method is needed to decide when to 
use "splitting" and when to simply make random choices, 
since the potential for combinatorial explosion of the num-
ber of trajectories must be managed given finite resources.  
In our case, the interest is in greatest variety, as indicated 
by a large metric value used to assess the dimensionality of 
the outcome set.  How such a choice might be guided is not 
obvious; in the work reported we tried several strategies 
ranging from the random choices normally used in stochas-
tic simulation to choices guided by analyses of the impor-
tance of various events. 
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Figure 2: Multitrajectory Resolution of Random Events 
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2 THE MULTITRAJECTORY SIMULATION 

This research has been conducted using a simplified, un-
classified surrogate for the military simulations of interest.  
The simulation "eaglet" was designed to resemble the 
Corps level simulation "Eagle" in important respects, but to 
be of manageable simplicity.  It includes Lanchester square 
law combat, movement by nominally battalion sized units 
along routes with multiple paths, acquisition and acquisi-
tion loss, decisionmaking, and artillery support.  These 
processes can be selected for resolution in deterministic, 
random (stochastic), or multitrajectory methods.  (The at-
trition resolution method had been found to be much less 
important than the others, so for all of the results given a 
deterministic attrition resolution was used.)  In the version 
of the simulation used for the work reported here, units had 
multiple types of weapon systems.  The "two division" 
scenario (referred to henceforth as "scenario 2"), used for 
this study is shown Figure 3.  A small division of two  Blue 
brigades and a large reserve battalion and supporting artil-
lery attack a similarly configured, but somewhat smaller, 
Red force.  Each of the brigades has two forward battal-
ions, plus one in reserve.  The multiple path options avail-
able to the advancing Blue maneuver battalions are shown.  
Decisionmaking logic for each HQ commits the reserves in 
support of the forward forces at some point in the battle. 
 

 
 

Figure 3: Two Division Scenario "Scenario 2" 
 

In addition, some analysis was performed for a much 
smaller scenario of only 4 units, shown in Figure 4. 

This scenario was constructed to present a very sensi-
tive situation in which the battle can swing dramatically 
either way depending on whether Red reacts to reinforce 
2 
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the smaller force or not.  The alternate paths are not shown 
in the figure. 
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Weak Red unit #3

Strong Red unit #4

Strong Blue unit #2

planned 
routes

(Grid is 5km)
 

 

Figure 4: Small Scenario, "Scenario 0" 

3 OUTCOME SPACE ASSESSMENT 

An outcome of a simulation, if we think of a single replica-
tion (or, synonymously, trajectory), is the set of state vari-
ables for all of the objects in the simulation.  This can sim-
plified by eliminating all of the variables which can be 
directly derived from others, and by eliminating all state 
variables which have the same value in all states.  The end 
point of a simulation trajectory can be thought of as a vec-
tor of these state variables.  In the "two division" scenario, 
there were twenty variables per unit and thirty units, giving 
a total of up to 600 variables.  These included such things 
as unit strengths for various weapons and other assets, lo-
cation, speed, objective, type of operation and mission, and 
orientation.  The number of variables after simplification 
never exceeded 300 since many of these were the same in 
all outcomes. 

The set of all such state outcomes for multiple trajec-
tories would be the outcome space for a set of trajectories 
generated in the course of a simulation execution, or "run".  
With conventional simulation one run  might be thought of 
as corresponding to a single trajectory.  With multitrajec-
tory simulation, even in simple stochastic mode, many tra-
jectories are executed simultaneously in one execution of 
the simulation, so the word "run" will be used for the exe-
cution of these many trajectories under a common regime 
of event management. 

For statistical purposes, some variables were considered 
more important than others, and weighted accordingly, with 
weights ranging from 2 for force values (e.g. number of 
tanks) down to .25 (e.g. X and Y values of objective loca-
tion).  The zero state (which in some runs was the determi-
nistic reference) was considered a reference, and all vari-
ables were expressed as differences from the zero state's 
value.  The state variables were each normalized by subtract-
ing the mean for that variable, after taking the difference 
from state 0, and dividing by the variable's measured esti-
mate of standard deviation (limited to a floor of 1 to prevent 
extremes).  The use of the zero state as a reference meant 
that the normalization process eliminated that state, so that 
the largest state space order for a 100 trajectory run would 
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be 99. Figure 5 illustrates the normalization concept, and 
Figure 6 gives a simple example  

A central issue in this project was how to evaluate the 
"variety" of outcomes for such an outcome space.  We are 
interested in the degree to which states are divergent or or-
thogonal to others.  But this is subject to different possible 
meanings, and no one metric seemed to tell the whole 
story.  Several approaches to measuring outcome space 
variability were considered, ranging from simple (counting 
the number of vectors left after performing Gaussian 
elimination) to quite complex.  It was expected that any 
one metric might not characterize the outcome space in all 
of the most important ways, so ultimately several metrics 
were used, and are described below: 

1.  Sum of sines:  The angle each vector makes to an-
other can be derived from a dot product of the two, which in 
turn will indicate if the vectors or orthogonal (sine of 1 or -1) 
or parallel (sine of 0).  As each state is considered, the prod-
uct of the sines of that state to all preceding states will re-
main with an absolute value of 1 if it is orthogonal to all oth-
ers, but near zero if aligned in parallel with any.  The sum of 
these (absolute values of) products of sines therefore is a 
count of orthogonal states, with a partial credit for states 
which are not orthogonal but are also not parallel with any of 
the earlier ones.  Figure 7 shows how this is done using the 
four state, three variable state set used above. 
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particular vectors 
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Figure 5:  Normalization of State Vectors 

State 
    s0 
    s1 
    s2 
    s3

Variable 
v0   v1   v2
3     1    -1 
1     5    -1 
1     1     5 
3     5     1

Mean 
Standard 
deviation

2     3     0 
1     2     1

Subtract mean, 
Divide by Stan- 
dard deviation

State 
    s0 
    s1 
    s2 
    s3

Variable 
v0   v1   v2

 1   -1    -1 
-1    1    -1 
-1   -1     1 
 1     1     1

Subtract state 0 
(deterministic  reference)

State 
    s0 
    s1 
    s2 
    s3

Variable 
v0   v1   v2

 0    0     0 
-2    2     0 
-2    0     2 
 0    2     2

 
Figure 6: Normalization Example 
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As the number of states becomes large, fewer add very 
much value to this metric at all.  Unlike other methods, a 
state coplanar with two others will get some credit for not 
being parallel to either, although it does not really add an-
other dimension in the usual sense.  This metric proved to be 
subject to quite a large variability:  some small runs had 
quite large values, while some large runs had small values. 

 

State 
    s0 
    s1 
    s2 
    s3

Variable 
v0   v1   v2
 0    0     0 
-2    2     0 
-2    0     2 
 0    2     2

Dot products 
s1   s2   s3

s1 
s2 
s3

8     4     4 
4     8     4 
4     4     8

Pairwise Cosines 
          s1   s2   s3

s1 
s2 
s3

1    .5    .5 
.5    1    .5 
.5   .5     1

Pairwise Sines 
      s1   s2   s3
s1 
s2 
s3

 
.87 
.87 .87

Products 
 1.00 
   .87 
   .75 

The first state adds one dimension (a 
line formed from the state 0 reference).  
The second is not orthogonal, but is 60 
degrees offset, and so adds .87.  The 
third state is offset 60 degrees to each of 
the first two, so it adds .87 * .87 to the 
figure of merit for the state set.Sum = 2.62  

 

Figure 7: Sum of Sines Method Example 
 

2.  Number of independent variables:  When the out-
come space is simplified by eliminating any variables 
which are constant over all of the states, the number of re-
maining variables is a metric directly indicative of outcome 
variety in a useful sense. 

3.  Principal Component Analysis (PCA):  The intent of 
this method is to measure the relative contributions of the 
various independent variables.  This is done by finding the 
Eigenvalues of the Correlation Matrix for those variables.  If 
the variable having the largest Eigenvalue is normalized to 
"1", as contributing a full dimension, then other variables 
which are somewhat dependent on others contribute less.  
The normalized sum of these Eigenvalues this gives a metric 
that can be thought of as the equivalent number of independ-
ent dimensions in this statistical outcome space, though in 
fact there are many more dimensions with varying degrees 
of dependency.  (Examples:  A circular distribution for two 
variables would give a value of 2.  An oval distribution of 
two variables would give 1.5 if the correlation coefficient is 
.5.  A football shaped distribution for 3 variables would give 
approximately 2.)  Figure 8 illustrates this process using the 
simple state data shown earlier.   

 

v0 
v1 
v2

Variable 
v0   v1   v2

State 
    s0 
    s1 
    s2 
    s3

Variable 
v0   v1   v2
 1   -1    -1 
-1    1    -1 
 1   -1     1 
 1     1     1

 1    0    0 
 0    1    0 
 0    0    1

State Set Correlation Matrix

Eigenvalues 
 
1, 1., 1.

Sum  = 3

Normalized 
so largest 
value is 1, 
then added

 
 

Figure 8: Illustration of Metric Based on Principal  
Component Analysis 

 
In this case, the variables happen to be uncorrelated, 

so the sum of the Eigenvalues is three, the same as the 
number of independent variables.  More typically the sum 
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is much smaller than the number of variables, usually from 
15 to 20 for state sets having 100 to 300 or so variables. 

Note that the correlation matrix is calculated at the 
same time as the standard deviations, so the variables are 
not normalized to set states to have values relative to state 
zero as in the earlier case. 

4.  Singular Value Decomposition (SVD):  The num-
ber of basis vectors in the outcome space itself is a useful 
measure of outcome variety (Press, et.al.). These can be 
found using Singular Value Decomposition, and the corre-
sponding "Singular Values" that measure the contributions 
of each.  Unlike the PCA technique which is derived from 
variable statistics (the correlation matrix), the Singular 
Values derive from the state set itself.  As with PCA Ei-
genvalues, the largest Singular Value can be considered the 
norm for a unit contribution to a scalar dimension metric, 
with smaller values contributing proportionally less, to 
give an aggregate metric characterizing the sense of the 
dimensionality of the spanned space.  Figure 9 illustrates 
this process: 

 

State 
    s0 
    s1 
    s2 
    s3

Variable 
v0   v1   v2
 0    0     0 
-2    2     0 
-2    0     2 
 0    2     2

 0      0     0 
.41  .58  .71 
.41  .58 -.71 
-.82 .58   0

Matrix U

2    0     0 
0    4     0 
0    0     2

Matrix W
0     0      0 
.41 .58  .71 
.41 .58 -.71

Matrix Vt

XX

  by 
SVD 
 
equals

“Singular values” are diagonal values of W Normalize to largest 
value and sum

2/4 + 4/4 + 2/4 = 2.0
Colunms of U having nonzero corresponding elements 
of W (all of them in this case) are an orthonormal basis 
for the range of the state matrix.  Columns of V having 
zero corresponding elements of W (none in this case) 
are an orthonormal basis for the null space of the state 
matrix.

SVD derived metric = 2

 

Figure 9: Illustration of Metric Based on Singular Value 
Decomposition 
 

5.  Number of Nonzero Singular values: The number 
of nonzero singular values could also be considered a use-
ful metric, but in the presence of noise the threshold of sig-
nificance that distinguishes a value from zero is a bit arbi-
trary.  Any value greater than .00001 was considered 
nonzero.  Generally the number was the same or very close 
to the number of states or the number of independent vari-
ables, whichever was less.  For the simple example above, 
this count would be 3. 

As an example of the above metrics, see Table 1, 
which gives the values derived from a number of runs for 
varying numbers of stochastic replications.  Each of the 
three runs in a set used a different random number genera-
tor.  Notice that the scalar metrics derived by the sum of 
sine products, PCA, and SVD show considerable variation.  
Indeed, the smallest value for the Sum of Sine Products 
method occurs for one of the largest runs.  Although the 
PCA values here seem more consistent than the others, that 
metric also had occasional extreme values.  Note also that 
the impact of increasing the number of replications begins 
to be more marginal in its effect. 
4 
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Table 1: Scenario 2 Stochastic Outcome Space Metrics 
N  of 

Trajectories 
Sum 
Sines 

N 
variables 

PCA Nonzero 
SV's 

SVD 

100 5.683 257 13.27 99 6.581 
100 12.42 270 13.66 99 9.928 
100 5.101 262 13.07 99 7.069 

      
1000 11.698 279 16.74 275 11.94 
1000 7.276 285 17.5 277 10.05 
1000 13.006 289 17.12 278 13.48 

      
10000 10.308 292 17.66 292 12.69 
10000 2.197 292 17.74 292 6.379 
10000 6.438 298 17.81 294 11.06 

 
One reason that considerable variation in these metrics 

is seen is the sensitivity to the value of the largest Eigen or 
singular value.  The two sequences below give the largest 
several ordered Eigenvalues for the smallest and largest 
PCA based metrics respectively from Table 1.  The re-
mainder of the 256 or 290 (respectively) Eigenvalues taper 
off toward zero. 

Sum = 1.97: 130.08, 11.30, 7.74, 6.64, 5.73, 5.32, 5.16.. 
 
Sum = 30.99:  6.77, 12.12, 9.73, 8.94, 7.95, 6.37, 6.61.. 

A similar run with a different seed or random number 
generator selection might have a quite different array of 
Eigenvalues without having the extreme initial value.  An 
extreme value for one metric did not always correlate with 
an extreme for another.  Indeed, the metrics seldom vary 
together, although the second 10000 trajectory of Table 1 
shows much lower than expected values for both SVD and 
Sum of Sine Products, but not PCA.  As can be seen, these 
variations seemed as likely to affect the metric as did 
choice of simulation event management method or event 
he number of trajectories.  Thus, averages of a number of 
runs were used to compensate somewhat.  This occasional 
large variation may be indicative of potential for better 
event management techniques that might more consistently 
generate large metric values, but this potential has not been 
explored yet. 

4 EVENT MANAGEMENT TECHNIQUES 

The intent of event management is to select the event out-
come for a random event in a manner that will enhance the 
value of the outcome set to the analyst.  The methods used 
in the work reported here include those listed below.  (In 
addition, other methods have been developed which were 
not used in this analysis.) 
 667
mt0.  Deterministic:  For each event type, there is a de-
terministic default resolution method: 

 
a. Movement:  Choose the first exit link from a node 
b. Acquisition:  Units inside the deterministic radius 

are seen, those outside unseen.  (This radius is 
half-way between the bounds where a unit might 
be seen.) 

c. Acquisition Loss:  Units inside a deterministic ra-
dius retained, those outside lost. 

d. Decisionmaking:  Rules satisfied under 2 or 3 of 3 
sets of alternative criteria fire; if satisfied under 
only one or fewer sets, it doesn't.  (Variable crite-
ria are for rule thresholds, e.g. 60%, 65%, 70% ef-
fectiveness.) 

 
mt1.  Stochastic:  A random number is drawn, and 

used to resolve the event: 
 
a. Movement:  Choose the exit link from a node ac-

cording to their probabilities 
b. Acquisition:  Units within the "possibly acquired" 

zone acquired with a 50% chance. 
c. Acquisition Loss:  Units within "possible loss" 

zone lost with a 50% chance. 
d. Decisionmaking:  Rules satisfied for 1 or 2 sets of 

criteria have increasing probabilities. 
 
mt4.  Multitrajectory with stochastic limit:  Up to a 

given state limit, slitting is used to generate new trajecto-
ries.  Beyond that limit, stochastic resolution is used.  This 
is a useful blend of techniques.  The disadvantage, though, 
is that trajectories will have a very large range of probabil-
ity values. 

mt6.  Multitrajectory with "soft" stochastic state limit:  
Up to a "soft" state limit all events are multitrajectory.  Be-
yond that, up to a hard state limit, the trajectory probability 
multiplied by the state limit is compared to a numeric crite-
rion, usually about 1.0 or a bit higher.  Trajectories that 
have a sufficiently high probability pass this test, and their 
events are resolved in multitrajectory manner (splitting the 
probabilities of the outgoing trajectories).  Events for tra-
jectories with lower probabilities are resolved stochasti-
cally by random number draw.  As the state limit is ap-
proached, fewer trajectories satisfy the criterion, so that 
most trajectories will have about the same probability at 
the end.  This is perhaps the best method to use when no 
information about the relative importance of the various 
events is available. 

mt9.  Multitrajectory up to soft state limit, then sto-
chastic if event importance and probability are sufficiently 
low.  This is similar to Method 6, but adds another consid-
eration: event importance. If Method 9 is used for any 
event, event importance data from an earlier run is read 
into the simulation.  There is an event category for each 
5 
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event type, unit, and data (movement node, unit to be seen, 
or rule number).  Each such category has an importance 
score, all of which are normalized such that they sum to 
one.  If the trajectory probability times event importance 
divided by the state limit exceeds a numerical criterion, the 
event is resolved in multitrajectory fashion.  Otherwise, it 
is resolved by random draw.  This allows the management 
of events in a manner sensitive to event importance.  There 
are actually five different sets of importance numbers in a 
typical event importance file.  These are derived using dif-
ferent methods for assessing event importance.  The ana-
lyst must perceive which of the five is to be used. 

One strategy that can be used for obtaining a wider va-
riety of outcomes is based on the notion of a limited event 
tree.  The simplest example is a "leftist tree" run in which 
the initial trajectory is entirely deterministic.  For this ref-
erence trajectory, at each event, a new trajectory is initiated 
for the alternative outcome.  But these alternative trajecto-
ries do not branch further; they continue to termination as 
deterministic branches.  Figure 10 illustrates. 
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Figure 10: Leftist Tree Multitrajectory Execution 
 

The total number of uniquely identifiable events is 
typically much larger than the number in any given run, 
since events in different trajectories that one might other-
wise consider the same may happen at different times.  For 
scenario 2, a typical trajectory might have 300 events, but a 
500,000 trajectory run typically has about 17,000 uniquely 
identified events across all of the trajectories. 

The advantage of a tree run is that there are two trajec-
tories that differ only by the impact of a single event.   Dif-
ferences in their final states can be attributed to that event.  
However, the existence of an event in a particular trajec-
tory may depend upon the outcome of a previous event.  
For example, an acquisition event may depend upon an 
earlier movement selection event that affects the time of 
arrival at the target unit's destination.  If the unit is later ar-
 668
riving in one trajectory, the acquisition event against it 
would not occur in that trajectory while it might occur in 
another.  Figure 11 shows such a case. 

Trajectory 0:  Event 0:  unit x chooses Route 0. 
                       Event 1:  unit y attempts to detect unit x 
                       Event 2:  unit x attempts to detect unit y 
                       Event 3:  unit y attempts to detect unit x (again) 
                       .........  (events 1,2,3 spawn yet more trajectories) 
Trajectory 1:  Event 0:  unit x chooses Route 1. 
                       Event 1: does not occur 
                       Event 2: does not occur 
                       Event 3: unit y attempts to detect unit x (first time)

Destination

Route 0

Route 1

unit x
unit x

Initial location T=0

Locations of 
unit x at time T=t 
in trajectories 0 and 1

unit y

Possible detection 
        range for unit y

Location also of 
unit x at time 

T=t+5 (one ∆t) 
in trajectory 1

unit x

 

Figure 11: Event Dependence on an Earlier Event 
 

All of the multitrajectory methods that use information 
on events, designated as Multitrajectory Method 9 (or 
"mt9") depend on estimation of event importance.  Several 
methods of event analysis were explored, each of which 
results in a different set of event importance values.  Space 
does not allow these methods to be described in detail.  
The methods are summarized below: 

 
1. Average event effect:  The (normalized) sets of 

state vectors associated with the default and non-
default outcomes are both averaged, and the dif-
ference is taken.  The magnitudes of the differ-
ence vectors associated with the various events 
are then normalized so that they sum to one.  The 
effects for similar events are aggregated, and in-
cluded in the event importance output.  In the case 
of events for which only one outcome occurs, we 
cannot really find a difference in the sense just de-
scribed.  However, we can take a difference be-
tween the average for states having the one event 
outcome, and the others where the event does not 
occur at all.  This metric may most directly reflect 
the impact of an event in terms of making a dif-
ference in outcome, and may be the most obvious 
and straightforward metric.  However, there is no 
good reason to suppose that the use of this metric 
will also effect much of an improvement on out-
come space variety metrics. 
6 
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2. Average sine of angles:  This metric is closely re-
lated to the sum of product of sines metric for 
state analysis.  The interest is in identifying events 
that cause state vectors which are more nearly or-
thogonal.  Angles are measured between each 
state with the default outcome and all states with 
the opposite outcome.  The average absolute value 
of the sine of these angles is then taken as the 
metric associated with the event.  These are then 
grouped and normalized to add to one as for the 
other metrics. 

3. Average and minimum distances:  For each state, 
the distance to the nearest state, and the average 
distance to all other states, is calculated.  If the 
state results from some outcome of event E, the 
sum of nearest and average distances for this state 
are averaged in with the same values for other 
states having an outcome for this event.  This met-
ric gives weight to both nearest neighbor and av-
erage distance; it does not care what the event 
outcome is, only that it occurred. 

4. Linear Event Impact Model:  This method at-
tempts to model the event set as having a linear 
effect on the outcome of the simulation, and find 
the weights such that the linear model gives a 
close approximation to the actual outcome space.  
Ultimately, we would hope to have a fairly close 
convergence toward the actual outcome set.  But, 
the events are neither linear nor independent, and 
the approximation was observed to be rather poor, 
and does not even converge.  Undoubtedly this al-
gorithm might have been better constructed, with 
perhaps better event effects models sensitive to 
dependencies, but that remained beyond what 
could be achieved. 

5. Single event difference event effect model:  This 
method is a less ambitious version of number 4 
above, in that event impacts are only calculated 
where there are two trajectories that differ by only 
that event.  (An event occurring in one but not the 
other of a trajectory pair is considered not dis-
qualifying for this purpose.)  In a normal stochas-
tic or multitrajectory run, this would happen very 
seldom, so that this method would only rarely 
produce a viable event impact distance.  But tree 
runs, as described earlier, are designed to produce 
just such coincidences.  A multiple tree run, say a 
two way run of simultaneous rightist and leftist 
trees, will produce two such pairs in some cases, 
and four way trees may be even richer in useful 
trajectory pairs. 

 
A few observations about these importance measures 

are worth noting.  In a sense, the first metric is the most 
robust as well as straightforward, in that it returns some 
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value for every event whether both outcomes occur or not.  
Method 3 is also quite robust, but tends to generate impor-
tance values which do not vary widely, suggesting that all 
events are more equally important than would be reasona-
bly expected.  The others tend to miss some events.  
Method 5, which requires event pairs to register a nonzero 
importance, is fairly sparse.  Method 4, however, tended to 
produce event sparser importance values.  To summarize, 
Method 4 importances cannot be regarded as trustworthy, 
and there are reasons to consider Method 3 suspect.  
Method 5 misses getting data on quite a few events due to 
the coincidence requirements, and thus may miss some im-
portant events.  Method 1 would seemingly be the most 
trustworthy, though method 2 is better targeted on the di-
mensionality goal. 
 
5 RESULTS AND OBSERVATIONS 

The sets of runs and methods of analysis were different for 
the two scenarios.  For scenario_0, a much greater variety 
of run sizes were made, but in many cases only one run 
was made for a given size.  In order to avoid statistical ab-
errations, comparisons for comparable mixes of run sizes 
are made.  This is not as much a problem as might be 
thought, since the metrics collected seem rather insensitive 
to run size for this scenario.  For scenario_2, on the other 
hand, only a few run sizes were used (100, 1K, and 10K) 
but three runs each with different random number methods 
were used.  Even so, aggregate comparisons based on a 
mix of run sizes are useful. 

Averages for various methods for different techniques 
have been collected in Table 2.  These averages are taken 
across a number of different trajectory set sizes ranging 
from 100 to 500,000, with the different sizes weighted 
similarly for each set of metric values reported in the table.  
The standard deviations calculated were for individual 
runs.  The "Sum of Sines" metric was not available. 

 
Table 2:  Scenario 0 Result Averages 
 nC PCA nW SVD 

mt1 57 3.69 54 3.84 
mt4 57 4.24 55 3.84 

mt6 57 3.67 55 4.11 
mt9 (1) 58 3.97 56 3.61 
mt9 (2) 58 3.94 56 3.86 

mt9 (3) 58 3.94 56 3.86 

mt9 (4) 56 4.16 53 3.11 

mt9 (5) 57 4.85 54 3.41 

std dev 2.2 0.65 4.3 0.43 

 

7 



Gilmer, Jr., and Sullivan 

 

If we are willing to assume that the numbers in Table 
2 are meaningful, we can observe that almost every method 
does better than stochastic by the PCA metric.  But the 
standard deviations are large enough that we can only say 
that mt4 and, more so, mt9 method 5 are significantly bet-
ter.  (The estimated standard deviations shown are for sin-
gle runs and we are dealing with averages of several runs, 
so the standard deviations for table entries can be consid-
ered smaller by a factor of about 2.)  On the other hand, 
mt9 method 5 does worse than stochastic by the SVD met-
ric, and mt4 is no better.  Only mt6 does better, and by 
barely enough to be significant. 

The two primary metrics, PCA and SVD, seem to be 
pulling in opposite directions.  A correlation coefficient 
taken over all mt9 runs turned out to be -.054.  Whatever 
we may mean by "dimensionality" is clearly different by 
these two metrics.  One, PCA, concerns statistics about the 
state set, and the other measures properties of the state set 
itself.  Which is more important?  Whichever it is, it would 
seem there is some method that will improve on stochastic 
methods.  It may well be that better methods of assessing 
event importance will improve on these results. 

Table 3  summarizes the results by averaging all runs 
having the same event control method and state limit.  (Ac-
tually, the number of states may be smaller than the state 
limit when the criterion parameter is set high in mt9 runs.) 

Table 3:  Scenario 2 Result Averages  
(for 1000 or more trajectory runs) 

 Sin n PCA n SVD runs 
mt1 8.59 291 18.17 288 11.24 9 
mt4 6.46 291 17.55 288 9.07 9 
mt6 8.73 290 17.58 287 10.08 9 
mt9 (1) 8.21 292 18.13 288 9.77 13 
mt9 (2) 9.94 290 18.63 289 10.62 11 
mt9 (3) 12.29 291 17.60 288 11.49 13 
mt9 (4) 9.60 290 17.69 287 9.80 9 
mt9 (5) 9.20 282 16.04 274 9.99 12 
tree 
runs 

16.27 248 4.74 211 7.769 7 

std dev 3.76 3.93 2.15 7.43 1.87  

For this larger, less sensitive scenario, the choice of 
trajectory management technique seems to have made less 
difference than it did for scenario 0.  Except for the tree 
runs themselves, no technique seems to perform signifi-
cantly better or worse than any other evaluated by the PCA 
criterion.  The estimates of standard deviation (for individ-
ual runs) are based on the 68 individual runs of 1000 tra-
jectories or more.  For the average statistics shown above, 
each from several individual runs, one would expect a 
standard deviation of about 1/3 that for individual runs.  
The only technique which, by this criterion, may slightly 
outperform stochastic simulation is multitrajectory tech-
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nique 9 with evaluation method 2, which gives a margin-
ally better PCA.  Method 5 was significantly lower, but 
many of these runs were small because of the limitations of 
the event evaluation technique, which means that the cases 
being compared are not really equivalent.  (For example, 
both of the nominally 50,000 trajectory limit runs never got 
beyond 1000 trajectories.)   

By the SVD technique, only Multitrajectory policy 9 
with event evaluation method 3 was higher, and not sig-
nificantly so.  This same case registered remarkably higher 
by the Sum of Products of Sines method, which did tend to 
correlate somewhat with SVD scores.  This was the 
method that used minimum and average distances between 
states in the outcome set as the criterion for evaluating 
event importance.  Other methods perform significantly be-
low stochastic simulation by the SVD metric. 

For this scenario, the results of the tree runs is also 
given.  These are very small runs compared to the others.  
Yet the Sines method registers a very large score.  This 
may be an indication that this metric is suspect.  All of the 
tree runs included many duplicate states, typically 5% to 
10% of the total; no other technique produced any for this 
scenario.  (Only a handful of duplicates occurred outside of 
tree runs occurred for the smaller scenario 0.) 

6 CONCLUSIONS 

Perhaps the most important conclusion we can make is 
that, on the average, the performance of the various meth-
ods, and event sizes, are not very different.  We do not see 
dramatic differences of factors of 2 or more; the numbers 
seem to be pretty close.  On the other hand, individual runs 
show considerable variation.  There are a number of alter-
native hypotheses: 
 

1. With at least 100 or so trajectories, we are learn-
ing about all we can expect to about the outcome 
space, at least as far as dimensionality is con-
cerned.  The wide variations among individual 
runs is due to the sensitivity to the largest Eigen 
or Singular value and is a defect in the metric 
more than an indication of variation, since this oc-
curs with both large and small runs. 

2. The number of dimensions (taking into account 
their importances as is done with the PCA and 
SVD metrics) is a number that varies only slowly 
with the number of runs.  Just as it takes a dou-
bling of the number of runs or symbols to add one 
bit to an entropy metric, it may take many runs to 
increase dimensionality significantly.  If that is so, 
then methods that show even a small increase in 
these metrics may be valuable alternatives to 
enormous numbers of runs. 
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These two hypotheses are not mutually exclusive.  The 
metrics chosen are indeed sensitive.  Perhaps a better met-
ric more directly reflecting the operational characteristics 
important to hierarchical simulation could be developed 
that is less sensitive.  Improvement here has been beyond 
the scope of what could be accomplished. 
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