
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

MANAGING EVENT TRACES FOR A WEB FRONT-END TO A PARALLEL SIMULATION

Boon Ping Gan
Li Liu

Zhengrong Ji

Gintic Institute of Manufacturing Technology

71 Nanyang Drive
638075 SINGAPORE

 Stephen J. Turner
Wentong Cai

School of Computer Engineering
Nanyang Technological University

Nanyang Avenue
638798 SINGAPORE

ABSTRACT

To enhance the widespread use of a parallel supply chain
simulator, a web front-end that enables access at any time
and from any location has been developed. The front-end
provides the capability of model uploading, simulation
runs initiation, simulation activities visualization, and
simulation statistics collection. Visualizing the simulation
activities requires the parallel simulator to record event
traces to the file system for displaying purposes. To mini-
mize the negative impact of the recording on the perform-
ance of parallel simulation, an event trace management al-
gorithm, coupled with a buffering mechanism, is proposed
here. The approach was evaluated using six sample supply
chain models. The results show that the proposed algo-
rithm is capable of maintaining the same level of speedup
when recording is performed (in the range of 2.5 to 3.0 on
a 4-CPU shared memory system), as compared to runs
without recording of event traces.

1 INTRODUCTION

Simulation has been used for supply chain management to
simulate the flow of materials and information through
multiple stages of manufacturing, transportation, and dis-
tribution (Jain et al. 1999). The simulation provides the ca-
pability of performing optimization on certain aspects of
the chain, such as the inventory control policy. It can be
used to study the impact of alternative control policies on
the overall supply chain performance. To ensure a high
confidence level for the decisions made based on the simu-
lation, detailed modeling of each factory within the supply
chain is required (Jain et al. 2000). This increases the com-
plexity of the simulation, and in turn increases the execu-
tion time required to simulate the model.

In our work, parallel discrete event simulation has
been used to improve the execution time of large supply
chain models (Gan and Turner 2000). A conservative
637
simulation protocol, an extension to an asynchronous pro-
tocol (Chandy and Misra 1979) for shared memory multi-
processor system, was used. Coupled with a dynamic load
balancing algorithm, our parallel simulator has achieved a
speedup factor of at least 2.5 relative to sequential simula-
tion on a 4-processor shared memory system (Gan et al.
2000), simulating a semiconductor supply chain model
(Jain et al. 1999) that is built from Sematech sample mod-
els (Sematech 1997). Simulating a large supply chain
model is usually only feasible with some simplification to
the model. With the capability of parallel simulation, such
simplification is no longer necessary and the supply chain
can be simulated in finer granularity. This offers a better
confidence level for the decisions made.

Building a web front-end to interface to the parallel
supply chain simulator is the focus of this paper. A web
front-end is chosen as the medium of interfacing due to its
capability of being available anywhere and at anytime. The
interface allows users to a) upload their model, b) initiate
simulation runs, c) visualize the simulation progress on-
line/offline, and d) obtain the simulation statistics for
analysis at the end of the simulation. The parallel execution
of the simulation model is hidden from the users, and the
interface appears like that of a conventional sequential
simulation (Turner et al. 1998). The only distinction that
possibly the users will notice is the speed of simulation.
The parallel simulator completes the model simulation in a
much shorter time as compared to the sequential simulator.

The critical aspect for the web front-end is its ability to
visualize the progress of the simulation, either online/offline.
This implies that the simulator needs to record event traces
to the file system while the simulation is running. Recording
of event traces will have a significant impact on the per-
formance of simulators, particularly parallel simulators. The
parallel simulation will be slowed down significantly if no
extra care is taken to manage the mutual exclusive access to
the file system. In this work, an efficient and effective algo-
rithm is proposed for this purpose.

Gan, Liu, Ji, Turner, and Cai

This paper is organized as follows: Section 2 describes
the basic architecture of the web front-end to our parallel
simulator, together with an overview of the design of the
visualization support. This is then followed by a discussion
on the algorithm that manages event recording in Section
3. Section 4 provides a performance evaluation of the algo-
rithm to study the impact of the event recording on the par-
allel simulation. The paper is then concluded in Section 5
with some suggestions for future work.

2 THE WEB FRONT-END

2.1 Overview

As discussed earlier, the web front-end for the parallel
simulator provides the following interfaces: a) to upload
the supply chain model, b) to initiate simulation of the up-
loaded model, c) to visualize the progress of the model
simulation, and d) to display the simulation statistics for
analysis. Figure 1 shows the system architecture of this in-
terface, which adopts a client-server architecture. The top
level interface is displayed through an HTML page at the
client side. The client will transmit the user selection to the
web server. A PERL program is responsible for initiating
the parallel simulator at the server. While the simulation is
running (at the server), the parallel simulator records event
traces to multiple files that are then used by a Java applet
for display purposes. The graph shows the on going activi-
ties of each factory of the supply chain, and is updated as
the simulation progresses. The trace files are sent to the
Java applet (client side) through a Java program (server
side) using a TCP/IP connection.
638
2.2 The Supply Chain Simulator
Visualization Support

Visualization is an important tool in understanding a simu-
lation. Having the ability to see what is happening during
the simulation in general offers several benefits. Firstly,
visualization is always an effective tool to explain the
model to non-technical people, and people in higher man-
agement. Secondly, engineers can use visualization as a
tool to verify the correctness of their model. This is always
more effective than by just looking at the model statistics
at the end of the simulation, from which it is difficult to
draw any concrete conclusions on the model’s correctness.
Thirdly, visualization is useful in identifying a sudden but
short interval of surging in some model variables, which is
not easy to identify through average statistics collected at
the end of the simulation.

The visualization support for the supply chain simula-
tor takes a hierarchical form. The information is divided
into three levels of hierarchy, namely i) the factory level,
ii) the process flow level, and iii) the resource level. This
logical arrangement derives naturally from the composition
relationship among the entities of the domain model. Typi-
cally, a supply chain is made up of multiple factories that
are interacting with one another. Within each factory, raw
materials are transformed to finished goods by going
through steps that are defined by the process flow. Within
each step, certain resources, such as machine and operator,
are needed for the processing. Thus, a hierarchical view is
the most natural design for the visualization support.

Table 1 summarizes the information that is available
for visualization at different levels of hierarchy. Each piece

Figure 1: System Architecture

R
es

ou
rc

e
na

m
e

Queue Length Percentage 100%

Busy

Setup

Down

Idle

SERVER
XML/HTML
Main Program PERL THE SC

SIMULATOR

Event traces
output files

JAVA
Applet

JAVA
Program

Gan, Liu, Ji, Turner, and Cai

of information is updated at the Java front-end (Figure 1),
as the simulation progresses. The trend of work-in-progress
for each factory is plotted at the top level of the hierarchy
(factory level). The second level (process flow level) dis-
plays the number of lots waiting at each step of the process
flow. The information on the resources of the factory, such
as resource queue length and percentage of time each re-
source spends on processing lots, changing setup, break-
down, and idle, is displayed at the bottom level (the re-
source level).

Table 1: Information Viewable at Different Levels of
Hierarchy

Level Information
Factory

Work-in-progress

Process flow

Number of lots at each step of
process flow

Resource Queue length at resources
Resource busy percentage
Resource setup percentage
Resource down percentage
Resource idle percentage

To display the information shown in Table 1, event

traces for each simulation run are collected and recorded to
the file system. The Java applet (Figure 1) receives the
event traces from the Java program (server side) and trans-
lates them to information that is usable for display pur-
poses. To avoid overflowing users with too much informa-
tion, users are only allowed to look at the information of
one hierarchy level at any one time. This helps them to fo-
cus on one aspect of the whole simulation model, and im-
proves their effectiveness in analyzing the simulation. To
facilitate this, event traces are segregated to multiple trace
files. The segregation could be based on factory, process
flow, or model resource for our supply chain model. Seg-
regation by process flow and model resource is not feasible
since there are hundreds of process flows and thousands of
resources in a typical semiconductor supply chain model.
Managing such a large number of files will be very ineffi-
cient. Thus, the most natural option to segregate event
traces is by factory for our supply chain model. This design
decision needs to be made before our event trace manage-
ment algorithm is applied.

In addition to improving users’ effectiveness in ana-
lyzing simulation runs, limiting the information being dis-
played also offers the benefit of transmitting a smaller
amount of information from server to client. This helps to
reduce the bandwidth requirement of the visualization sup-
port, which makes realizing it across the Internet feasible.
63
3 THE EVENT TRACE MANAGEMENT
ALGORITHM

3.1 The Buffering Mechanism

Recording of event traces from a simulator to the file sys-
tem needs to be done carefully to minimize its impact on
the performance of the simulation. The general practice of
ensuring minimum performance impact is to buffer event
traces before writing to the trace files. Event traces will
only be flushed when the buffer is full. This approach
helps to reduce the frequency of I/O operations, which is
the primary overhead of event recording. This reduction is
even more crucial in parallel simulation when more than
one process/thread might initiate an I/O operation to the
same trace file at any one time. To avoid inconsistency in
the state of the trace files, each file must only be accessed
by one process/thread at any one time. This mutual exclu-
sion of file access might waste CPU cycles if flushing of
event traces is done too frequently (assuming the imple-
mentation uses a busy waiting approach). Thus, buffering
offers an additional benefit of reducing the frequency of
concurrent requests for file access in parallel simulation.

Figure 2 depicts the buffering mechanism of the pro-
posed event trace management system. It assumes there are
m trace files and n execution streams being created for
each simulation run. Execution streams could be associated
with entities of the simulation that can be executed in par-
allel, such as logical processes (LPs), or with threads. Even
though this design is applied to the parallel supply chain
simulator discussed in the earlier section, the general prin-
ciples of this design can also be applied to other cases. The
buffering mechanism was designed with two principles in
mind: i) to reduce or eliminate the number of concurrent
requests for access to shared resources such as files and
buffers, and ii) to minimize the duration for which a shared
resource is locked (locking is needed to avoid concurrent
access to the same file). The first principle is realized by
associating a buffer with each output trace file within each
execution stream. By having one buffer per trace file, it
eliminates the need for segregating the event traces when
they are flushed (to file). In addition, having a set of these
buffers for each execution stream minimizes concurrent
requests for access (by execution streams) to the same
buffer. No writing conflicts will ever occur during the writ-
ing process since each execution stream is writing to its
own set of buffers.

Access conflict to the buffers will only arise when the
contents of these buffers need to be flushed to the trace
file. The first execution stream, denoted as TF hereafter,
that sees a full buffer initiates the flushing of all buffers
associated with that trace file. This execution stream will
compete for the buffers with the write access by other
execution streams. This is unavoidable but its impact can
be minimized by reducing the duration of buffer locking
9

Gan, Liu, Ji, Turner, and Cai

(the second principle). A double buffering approach is
employed to limit the locking duration on the swapping
operation (bufAi,j and bufBi,j in Figure 2). Subsequently, TF
can perform the necessary operations on the swapped
buffers, without interfering with the write access of other
execution streams. The purpose of each buffer type, bufA,
bufB, saveBuf, and mergeBuf, will be described together
with the event trace management algorithm in the
following section.

3.2 The Algorithm

Besides ensuring an efficient buffer management mecha-
nism, the event trace management system also needs to en-
sure the correct ordering of events being written to the
trace files. It is crucial to ensure the timestamp order of
events since the web front-end is mirroring the simulation
model activities, which occur in time order. To ensure the
correct timestamp ordering in a sequential simulation is not

640
difficult. However, there are some synchronization problems
associated with parallel simulation, in which the order of
events being written cannot be guaranteed since there are
event traces from multiple execution streams. Hence, an al-
gorithm that can ensure the correct ordering of events being
written to the trace files is required for parallel simulation.

Figure 3 shows an event trace management algorithm
that is capable of resolving the problem described above.
This algorithm has to work hand-in-hand with the buffer
management mechanism presented in Section 3.1. Each
execution stream is allocated m of bufA, bufB, and saveBuf
buffers (refer to Figure 2). Execution stream, i, writes
event traces to its jth bufA buffer, represented as bufAi,j,
after each event for that trace file is simulated (lines 3-6).
When the execution stream detects that the bufAi,j buffer
reaches the full state (line 7), it will initiate the flushing
operation on this buffer and all the jth bufA in other
execution streams. It is important to note that any

Figure 2: Buffering Mechanism for Event Recording

Merge

n – number of execution streams
m – number of trace files

F1 Fm

T1 Tn

bufA1,1 bufA1,m

bufB1,1 bufB1,m

mergeBuf1

bufAn,1 bufAn,m

bufBn,1 bufBn,m

saveBuf1,1 saveBuf1,m

mergeBufm

saveBufn,1 saveBufn,m

Double
buffers

Swap

Append

Write

Gan, Liu, Ji, Turner, and Cai

execution stream can initiate the flushing. This leads to a
possibility of execution streams contending among each
other to initiate the flushing operation (of the jth buffer). A
mergeLock is thus associated with each of the m buffer sets
(line 8 and 22) to avoid concurrent flushing on the same
buffer set.

1. Let e be an event that is simulated at
 execution stream, Ti, where i ∈ {1,2,…,n}
2. simulate(e)
3. j = e.get_trace_file_id()
4. bufAi,j.lock()
5. bufAi,j.push(e)
6. bufAi,j.unlock()
7. if (bufAi,j.is_full()) then
8. mergeLockj.lock()
9. if (bufAi,j.is_full()) then
10. safetimei = min(simulTimek) forall k= 1 to n
11. -- swap all the buffers of trace file j --
 -- for merging --
12. for all k = 1 to n do
13. bufAk,j.lock()
14. swap(bufAk,j, bufBk,j)
15. bufAk,j.unlock()
16. saveBufk,j.append(bufBk,j)
17. endfor
18. -- merge all sorted buffers of –-
 -- trace file j --
19. mergeBufj = sorted_merge(saveBufk,j)
 forall k = 1 to n, where e ∈ saveBufk,j,
 and e.timeStamp < safetimei
20. mergeBufj.flush_to_file(j)
21. endif
22. mergeLockj.unlock()
23. endif

Figure 3: The Event Trace Management Algorithm

Associating a mergeLock with the buffer sets can in-

deed avoid concurrent flushing of the same buffer set, but
there is still the possibility of flushing an empty buffer. This
happens when more than one execution stream detects that a
buffer set is full at the same time. The first execution stream
that successfully acquires the lock (mergeLock) will flush
the content of the buffer set and releases the lock. Execution
streams that acquire the lock next would have nothing to
flush. To avoid this from happening, a second check on the
buffer status is performed before the flushing operation is
initiated (line 9). This eliminates the problem described.

When the flushing operation is initiated, the jth buffer
of the corresponding bufA and bufB buffers for all the
execution streams are first swapped (swapping of bufA
and bufB is implemented as a pointer swap instead of
content copying) (line 13-15). This suggests a possibility
of contention between the writing and swapping opera-
tions to bufA. A lock is thus associated with these opera-
tions. Upon swapping, the content of bufBi,j is appended
to the content of the corresponding saveBufi,j buffer (line
16). The saveBuf buffer is needed since not all event
traces are flushed to the trace file when the flushing op-
eration is initiated. Some event traces that are not yet safe
to be flushed are kept in the saveBuf for the next initia-
641
tion of the flushing operation. An event is considered as
not safe when there is a possibility that a subsequent
event that is flushed to the file can happen earlier (in
terms of simulation time) than itself. To avoid this from
happening, a safetime needs to be computed. It is as-
signed the global minimum simulation time of all execu-
tion streams (line 10). Thus, all events with timestamp
less than this value are in fact safe to be flushed.

Before the safe events within all the jth saveBuf can be
written to the trace file, these events need to be sorted first
(line 19). An efficient merging algorithm, that keeps items
from multiple lists sorted as the items are merged, is em-
ployed for this purpose. The content of all the jth saveBuf
are merged to the corresponding mergeBuf. Upon comple-
tion, the content of the mergeBuf will then be flushed to the
jth trace file (line 20). This will complete the flushing op-
eration and the execution stream will go back to its normal
operation, which is the simulation of events and pushing
events to the bufA buffer.

3.3 Applying the Algorithm
to the Parallel Simulator

The parallel simulator is capable of simulating a semicon-
ductor supply chain model (Jain et al. 1999) that is defined
using the Sematech data format (Sematech 1997). A re-
source view is adopted by the parallel simulator, whereby
resources, such as machines and operators of the model are
mapped to logical processes (LPs) of the parallel simula-
tion (Turner et al. 1998). But having a 1-to-1 mapping of
resources to LPs will be too fine grain to achieve good par-
allel performance. Thus, a many-to-1 mapping is adopted
to increase the LP granularity (Gan et al. 2000). These LPs
are put into a global pool at the beginning of the simula-
tion. Threads that are idle will get an LP from the pool and
simulate the LP. If the LP cannot make simulation time
progress, the LP will be returned to the global pool. Each
LP can thus be executed by different threads at different
times. This helps to dynamically balance the system work-
load and improve the parallel performance.

To apply the event trace management algorithm to the
parallel simulator, two questions need to be answered.
Firstly, what should be mapped to the execution stream,
whether LPs or threads are the better option? Secondly,
what is the right buffer size for all the bufA (and bufB) to
cause initiation of the event flushing operation? For the
first question, mapping LPs to the execution stream will be
the most logical and efficient approach following the deci-
sion on event trace segregation discussed earlier. The other
option of mapping threads to execution streams introduces
an additional requirement of explicitly sorting the content
of bufA. If no sorting is done, the events will not be in or-
der and this invalidates the algorithm shown in Figure 3. It
would be possible for out of order event pushing to occur
(by different LPs) since LPs that are executed by the same

Gan, Liu, Ji, Turner, and Cai

thread are not necessarily at the same simulation time at
any instant of the parallel simulation. This extra overhead
of sorting bufA is not necessary with the mapping of LPs to
execution streams.

The answer to the second question is not as obvious as
the first. It has to be answered by performing some ex-
periments to determine the most appropriate buffer size to
be used, as described in Section 4. A small buffer will in-
crease the frequency of initiating the flushing. This in turn
increases the frequency of buffer contention among the
execution streams. By increasing the buffer size, the initia-
tion frequency can be reduced. This reduction can translate
to an improvement in execution time. But it is highly likely
that the improvement becomes stagnant when the buffer
size grows beyond a certain threshold value. These argu-
ments will be verified through experiments described in
Section 4.

4 PERFORMANCE STUDY

This section describes two experiments that were per-
formed. The first experiment was to vary the size of the
bufA buffer and study its impact on the execution time of
the parallel simulator. This experiment also verifies the ad-
vantage of using a buffering mechanism, as compared to
the case in which no buffer is used for event tracing. Upon
finding a suitable buffer size, the second experiment was
conducted to verify if the same level of speedup is main-
tainable, by comparing runs with event tracing to runs
without event tracing. The experiments were performed on
a Sun Enterprise 3000 system, that has four 250 MHz Ul-
traSparc II processors and 512 Mbytes of memory. The
parallel simulator was implemented using C++ and com-
piled with GNU GCC compiler version 2.95.1. The supply
chain models being used for the experiments were con-
structed from six sample models, based on Sematech sam-
ple models and models from past industry projects. The
simulation run length was set to 100 days.

Figure 4 plots the execution time achieved as the
buffer size was varied from 0 bytes to 102400 bytes.
Event traces are not sorted in timestamp order for scenar-
ios that use 0 bytes buffer size. Subsequent sorting is re-
quired for these cases but the sorting time involved is not
included in the figure. Even so, it is obvious from the fig-
ure that the execution time achieved with scenarios that
use buffers is already consistently better than those that
use no buffer (0 buffer size). It is indeed beneficial to in-
troduce buffers, as a temporary storage to hold event
traces, between the simulation program and the trace
files. Another crucial observation is that the execution
time improves as the buffer size is increased. From the
experiments, it seems that a buffer size of 10240 bytes is
sufficient to ensure good performance for the parallel
simulation, although this improvement is diminishing as
the buffer size grows beyond 1024 bytes.
64
0

100

200

300

400

500

0 128 1024 10240 1E+05

Buffer Size (bytes)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

SC1
SC2
SC3
SC4
SC5
SC6

Figure 4: Impact of Buffer Size on Execution Time

Figure 5 compares the speedup achieved for runs with

event-tracing and runs without event-tracing. Each set of
these runs is performed for both sequential and parallel
simulation. For the runs that output event traces, buffers
are also introduced to the sequential simulator to guarantee
a fair comparison. The speedup is computed based on the
corresponding runs, that is, sequential and parallel runs
with event tracing, and sequential and parallel runs without
event tracing. As can be seen, the speedup achieved is
maintained at the same level when the event trace man-
agement algorithm is used. This shows that the algorithm is
effective in minimizing its impact on the performance of
the parallel simulation, which is crucial since file I/O op-
erations have always been a major performance bottleneck.

0

0.5

1

1.5

2

2.5

3

3.5

Sp
ee

du
p

SC1 SC2 SC3 SC4 SC5 SC6

Supply Chain Model

No
Tracing
With
Tracing

Figure 5: Speedup Achieved With and Without Event
Tracing

5 CONCLUSIONS

This paper has presented a web front-end together with an
effective event trace management algorithm for a parallel
simulator. Through the web front-end, the parallel simula-
tor can be accessed from anywhere at anytime using any
2

Gan, Liu, Ji, Turner, and Cai

web browser. Further, this front-end presents an interface
to the parallel simulator which is like that of a conventional
sequential simulation. The interface allows the user to
submit their model, initiate simulation, visualize the simu-
lation, and collect the simulation statistics. The visualiza-
tion facility requires the parallel simulator to record event
traces to the file system. This leads to the development of
an effective event trace management algorithm that mini-
mizes the impact of event recording on the performance of
the simulation. It is proven that the algorithm is capable of
maintaining the same level of speedup even when file I/O
is required to record the event traces. Future work will fo-
cus on realizing interactive control of the simulation runs
to allow users to perform what-if analysis while the simula-
tion is running.

ACKNOWLEDGMENTS

This research is supported by National Science and Tech-
nology Board, Singapore, under the project: Parallel And
Distributed Simulation of Virtual Factory Implementation.
It is a collaborative project between Gintic Institute of
Manufacturing Technology, Singapore and the School of
Computer Engineering in Nanyang Technological Univer-
sity, Singapore. The project is located at the Centre for
Advanced Information Systems at Nanyang Technological
University, Singapore.

REFERENCES

Chandy, K.M., and J. Misra. 1979. Distributed Simulation:
A Case Study in Design and Verification of Distrib-
uted Programs. IEEE Transactions on Software Engi-
neering SE-5: 440-452.

Gan, B.P., and S.J. Turner. 2000. An asynchronous proto-
col for virtual factory simulation on shared memory
multiprocessor systems. Journal of Operational Re-
search Society Special Issue on Progress in Simulation
Research 51: 413-422.

Gan, B.P., Y.H. Low, S. Jain, S.J. Turner, W. Cai, W.J.
Hsu, and S.Y. Huang. 2000. Load Balancing for Con-
servative Simulation on Shared Memory Multiproces-
sor Systems. In Proceedings of the 14th Workshop on
Parallel and Distributed Simulation, 139-146.

Jain, S., B.P. Gan, C.C. Lim, and Y.H. Low. 2000. Bot-
tleneck Based Modeling of Semiconductor Supply
Chain. In Proceedings of the International Confer-
ence on Modeling and Analysis of Semiconductor
Manufacturing.

Jain, S., C.C. Lim, B.P. Gan, and Y.H. Low. 1999. Criti-
cality of detailed modeling in semiconductor supply
chain simulation. In Proceedings of the 1999 Winter
Simulation Conference, ed. P.A. Farrington, H.B.
Nembhard, D.T. Sturrock, and G.W. Evans, 888-896.
643
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Sematech. 1997. Modeling Data Standards, Version 1.0.
Technical Report, Sematech Inc., Austin, TX 78741.

Turner, S.J., C.C. Lim, Y.H. Low, W. Cai, W.J. Hsu, and
S.Y. Huang. 1998. A Methodology for Automating the
Parallelization of Manufacturing Simulations. In Pro-
ceedings of the 12th Workshop on Parallel and Dis-
tributed Simulation, 126-133.

AUTHOR BIOGRAPHIES

BOON PING GAN is an Associate Research Fellow with
the Manufacturing Planning & Scheduling group at Gintic
Institute of Manufacturing Technology, Singapore. He re-
ceived a Bachelor of Applied Science in Computer Engi-
neering and Master of Applied Science from Nanyang
Technological University of Singapore in 1995 and 1998
respectively. His research interests are parallel and distrib-
uted simulation, parallel programs scheduling, and applica-
tion of genetic algorithms. His email address is
<bpooi@gintic.gov.sg>.

LI LIU is an Associate Research Fellow with the Manu-
facturing Planning & Scheduling group at Gintic Institute
of Manufacturing Technology, Singapore. She received her
Bachelor of Science in Mathematics from Beijing Univer-
sity in 1991 and Master of Computer Engineering from
Academic Sinica, China in 1994. Her research interests are
parallel discrete event simulation, supply chain web-based
simulation. Her email address is
<lliu@gintic.gov.sg>.

ZHENGRONG JI is a Research Associate with the Manu-
facturing Planning & Scheduling group at Gintic Institute
of Manufacturing Technology, Singapore. He received his
Bachelor of Applied Science in Computer Engineering
from Nanyang Technological University of Singapore in
1999. His research interests are parallel and distributed
simulation, distributed algorithm and mobile computing.
His email address is <zrji@gintic.gov.sg>.

STEPHEN J. TURNER is an Associate Professor in the
School of Computer Engineering at Nanyang
Technological University (Singapore). Previously, he was
a Senior Lecturer in Computer Science and Director of the
Parallel Systems Research Laboratory at Exeter University
(UK). He received his MA in Mathematics and Computer
Science from Cambridge University (UK) and his MSc and
PhD in Computer Science from Manchester University
(UK). His current research interests include: distributed
and parallel simulation, visual programming environments,
parallel algorithms and languages, distributed computing
and agent technology. His email and web addresses are

Gan, Liu, Ji, Turner, and Cai

<assjturner@ntu.edu.sg> and <www.ntu.edu
.sg/home/assjturner>.

WENTONG CAI is an Associate Professor in the School
of Computer Engineering (SCE), Nanyang Technological
University (NTU). He obtained his B.Sc. in Computer
Science from Nankai University (P.R. China) in 1985, and
Ph.D. from Exeter University (UK), also in Computer Sci-
ence, in 1991. Since 1990, he has been actively involved
in the research in the areas of Parallel and Distributed
Simulation (PADS). Dr. Cai is a member of IEEE and his
current research interests include: PADS, Parallel Pro-
gramming Tools and Environments, and Performance
Analysis. His email and web addresses are
<aswtcai@ntu.edu.sg> and <www.ntu.edu
.sg/home/aswtcai>.
644

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

