
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

AUTOMATED OBJECT-FLOW TESTING OF DYNAMIC
PROCESS INTERACTION MODELS

Levent Yilmaz

Simulation and Software Division
Trident Systems Incorporated

Fairfax, VA 22031, U.S.A.

ABSTRACT

This paper deals with the assessment of accuracy of simu-
lation models from the perspective of dynamic object
flows. Dynamic objects (also called temporary entities or
transactions) move physically or logically from one model
component to another and represent entities such as air-
craft, data packet, passenger, and vehicle. Accurate flow
(movement) of thousands or millions of dynamic objects
within a complex simulation model significantly affects the
overall model validity. We present a new automated testing
technique for assessing the accuracy of dynamic object
flows. The permissible sequence and precedence of dy-
namic object flows are specified using the context-free
grammar formalism. The specification accuracy is assessed
using a variety of verification and validation techniques.
The executable model is instrumented and dynamic object
flow trace data is generated. The trace data is automatically
compared with respect to the specification and each dy-
namic object movement traced during model execution is
automatically verified.

1 INTRODUCTION

The quality of a simulation model is assessed by using in-
dicators such as accuracy, complexity, ease of use, execu-
tion efficiency, maintainability, reusability, and portability.
This paper focuses on the assessment of simulation model
accuracy. Verification, validation, testing, and accredita-
tion activities primarily deal with the assessment of accu-
racy of simulation models.

Model verification is substantiating that the model is
transformed from one form into another, as intended, with
sufficient accuracy. Model verification deals with building
the model right. Model validation is substantiating that the
model, within its domain of applicability, behaves with
satisaccuracy consistent with the simulation project objec-
tives (Yilmaz 1998; Yilmaz and Balci 1997). Model vali-
dation deals with building the right model. Model testing is
ascertaining whether inaccuracies or errors exist in the
586
model. In model testing, the model is subjected to test data
or test cases to determine if it functions properly. A test is
devised and testing is conducted to perform either valida-
tion or verification or both. Some tests are devised to
evaluate the behavioral accuracy (i.e., validity) of the
model, and some tests are intended to judge the accuracy
of model transformation from one form into another (veri-
fication). Accreditation is “the official certification that a
model or simulation is acceptable for use for a specific
purpose.’’ (DOD Directive 5000.59).

Many different views (e.g., control flow, data flow,
structural) exist for testing model accuracy. More than 100
techniques proposed in the literature (Yilmaz and Balci
1997) describe these views. In this paper, we take the view
of dynamic object flows (movements) in assessing model
accuracy. A dynamic object (also called temporary entity
or transaction) is an element of interest which moves
physically or logically from one model component to an-
other. It represents entities such as missile, patient, satel-
lite, and ship. A complex simulation model may contain
thousands or millions of dynamic objects and the accuracy
of their movements significantly affects the overall model
validity.

This paper is organized as follows. After an introduc-
tion in Section 1, Section 2 defines dynamic object flow se-
quence and precedence, and describes major stages of the
proposed testing technique. Section 3 describes how dy-
namic object flows are specified based on context-free
grammar formalism. Instrumentation of the executable
model and generation of object flow trace data are presented
in Section 4. Section 5 describes how the trace data are auto-
matically compared with respect to the specification to judge
the accuracy of dynamic object movements. Applicability of
the testing technique is illustrated in Section 6 by some ex-
amples. Conclusions are stated in Section 7.

2 OVERVIEW OF THE TESTING TECHNIQUE

The proposed testing technique is intended to assess the
accuracy of simulation models from the perspective of dy-
namic object flows. Successful application of the testing

Yilmaz

technique does not imply overall model validity but helps
us increase our confidence in model accuracy in terms of
dynamic object movements. Accurate movements of thou-
sands or millions of dynamic objects within a complex
simulation model significantly affects the overall model
validity.

2.1 Process Interaction World-View

One of the fundamental conceptual frameworks, also called
simulation strategy or formalism, of discrete-event simula-
tion is the process interaction world-view. Process interac-
tion framework enables a modeler to describe the life-cycle
of an object that moves through the processes to engage in
activities required by the system under study. (Balci 1988)
provides a comprehensive review as well as implementation
details of this simulation formalism and strategy, for which
the developed testing technique is directly applicable.

2.2 Object-Flow Sequence and Precedence

Object flow sequence is defined as the sequential move-
ment in space or time of a dynamic object throughout its
lifetime in a simulation model. The sequence can be either
repeating or terminating. A repeating sequence represents
the flow of those dynamic objects that circulate within the
model. A terminating sequence represents the flow of those
dynamic objects that are destroyed at some point during
model execution.

For example, in the clinic visual simulation shown in
Figure 1, medical staff members (doctor, physician assis-
tant, nurse, nurse practitioner) are created at time zero and
the sequence of their movements in-between the rooms is
repeated throughout the simulation. On the other hand, the
patient flow sequences are terminating. Patients arrive ran-
domly and after receiving service they leave the clinic (i.e.,
they are destroyed). Object flow precedence is defined as
the flow ordering of dynamic objects within a particular
model component. For example, in the clinic visual simula-
tion in Figure 1, object flow precedence represents order-
ing of dynamic object movements such as (a) patient must
move into an examination room before a medical staff
member can enter into the room, (b) movement of patient
to the receptionist must happen before the patient’s move-
ment to the check-in room that must be followed by a
movement to any one of the examination rooms, and (c) a
medical staff member must move to the medical staff room
upon completion of examination and before moving in a
new check-in or examination room to provide another ser-
vice (Swisher et al. 1997).

2.3 Major Stages of the Testing Technique

Major stages of the automated object flow testing tech-
nique are shown in Figure 2. During the system analy-
587
sis/investigation process, the system boundary is identified
and the study objectives are explicitly defined. As part of
this process, the testing technique requires the formal
specification of permissible sequences and precedences of
dynamic object movements to be included in the model
representation. The formal specification is provided using
the context-free grammar (CFG) formalism (Hopcroft and
Ullman 1979) and is described in Section 3.1.

Figure 1: Dynamic Object Flows in a Clinic Model

The formal object flow specification must be verified
and validated since it is the point of reference for judging
the model validity with respect to the dynamic object
flows. As the model development progresses, the object
flow specification may be modified in view of new model
representation requirements.

Once the executable simulation model is created, it is
instrumented to generate dynamic object flow trace data
(Section 4) in a format required by the technique. The trace
data is automatically compared with respect to the specifi-
cation and each dynamic object movement traced during
model execution is automatically verified as described in
Section 5.

3 OBJECT-FLOW SPECIFICATION

A simulation model is commonly structured as a hierarchi-
cal decomposition of components as shown in Figure 3.
Components can be composite or atomic. An atomic com-
ponent does not contain other components. A composite
component consists of other atomic and/or composite
components. A dynamic object, during its flow through the
model components, drops into a deep component, interacts
and engages in activities with atomic/composite objects in
that component, and then ascends to the parent component.

Yilmaz

System

Object Flow
Specification

System and Objectives
Definition

Model
Specification

Executable
Model

Instrumented
Model

Object Flow
Trace Data

V&V System Analysis

Specification

Implementation

Instrumentation

Execution

Automated
Object Flow
Testing

Figure 2: Automated Object Flow Testing Technique

For example, consider a simulation model of the inter-

net in the US. The US map would be the top-level compo-
nent decomposed into, e.g., virginia, texas, california. Vir-
ginia component could be decomposed into Virginia Tech
campus, which is decomposed into computer science de-
partment network of host computers. An electronic mail
message (a dynamic object) ascends from a host computer
to the campus component, from which it flows into to Vir-
ginia state component, followed by an ascend operation to
the top-level component. Then the dynamic object moves
and drops into the California component, followed by a
movement into the Stanford University component. In this
component, the packet moves to local area network com-
ponent to reach its destination host computer. This is an
example of how a dynamic object flows through the model
from one component to another. We propose to represent
such object flows by using the Context-Free Grammar
(CFG) formalism. CFG is used for a diverse set of prob-
lems in areas such as concurrent systems, databases, pro-
gramming languages, and incremental compilers.

3.1 Object Flow Specification based on the
Context-Free Grammar Formalism

In this section we explain how object flow sequences and
precedences are specified using the context-free grammar
formalism. The process of modular flow/precedence speci-
fication is illustrated using simple examples.

3.1.1 Object Flow Sequence Specification

A context-free grammar is a quadruple (N, T, P, S) where
N is a finite set of variables, T is a finite set of terminal
symbols, P is the set of rules, S is a special variable of N
called the start symbol. The sets N and T are disjoint. The
58
rules of a grammar consist of elements of the set. The rule
[R,w] is also written as R→ w. A rule of this form is also
called an R rule. As a convention, the terminal symbols are
denoted by lowercase letters or strings. The variable sym-
bols (non-terminal symbols) are denoted by capital letters
or strings.

Figure 3: Hierarchical Model Decomposition

Grammars are generally used to generate properly
formed structures or strings over the prescribed alphabet T.
The basic step in generation of a well formed structure is the
application of a rule to transform a structure. The transform
operation begins with the start symbol S. Consider the appli-
cation of R→ w to the variable xRy where x and y are ele-
ments of the set (N ∪ T)*. The resultant string and the deri-
vation operation is shown as xRy ⇒ xwy. Therefore, the
transform operation replaces the variable symbol in a given
string or structure with the right-hand side of the rule. We
extend the CFG formalism by adding probabilities to each
branch in the rule structure. That is, each rule of the form
[R,w] is now expressed as [R, (w,p)] where w is the right-
handside of the rule and p is the probability of using this
rule. Suppose that R has the form R→ w |α, where the prob-
ability of applying any of these two rules is 0.5. Then in our
representation, R is expressed as R→[w, 0.5] |[α, 0.5].

This extension enables us to check the accuracy of any
probabilistic branching of dynamic objects during model
execution. The following example illustrates the develop-
ment of an object-flow specification. During the system
analysis stage, the feasible flows of dynamic objects are
identified using the flow circulation diagrams (FCD) (Hill
1996) In FCD two categories of objects exist. The first
category represents the dynamic object flows by using ar-
rows. Each arrow is labeled by the dynamic object name
and the probability of taking this path. The other category
refers to the components (deep or shallow) that manipulate
and engage in activities with these flows and are repre-
sented by the circles.
8

Yilmaz

Figure 4 illustrates the packet flows in a subsection of
a global internet simulation model for USA using an FCD
developed during system analysis. This section provides a
simplified illustration of the flow of packets inside the Vir-
ginia state.

[packet,p2]

[packet,p3]

[packet,p5]

[packet,p4]

[packet,p7]

[packet,p8]

[packet,p6]

[packet,p9]

[packet,p10]

[packet,p11]

Entrance1

Entrance2

Entrance3

M
[Router]

UVA
[Router]

VT
[Router]

EXIT

Figure 4: Flow Circulation Diagram

The packets can enter into the VA component from any
of the three points: Entrance1, Entrance2, or Entrance3.
The packets entering into the VA component from En-
trance1 flow into the component M, which denotes the
main router. The packets ascending and showing at top of
component M move either towards the component denoted
by VT, to the component UVA, or to the Exit of the compo-
nent. The packets dropping at Entrance2 flow into UVA
component and then possibly to the Exit of the component.
Similarly, those packets dropping at Entrance3 move into
VT and then possibly to the Exit of the component unless
VT is their final destination.

The flow specification of the packet class for the VA
component is denoted by FSVA[packet]=(P, T, R, S). The la-
bel P denotes the set of place names. A place name is in
capital letters and can be a composite component, atomic
component, entrance point, or an exit point. The label T de-
notes the set of terminal places which are the places of de-
parture from the current component. The symbols in T are
represented in lower case letters. Those symbols eventually
refer to the component names visited during the flow of the
dynamic object. R denotes the set of rules that express the
flow constraints. Although each rule is associated with a
probability, we do not include it in our representation by as-
suming that each rule has equal probability. This also in-
creases the readbility and the clarity. However, we explain
the usage of the associated probabilities when we introduce
the flow sequence testing technique. Finally, S is the set of
places where the dynamic object can start its flow in the cur-
rent component. We begin developing the object-flow speci-

589
fication for dynamic objects belonging to the packet class,
starting from the VA component, as follows:

Let FSVA[packet]=(P, T, R, S) where
P={ENTRY,VA1,VA2,VA3,M,VT,UVA, EXIT},
T={m,vt,uva}
S={ENTRY} and
R is as follows:
ENTRY → VA1 | VA2 | VA3
VA1 → M
VA2 → UVA
VA3 → VT
M → (m . UVA | m . VT| m)
M → m. EXIT
VT → vt | vt . EXIT
UVA → uva | uva . EXIT

The above specification describes the permissible flow

sequences allowed in the VA submodel of the US internet
interconnection model. Rule 1 indicates that the dynamic
objects (i.e., packets) enter into the composite component
VA from three points, namely, VA1, VA2, and VA3. The
components entering from the first entry flow into main
router, called M. The packets are either routed to Univer-
sity of Virginia (UVA) or Virginia Tech (VT) model com-
ponents. In this example, for simplicity and clarity, we as-
sume all components are atomic. The packets entering
from second and third entry points flow into UVA and VT,
respectively, without using the main router. Packets arriv-
ing to UVA or VT components either reach their destina-
tions or move onto the EXIT.

3.1.2 Object Flow Precedence Specification

Flow precedences can be specified similar to flow se-
quences. Therefore, flow sequence and flow precedence
testing would be accomplished using the same testing tech-
nique. The following example illustrates the flow prece-
dence specification for a simple hypothetical model com-
ponent. Assume that we have developed an account
component as part of a large bank database model. An ac-
count can receive open, withdrawal, deposit, and close re-
quests from the user. We model each request as a separate
dynamic object in the model. As the request objects arrive
into appropriate account components, they engage into ac-
tivity with these account components and they update the
account component’s state. The permissible sequence of
requests are in the order of an open request, followed by
any number of withdraw and deposits, which are termi-
nated by a close request.

Let FPACCOUNT=(V, DO, R, S) be the flow precedence
specification for the account component. V denotes the set
of variable symbols that occur at the left-handside of each
rule. DO denotes the set of dynamic objects that drop into
the account component. R is the set of rules and S is the
start symbol in the specification. Based on this definitions

Yilmaz

the flow precedence for the account object can be specified
as follows:

V= {ACCOUNT, WD},
DO={open, deposit, withdrawal, close}
S= {ACCOUNT}, and
Rule Set R is as follows:
(1) ACCOUNT → open . WD . close
(2) WD → deposit . WD | deposit
(3) WD → withdrawal . WD | withdrawal

4 OBJECT FLOW TRACE DATA COLLECTION

In this section we describe the instrumentation process for
collecting flow trace data from the model. We illustrate the
instrumentation under the VSE platform. However, the
ideas explained here are generalizable and applicable to
other environments too. Here, we explain how the entities
can be instrumented using the VSE environment which is
used in substantiating the technique.

For the purpose of instrumentation we insert additional
methods and modify the logic specification of the methods
of dynamic objects and the components through which the
objects flow. Each dynamic object keeps a list that contains
the components that it visits throughout its lifetime. When
it arrives to a particular component where it is destroyed or
departed from the model, it writes this list to a flow trace
data file. Similarly static components, through which ob-
jects flow and engage into activity, keeps a list of dynamic
objects arrived.

As described above, each dynamic object keeps a list
of components that it visits as an instance variable defined
in its class declaration. When the dynamic object enters
into the model, EnteredModelatComponent message is sent
to the dynamic object to initialize its flow sequence list.
Then the dynamic object starts its flow in the model. When
the dynamic object arrives into a component, it sends the
dynamicobjectArrived message to the component passing
itself as the parameter. As the component receives the dy-
namicobjectArrived message it sends a message back to the
dynamic object to insert itself into dynamic object’s flow
sequence list. This is handled by the recordComponent
method of the dynamic object. The component also inserts
the type of the arriving object into its flow precedence list
for checking the correctness of the flow precedence se-
quence.

We also collect statistics to find the frequency that
flow paths are traversed. For example, a priory, in the
specification it is possible to associate each rule with the
probability of using it. If the simulation of the system pro-
vides data that this is not the case, then it would be appro-
priate to examine the rules in the specification or the model
implementation in more detail.

At the end of the model execution the flow trace data
file contains the flow sequence paths of dynamic objects
and the flow precedence list of each component. Each flow
590
path contains a sequence of strings denoting the names of
the components visited. The flow precedence list contains
the names of dynamic objects that visited the component.
Once the data is collected, all the flows are categorized
with respect to their classes (i.e., sorted with respect to
class names). The set of flow paths for a particular class is
fed into the flow testing algorithm and checked for con-
formance to its specification.

5 AUTOMATED COMPARISON OF TRACE
DATA AGAINST THE FLOW SPECIFICATION

In this section we propose a new dynamic and automated
testing technique that checks the conformance of the flow
paths obtained from the trace data with respect to the ob-
ject flow specification. The technique tries to match the
flow path to one of the feasible flow patterns that can be
derived from the specification.

Given a flow specification FSModel [DynamicObject] =
(P, T, R, S), the label P denotes the set of place names. A
place name is in capital letters and can be a compos-
ite/atomic component, entrance point, or an exit point. The
symbols in T are represented in lower case letters. Those
symbols eventually refer to the component names visited
during the flow of the dynamic object. R denotes the set of
rules that express the flows and S denotes the entry or start
symbol.

In order to facilitate a basis for testing we define two
types of flow paths:

• Partial Flow Path: A flow path, fp ∈ (P ∪ T)*, is

a partial flow path if it contains at least one sym-
bol from the set P.

• Complete Flow Path: A flow path, fp ∈ T*, is a
complete flow path.

Our testing technique continuously checks the compli-

ance of the flow path obtained from the model execution
with respect to the flow specification until a deviation oc-
curs or a complete flow path is reached. Each rule in the
specification transforms the initial variable, ENTRANCE,
until a complete flow path is derived. Similar to the deriva-
tion concept in the context-free grammar formalism, if the
derivation ransforms the first variable in a left-to-write
reading of the partial flow path we call this leftmost deriva-
tion. Our technique exploits this derivation structure to
provide a conformance checking procedure for flow paths
collected during the model execution.

Before discussing the technique, we introduce the pro-
cess of deriving a complete flow path from the given object
flow specification. The flow path can be obtained from the
specification by a derivation process that can be repre-
sented by a tree structure. We call the tree structure, gener-
ated by the flow path derivation process, a flow path tree.
The flow path tree is an ordered tree and is built iteratively

Yilmaz

as follows. The root of the tree is initialized with the start
variable (i.e., ENTRY point). If there exists a rule [Ri,
x1x2....xn] where xi is a member of (P ∪ T) and Ri is applied
in the derivation to a partial flow path of the form uRiv
then x1, x2, ..., xn are added as the children of Ri. The flow
path tree visualizes the derivation process described above.

composite component atomic component

A
B

D
c

Exit

a f

b g

d h

Figure 5: Hypothetical Object Flows

Existence of a flow path tree for a given flow path in-
dicates the conformance of the flow path to the object flow
specification. We demonstrate the flow path tree and flow
specification graph constructs using a simplified hypotheti-
cal example. In this simple flow scenario, depicted in Fig-
ure5 , the following flow constraints are assumed:

(1) A dynamic object can flow through A, B, C, and D
where A, B, and D are aggregate components and C is an
atomic component. (2) A dynamic object can flow through
A, B, and D and then continue flowing between B and D as
many times as necessary. (3) A dynamic object flowing
into A engages in activity with atomic component f and
then leaves the component A. (4) In components B and D a
dynamic object should flow into atomic components g and
h (respectively. (5) Finally, all the flows depart from the
exit section of the model.

Table 1: Object-Flow Constraints

(1) Entry → A (8) G → g. ExitB
(2) A → Entry A (9) ExitB → C | D
(3) EntryA → a . F (10) C → c . D
(4) F → f . ExitA (11) D → EntryD
(5) ExitA → B (12) D → d . H
(6) B → EntryB (13) H → h . ExitD
(7) EntryB → b . G (14) ExitD → B | Exit

(15) Exit → end.

 Note that the specifications for separate components
are combined to obtain aggregate flow specification for the
dynamic object from its arrival to its departure. The con-
straints that are mentioned above are expressed using the
flow specification as depicted in table 1.

Existence of a flow path tree, as shown in Figure 6, for
a traced flow path indicates the correctness of the flow path
591
with respect to the expected flow pattern depicted by the
specification. However, checking the existence of a flow
path tree is not trivial, since often there would be large
number of applicable rules at a particular time during the
derivation. When a rule reaches a dead-end, it would be
necessary to backtrack to previous choices and continue
rule applications until a complete flow path is achieved or
until all the rules are exhausted.

To provide a solution to this non trivial conformance
checking process we represent the leftmost derivations
from the flow specification by a labeled directed graph, as
shown in Figure 7, called the flow specification graph
(FSG). The nodes of the graph are the partial and complete
flow paths derivable from the specification starting from
the initial variable that denotes the top level component.
Our testing technique generates the FSG graph automati-
cally by dynamically extending it until all feasible paths in
the graph are checked or the complete flow path that is
traced from the model is obtained.

Let FS=(P, T, R, S) be a flow specification. The FSG for
this specification is a labeled graph, FSG=(N, E, R), where
the nodes and edges of the graph is defined as follows.

N={fp ∈ (P ∪ T)| S ⇒ fp by zero or more applications
of the rules in R} and E={[u, v, A] ∈ N x N x R | u ⇒ v by
the application of rule A}.

Thus the derivation of a flow path (partial or com-
plete) u from the top level rule (i.e., ENTRANCE) is repre-
sented by the path from ENTRANCE to u. Thus, the prob-
lem of deciding the conformance of a complete flow path
fp to the flow specification reduces to finding a path from
ENTRANCE to fp.

The relationship between the flow path tree and the
FSG for the hypothetical flow specification is shown in
Figure 7. In particular, we show the derivation path for the
sample flow pattern, “afbgcdh”, where a, b, c, d, f, g, h are
the names of the components in the model. The flow path
tree for the flow constraints depicted in Table 1 is shown in
Figure 6. The existence of a path from the starting rule to
the final complete flow path is an indicator of the existence
of a flow path tree for the given flow trace data. The proof
of this fact is beyond the scope of this paper.

The FSG of a flow specification can take many forms.
If there is only one derivation path for a given flow pattern,
then the form of the graph is tree. However, if there exists
more than one derivation path, then there exists a cycle in
the graph. The existence of a cycle in the flow specifica-
tion graph is an indicator of ambiguity in the specification.

Since the conformance checking problem is reduced to
finding a path in the FSG graph of the specification, we
perform a graph search operation as illustrated in Figure 8.
However, note that although the graph is locally finite, that
is, each node has finite number of incident nodes, the graph
itself can have infinitely many number of nodes. This is
due to the recurring patterns of flows and circular rules in
the specification.

Yilmaz

 Entry

A

EntryA

F

f ExitA

B

EntryB

b G

g ExitB

C D

c D EntryD

d H

ExitD h

B Exit

a

<end>

Figure 6: Flow Path Tree

Thus, the nodes of the graph are not constructed prior

to the testing algorithm. The testing algorithm, as shown in
Figure 8, builds the nodes of the graph as the paths are
examined. The algorithm incrementally constructs the FSG
and compares the flow path with respect to the paths exam-
ined in the graph. In order to facilitate backtracking in case
a dead-end or infeasible path is selected, a stack mecha-
nism is used to keep track of the choices made so far. The
technique constructs paths in the graph by applying the
rules to the leftmost variable in the partial flow path exam-
ined so far. The string u contains the component names and
is the prefix of the partial flow path uRiv. If the component
sequence stored in u does not occur in the flow path then
the algorithm reaches a dead-end and should backtrack to
an earlier path and choose another rule to continue examin-
ing the paths.

The rules are applied in the order they are numbered in
the flow specification.The algorithm consists of two loops.
The interior loop extends the current path by applying a
rule to the final node in the path. The loop terminates when
the unreachable condition holds (i.e., dead-end is reached)
or the most recently completed derivation obtains a com-
plete flow path which contains only the component names.
 When a dead-end is encountered the backtracking
mechanism starts by popping the stack. When the stack is
popped, the partial flow path at that node is restored and
the next applicable rule is applied to continue path con-
struction in the FSG. However, if the loop terminates due
to the derivation of a complete flow path the algorithm re-
turn the accept message indicating that the flow trace data
is correct.

59
Entry

A

EntryA

a . F

a . f . ExitA

a . f . B

a . f . EntryB

a . f . b . g. ExitB

a . f . b . g. C a . f . b .g . D

a . f . b .g . EntryD

a . f . b .g . d. H

a . f . b . g. c . d . h Dead End

Figure 7: Derived Flow Specification Graph

Flow Sequence/Precedence Testing Algorithm:
 Input: Flow specification FS=(V, C, R, TL)
 flow path fp and stack S
 ruleno=0;
 S.Push([TL,ruleno])
 repeat
 [current_path, ruleno]=S.Pop()
 unreachable=false
 repeat
 Let current_path=uRiv where Ri is the leftmost variable
 if u is not a prefix of f p then unreachable=true
 if there are no Ri rules numbered greater than ruleno then
 unreachable=true
 if not unreachable then
 Let Ri → w be the first rule with id > ruleno
 and let j be the id of this rule
 S.Push([current_path,j])
 current_path=concatenate(u,w,v)
 ruleno=0
 endif
 until (unreachable) or (current_path is a complete flow path)
 until current_path=fp or S.EMPTY()
 if current_path=fp then accept else reject
end.

Figure 8: Flow Sequence/Precedence Testing Algorithm

6 ASSESSMENT OF THE TESTING TECGNIQUE

In this section we assess our testing technique by arguing
about its error detecting capability. To illustrate, we show
the applicability of the technique on a sample simulation
model. The simulation model is seeded with specific types
2

Yilmaz

of errors and flow trace data is collected. Then we perform
automated object flow testing on the collected data.

We consider two main types of errors:

(1) Causal Flow Sequence Errors: The model is said

to have causal flow sequence error if there is a
deviation in the causal sequence of flows with re-
spect to the specification. For instance, the com-
ponent to which the dynamic object moves might
be a permissible component; however, it appears
in the flow trace in the wrong causal order. Fur-
thermore, the model is said to have causal flow
sequence error if there exists flows which are not
included in the flow specification. This may be
due to either model implementation error or in-
complete flow specification.

(2) Missing Flow Sequence Errors: The model is said
to have missing flow error if the executable model
does not generate flow traces that exercise the
flow patterns specified in the flow specification.
This may be due to missing flows in the model
implementation. That is, some object flows that
are feasible in the real world domain are not im-
plemented in the computerized model.

Our technique catches all possible flow sequence er-

rors in the model. However, to catch missing flow se-
quence errors it is necessary to enforce coverage criteria on
the specifications. That is, flow trace data collection con-
tinues until the specification is covered to some certain de-
gree by the flow traces obtained from the model execution.
If the coverage criteria is not fulfilled after certain number
of replications model tester analyzes the model statically to
find the missing flows by checking the sections of the
model that are not covered according to the coverage crite-
ria. We define coverage criteria on the FCG and FSG rep-
resentations. There are three criteria.

(1) FCG Node Coverage: All the nodes in the FCG

should be covered. Since the nodes of FCG refer
to the rules in the flow specification this coverage
criteria requires the application of each rule at
least once. Node coverage criteria is analogous to
statement coverage in structural testing.

(2) FCG Edge Coverage: All the edges in the FCG
should be covered. Since the edges refer to links
among rules, this criteria requires all interactions
among incident rules to be covered. This criteria
is analogous to branch coverage criteria of struc-
tural testing.

(3) FSG Node Coverage: The FSG node coverage cri-
teria requires the coverage of all possible causal
sequences to be checked. Although, the specifica-
tion graph is locally finite, there can be infinitely
many paths in the graph due to circularity in the
593
specification. That is, specifying recurring pat-
terns of flows requires rules which reference
themselves. Thus in a sense FSG node coverage is
similar to path coverage in structural testing.

7 CONCLUSIONS

One of the fundamental conceptual frameworks, also called
simulation strategy or formalism, of discrete-event simula-
tion is the process interaction world-view. Process interac-
tion framework enables a modeler to describe the life-cycle
of an object that moves through the processes to engage in
activities required by the system under study. The object-
flow testing technique, introduced in this paper, outlines a
new V&V approach that is particularly applicable to dy-
namic process interaction based discrete-event simulation
models. The technique is based on a new innovative
method used to specify and verify the expected flow pat-
terns of the objects that engage in activities with the proc-
esses of the system under study. Therefore, the method is
applicable to all models that has dynamic objects or trans-
actions that flow through the model components. We have
described the overall methodology for the application of
the technique, the necessary formalisms and associated
validation decision procedures, and the error detecting ca-
pability of the approach. Causal flow sequence and missing
flow detection are the primary types of errors detected by
the technique. Three coverage criteria are discussed to de-
termine the conformance of the model with respect to ex-
pected/existing system flow patterns depicted by flow pat-
tern specifications.

ACKNOWLEDGMENTS

The research leading to this paper is performed by the au-
thor while he was affiliated with the Simulation and Soft-
ware Laboratory of Computer Science department at Vir-
ginia Tech. The author wishes to acknowledge the
comments of Dr. Balci, whose suggestions facilitated the
utilization of Visual Simulation Environment (VSE) as a
testbed for this testing technique.

REFERENCES

Balci O. (1988) “The Implementation of Four Conceptual
Frameworks for Simulation Modeling in High Level
Languages,” In Proceedings of the 1988 WSC.

Hill, R. C. D. (1996). Object-Oriented Analysis and Simu-
lation. First Edition, Addison Wesley.

Hopcroft and Ullman (1979). Introduction to Automata
Theory: Languages and Computation.

Swisher, J.R., B. Jun, S.H. Jacobson, and O. Balci (1997),
“Simulation of the Queston Physician Network,” In
Proceedings of the 1997 Winter Simulation Confer-
ence, IEEE, Piscataway, NJ, pp. 1146-1154.

Yilmaz

Yilmaz L. and O. Balci (1997). “Object-Oriented Simula-

tion Model Verification and Validation,” In Proceed-
ings of the 1997 Summer Computer Simulation Con-
ference. July 13-17, 1997.

Yilmaz L. (1998). “A Taxonomical Review of Object-
Oriented Simulation Model Verification and Valida-
tion Techniques,” Technical Report TR-98-6. Depart-
ment of Computer Science, Virginia Polytechnic Insti-
tute and State University, Blacksburg, Va. (March).

AUTHOR BIOGRAPHY

LEVENT YILMAZ is a senior research engineer at the
Simulation and Software Division of Trident Systems In-
corporated. He received a B.S degree in Computer Engi-
neering and Information Science from Bilkent University
and M.S. degree in Computer Science from Virginia Poly-
technic Institute and State University, where he is currently
completing his Ph.D. His research focuses on simulation
model interoperability and the verification, validation and
testing of object-oriented and component-based models.
Mr. Yilmaz has recently worked as a PI or co-PI for sev-
eral NavSea and NavAir V&V business innovation re-
search projects and provided services as an IV&V contrac-
tor. Mr. Yilmaz is a member of ACM, IEEE Computer
Society, SCS, and Upsilon Pi Epsilon.
594

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

