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ABSTRACT 

This paper deals with the assessment of accuracy of simu-
lation models from the perspective of dynamic object 
flows. Dynamic objects (also called temporary entities or 
transactions) move physically or logically from one model 
component to another and represent entities such as air-
craft, data packet, passenger, and vehicle. Accurate flow 
(movement) of thousands or millions of dynamic objects 
within a complex simulation model significantly affects the 
overall model validity. We present a new automated testing 
technique for assessing the accuracy of dynamic object 
flows. The permissible sequence and precedence of dy-
namic object flows are specified using the context-free 
grammar formalism. The specification accuracy is assessed 
using a variety of verification and validation techniques. 
The executable model is instrumented and dynamic object 
flow trace data is generated. The trace data is automatically 
compared with respect to the specification and each dy-
namic object movement traced during model execution is 
automatically verified. 

1 INTRODUCTION 

The quality of a simulation model is assessed by using in-
dicators such as accuracy, complexity, ease of use, execu-
tion efficiency, maintainability, reusability, and portability. 
This paper focuses on the assessment of simulation model 
accuracy. Verification, validation, testing, and accredita-
tion activities primarily deal with the assessment of accu-
racy of simulation models.  

Model verification is substantiating that the model is 
transformed from one form into another, as intended, with 
sufficient accuracy.  Model verification deals with building 
the model right. Model validation is substantiating that the 
model, within its domain of applicability, behaves with 
satisaccuracy consistent with the simulation project objec-
tives (Yilmaz 1998; Yilmaz and Balci 1997). Model vali-
dation deals with building the right model. Model testing is 
ascertaining whether inaccuracies or errors exist in the 
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model. In model testing, the model is subjected to test data 
or test cases to determine if it functions properly. A test is 
devised and testing is conducted to perform either valida-
tion or verification or both. Some tests are devised to 
evaluate the behavioral accuracy (i.e., validity) of the 
model, and some tests are intended to judge the accuracy 
of model transformation from one form into another (veri-
fication). Accreditation is “the official certification that a 
model or simulation is acceptable for use for a specific 
purpose.’’ (DOD Directive 5000.59). 

Many different views (e.g., control flow, data flow, 
structural) exist for testing model accuracy. More than 100 
techniques proposed in the literature (Yilmaz and Balci 
1997) describe these views. In this paper, we take the view 
of dynamic object flows (movements) in assessing model 
accuracy. A dynamic object (also called temporary entity 
or transaction) is an element of interest which moves 
physically or logically from one model component to an-
other. It represents entities such as missile, patient, satel-
lite, and ship. A complex simulation model may contain 
thousands or millions of dynamic objects and the accuracy 
of their movements significantly affects the overall model 
validity.  

This paper is organized as follows. After an introduc-
tion in Section 1, Section 2 defines dynamic object flow se-
quence and precedence, and describes major stages of the 
proposed testing technique. Section 3 describes how dy-
namic object flows are specified based on context-free 
grammar formalism. Instrumentation of the executable 
model and generation of object flow trace data are presented 
in Section 4. Section 5 describes how the trace data are auto-
matically compared with respect to the specification to judge 
the accuracy of dynamic object movements. Applicability of 
the testing technique is illustrated in Section 6 by some ex-
amples. Conclusions are stated in Section 7.  

2 OVERVIEW OF THE TESTING TECHNIQUE 

The proposed testing technique is intended to assess the 
accuracy of simulation models from the perspective of dy-
namic object flows. Successful application of the testing 
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technique does not imply overall model validity but helps 
us increase our confidence in model accuracy in terms of 
dynamic object movements. Accurate movements of thou-
sands or millions of dynamic objects within a complex 
simulation model significantly affects the overall model 
validity. 

2.1 Process Interaction World-View 

One of the fundamental conceptual frameworks, also called 
simulation strategy or formalism, of discrete-event simula-
tion is the process interaction world-view. Process interac-
tion framework enables a modeler to describe the life-cycle 
of an object that moves through the processes to engage in 
activities required by the system under study. (Balci 1988) 
provides a comprehensive review as well as implementation 
details of this simulation formalism and strategy, for which 
the developed testing technique is directly applicable. 

2.2 Object-Flow Sequence and Precedence 

Object flow sequence is defined as the sequential move-
ment in space or time of a dynamic object throughout its 
lifetime in a simulation model. The sequence can be either 
repeating or terminating. A repeating sequence represents 
the flow of those dynamic objects that circulate within the 
model. A terminating sequence represents the flow of those 
dynamic objects that are destroyed at some point during 
model execution.  

For example, in the clinic visual simulation shown in 
Figure 1, medical staff members (doctor, physician assis-
tant, nurse, nurse practitioner) are created at time zero and 
the sequence of their movements in-between the rooms is 
repeated throughout the simulation. On the other hand, the 
patient flow sequences are terminating. Patients arrive ran-
domly and after receiving service they leave the clinic (i.e., 
they are destroyed). Object flow precedence is defined as 
the flow ordering of dynamic objects within a particular 
model component. For example, in the clinic visual simula-
tion in Figure 1, object flow precedence represents order-
ing of dynamic object movements such as (a) patient must 
move into an examination room before a medical staff 
member can enter into the room, (b) movement of patient 
to the receptionist must happen before the patient’s move-
ment to the check-in room that must be followed by a 
movement to any one of the examination rooms, and (c) a 
medical staff member must move to the medical staff room 
upon completion of examination and before moving in a 
new check-in or examination room to provide another ser-
vice (Swisher et al. 1997). 

2.3 Major Stages of the Testing Technique 

Major stages of the automated object flow testing tech-
nique are shown in Figure 2. During the system analy-
587
sis/investigation process, the system boundary is identified 
and the study objectives are explicitly defined. As part of 
this process, the testing technique requires the formal 
specification of permissible sequences and precedences of 
dynamic object movements to be included in the model 
representation. The formal specification is provided using 
the context-free grammar (CFG) formalism (Hopcroft and 
Ullman 1979) and is described in Section 3.1. 
 

 
 

Figure 1: Dynamic Object Flows in a Clinic Model 
 

The formal object flow specification must be verified 
and validated since it is the point of reference for judging 
the model validity with respect to the dynamic object 
flows. As the model development progresses, the object 
flow specification may be modified in view of new model 
representation requirements.  

Once the executable simulation model is created, it is 
instrumented to generate dynamic object flow trace data 
(Section 4) in a format required by the technique. The trace 
data is automatically compared with respect to the specifi-
cation and each dynamic object movement traced during 
model execution is automatically verified as described in 
Section 5. 

3 OBJECT-FLOW SPECIFICATION 

A simulation model is commonly structured as a hierarchi-
cal decomposition of components as shown in Figure 3. 
Components can be composite or atomic. An atomic com-
ponent does not contain other components. A composite 
component consists of other atomic and/or composite 
components. A dynamic object, during its flow through the 
model components, drops into a deep component, interacts 
and engages in activities with atomic/composite objects in 
that component, and then ascends to the parent component. 
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Figure 2: Automated Object Flow Testing Technique 
 
For example, consider a simulation model of the inter-

net in the US. The US map would be the top-level compo-
nent decomposed into, e.g., virginia, texas, california. Vir-
ginia component could be decomposed into Virginia Tech 
campus, which is decomposed into computer science de-
partment network of host computers. An electronic mail 
message (a dynamic object) ascends from a host computer 
to the campus component, from which it flows into to Vir-
ginia state component, followed by an ascend operation to 
the top-level component. Then the dynamic object moves 
and drops into the California component, followed by a 
movement into the Stanford University component. In this 
component, the packet moves to local area network com-
ponent to reach its destination host computer. This is an 
example of how a dynamic object flows through the model 
from one component to another. We propose to represent 
such object flows by using the Context-Free Grammar 
(CFG) formalism. CFG is used for a diverse set of prob-
lems in areas such as concurrent systems, databases, pro-
gramming languages, and incremental compilers. 

3.1 Object Flow Specification based on the  
Context-Free Grammar Formalism 

In this section we explain how object flow sequences and 
precedences are specified using the context-free grammar 
formalism. The process of modular flow/precedence speci-
fication is illustrated using simple examples. 

3.1.1 Object Flow Sequence Specification 

A context-free grammar is a quadruple (N, T, P, S) where 
N is a finite set of variables, T is a finite set of terminal 
symbols, P is the set of rules, S is a special variable of N 
called the start symbol. The sets N and T are disjoint. The 
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rules of a grammar consist of elements of the set. The rule 
[R,w] is also written as R→ w. A rule of this form is also 
called an R rule. As a convention, the terminal symbols are 
denoted by lowercase letters or strings. The variable sym-
bols (non-terminal symbols) are denoted by capital letters 
or strings. 
 

 

Figure 3: Hierarchical Model Decomposition 
 

Grammars are generally used to generate properly 
formed structures or strings over the prescribed alphabet T. 
The basic step in generation of a well formed structure is the 
application of a rule to transform a structure. The transform 
operation begins with the start symbol S. Consider the appli-
cation of R→ w to the variable xRy where x and y are ele-
ments of the set (N ∪ T)*. The resultant string and the deri-
vation operation is shown as xRy ⇒ xwy. Therefore, the 
transform operation replaces the variable symbol in a given 
string or structure with the right-hand side of the rule. We 
extend the CFG formalism by adding probabilities to each 
branch in the rule structure. That is, each rule of the form 
[R,w] is now expressed as [R, (w,p)] where w is the right-
handside of the rule and p is the probability of using this 
rule. Suppose that R has the form R→ w |α, where the prob-
ability of applying any of these two rules is 0.5. Then in our 
representation, R is expressed as R→[w, 0.5] |[α, 0.5]. 

This extension enables us to check the accuracy of any 
probabilistic branching of dynamic objects during model 
execution. The following example illustrates the develop-
ment of an object-flow specification. During the system 
analysis stage, the feasible flows of dynamic objects are 
identified using the flow circulation diagrams (FCD) (Hill 
1996) In FCD two categories of objects exist. The first 
category represents the dynamic object flows by using ar-
rows. Each arrow is labeled by the dynamic object name 
and the probability of taking this path. The other category 
refers to the components (deep or shallow) that manipulate 
and engage in activities with these flows and are repre-
sented by the circles.  
8
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Figure 4 illustrates the packet flows in a subsection of 
a global internet simulation model for USA using an FCD 
developed during system analysis. This section provides a 
simplified illustration of the flow of packets inside the Vir-
ginia state.  
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Figure 4: Flow Circulation Diagram 
 

The packets can enter into the VA component from any 
of the three points: Entrance1, Entrance2, or Entrance3. 
The packets entering into the VA component from En-
trance1 flow into the component M, which denotes the 
main router. The packets ascending and showing at top of 
component M move either towards the component denoted 
by VT, to the component UVA, or to the Exit of the compo-
nent. The packets dropping at Entrance2 flow into UVA 
component and then possibly to the Exit of the component. 
Similarly, those packets dropping at Entrance3 move into 
VT and then possibly to the Exit of the component unless 
VT is their final destination. 

The flow specification of the packet class for the VA 
component is denoted by FSVA[packet]=(P, T, R, S). The la-
bel P denotes the set of place names. A place name is in 
capital letters and can be a composite component, atomic 
component, entrance point, or an exit point. The label T de-
notes the set of terminal places which are the places of de-
parture from the current component. The symbols in T are 
represented in lower case letters. Those symbols eventually 
refer to the component names visited during the flow of the 
dynamic object. R denotes the set of rules that express the 
flow constraints. Although each rule is associated with a 
probability, we do not include it in our representation by as-
suming that each rule has equal probability. This also in-
creases the  readbility and the clarity. However, we explain 
the usage of the associated probabilities when we introduce 
the flow sequence testing technique. Finally, S is the set of 
places where the dynamic object can start its flow in the cur-
rent component. We begin developing the object-flow speci- 
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fication for dynamic objects belonging to the packet class, 
starting from the VA component, as follows: 
 

Let FSVA[packet]=(P, T, R, S) where 
P={ENTRY,VA1,VA2,VA3,M,VT,UVA, EXIT}, 
T={m,vt,uva} 
S={ENTRY} and 
R is as follows: 
ENTRY → VA1 | VA2 | VA3 
VA1 → M 
VA2 → UVA 
VA3 → VT 
M → (m . UVA | m . VT| m) 
M → m. EXIT 
VT →  vt | vt . EXIT 
UVA →  uva | uva . EXIT 

 
The above specification describes the permissible flow 

sequences allowed in the VA submodel of the US internet 
interconnection model. Rule 1 indicates that the dynamic 
objects (i.e., packets) enter into the composite component 
VA from three points, namely, VA1, VA2, and VA3. The 
components entering from the first entry flow into main 
router, called M. The packets are either routed to Univer-
sity of Virginia (UVA) or Virginia Tech (VT) model com-
ponents. In this example, for simplicity and clarity, we as-
sume all components are atomic. The packets entering 
from second and third entry points flow into UVA and VT, 
respectively, without using the main router. Packets arriv-
ing to UVA or VT components either reach their destina-
tions or move onto the EXIT. 

3.1.2 Object Flow Precedence Specification 

Flow precedences can be specified similar to flow se-
quences. Therefore, flow sequence and flow precedence 
testing would be accomplished using the same testing tech-
nique. The following example illustrates the flow prece-
dence specification for a simple hypothetical model com-
ponent. Assume that we have developed an account 
component as part of a large bank database model. An ac-
count can receive open, withdrawal, deposit, and close re-
quests from the user. We model each request as a separate 
dynamic object in the model. As the request objects arrive 
into appropriate account components, they engage into ac-
tivity with these account components and they update the 
account component’s state. The permissible sequence of 
requests are in the order of an open request, followed by 
any number of withdraw and deposits, which are termi-
nated by a close request. 

Let FPACCOUNT=(V, DO, R, S) be the flow precedence 
specification for the account component. V denotes the set 
of variable symbols that occur at the left-handside of each 
rule. DO denotes the set of dynamic objects that drop into 
the account component. R is the set of rules and S is the 
start symbol in the specification. Based on this definitions  
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the flow precedence for the account object can be specified 
as follows: 
 

V=   {ACCOUNT, WD}, 
DO={open, deposit, withdrawal, close} 
S=   {ACCOUNT}, and  
Rule Set R is as follows:  
(1) ACCOUNT → open . WD . close 
(2) WD → deposit . WD | deposit 
(3) WD → withdrawal . WD | withdrawal 

4 OBJECT FLOW TRACE DATA COLLECTION 

In this section we describe the instrumentation process for 
collecting flow trace data from the model. We illustrate the 
instrumentation under the VSE platform. However, the 
ideas explained here are generalizable and applicable to 
other environments too. Here, we explain how the entities 
can be instrumented using the VSE environment which is 
used in substantiating the technique. 

For the purpose of instrumentation we insert additional 
methods and modify the logic specification of the methods 
of dynamic objects and the components through which the 
objects flow. Each dynamic object keeps a list that contains 
the components that it visits throughout its lifetime. When 
it arrives to a particular component where it is destroyed or 
departed from the model, it writes this list to a flow trace 
data file. Similarly static components, through which ob-
jects flow and engage into activity, keeps a list of dynamic 
objects arrived.  

As described above, each dynamic object keeps a list 
of components that it visits as an instance variable defined 
in its class declaration. When the dynamic object enters 
into the model, EnteredModelatComponent message is sent 
to the dynamic object to initialize its flow sequence list. 
Then the dynamic object starts its flow in the model. When 
the dynamic object arrives into a component, it sends the 
dynamicobjectArrived message to the component passing 
itself as the parameter. As the component receives the dy-
namicobjectArrived message it sends a message back to the 
dynamic object to insert itself into dynamic object’s flow 
sequence list. This is handled by the recordComponent 
method of the dynamic object. The component also inserts 
the type of the arriving object into its flow precedence list 
for checking the correctness of the flow precedence se-
quence. 

We also collect statistics to find the frequency that 
flow paths are traversed. For example, a priory, in the 
specification it is possible to associate each rule with the 
probability of using it. If the simulation of the system pro-
vides data that this is not the case, then it would be appro-
priate to examine the rules in the specification or the model 
implementation in more detail.  

At the end of the model execution the flow trace data 
file contains the flow sequence paths of dynamic objects 
and the flow precedence list of each component. Each flow 
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path contains a sequence of strings denoting the names of 
the components visited. The flow precedence list contains 
the names of dynamic objects that visited the component. 
Once the data is collected, all the flows are categorized 
with respect to their classes (i.e., sorted with respect to 
class names). The set of flow paths for a particular class is 
fed into the flow testing algorithm and checked for con-
formance to its specification. 

5 AUTOMATED COMPARISON OF TRACE 
DATA AGAINST THE FLOW SPECIFICATION 

In this section we propose a new dynamic and automated 
testing technique that checks the conformance of the flow 
paths obtained from the trace data with respect to the ob-
ject flow specification. The technique tries to match the 
flow path to one of the feasible flow patterns that can be 
derived from the specification.  

Given a flow specification FSModel [DynamicObject] = 
(P, T, R, S), the label P denotes the set of place names. A 
place name is in capital letters and can be a compos-
ite/atomic component, entrance point, or an exit point. The 
symbols in T are represented in lower case letters. Those 
symbols eventually refer to the component names visited 
during the flow of the dynamic object. R denotes the set of 
rules that express the flows and S denotes the entry or start 
symbol.  

In order to facilitate a basis for testing we define two 
types of flow paths: 

 
• Partial Flow Path: A flow path, fp ∈ (P ∪ T)*, is 

a partial flow path if it contains at least one sym-
bol from the set P. 

• Complete Flow Path: A flow path, fp ∈ T*, is a 
complete flow path. 

 
Our testing technique continuously checks the compli-

ance of the flow path obtained from the model execution 
with respect to the flow specification until a deviation oc-
curs or a complete flow path is reached. Each rule in the 
specification transforms the initial variable, ENTRANCE, 
until a complete flow path is derived. Similar to the deriva-
tion concept in the context-free grammar formalism, if the 
derivation ransforms the first variable in a left-to-write 
reading of the partial flow path we call this leftmost deriva-
tion. Our technique exploits this derivation structure to 
provide a conformance checking procedure for flow paths 
collected during the model execution.  

Before discussing the technique, we introduce the pro-
cess of deriving a complete flow path from the given object 
flow specification. The flow path can be obtained from the 
specification by a derivation process that can be repre-
sented by a tree structure. We call the tree structure, gener-
ated by the flow path derivation process, a flow path tree.  
The flow path tree is an ordered tree and is built iteratively 
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as follows. The root of the tree is initialized with the start 
variable (i.e., ENTRY point). If there exists a rule [Ri, 
x1x2....xn] where xi is a member of (P ∪ T) and Ri is applied 
in the derivation to a partial flow path of the form uRiv 
then x1, x2, ..., xn are added as the children of Ri. The flow 
path tree visualizes the derivation process described above.  

 
composite component atomic component

A
B

D
c

Exit

a f

b g

d h

 
 

Figure 5: Hypothetical Object Flows 
 

Existence of a flow path tree for a given flow path in-
dicates the conformance of the flow path to the object flow 
specification. We demonstrate the flow path tree and flow 
specification graph constructs using a simplified hypotheti-
cal example. In this simple flow scenario, depicted in Fig-
ure5 , the following flow constraints are assumed:  

(1) A dynamic object can flow through A, B, C, and D 
where A, B, and D are aggregate components and C is an 
atomic component. (2) A dynamic object can flow through 
A, B, and D and then continue flowing between B and D as 
many times as necessary. (3) A dynamic object flowing 
into A engages in activity with atomic component f and 
then leaves the component A. (4) In components B and D a 
dynamic object should flow into atomic components g and 
h (respectively. (5) Finally, all the flows depart from the 
exit section of the model. 

 
Table 1: Object-Flow Constraints 

(1) Entry → A  (8)  G → g. ExitB  
(2) A → Entry A (9)  ExitB → C | D 
(3) EntryA → a . F (10) C → c . D 
(4) F → f . ExitA (11) D → EntryD 
(5) ExitA → B (12) D → d . H 
(6) B → EntryB (13) H → h . ExitD 
(7) EntryB → b . G (14) ExitD → B | Exit 

(15) Exit → end. 
 
 Note that the specifications for separate components 
are combined to obtain aggregate flow specification for the 
dynamic object from its arrival to its departure. The con-
straints that are mentioned above are expressed using the 
flow specification as depicted in table 1. 

Existence of a flow path tree, as shown in Figure 6, for 
a traced flow path indicates the correctness of the flow path 
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with respect to the expected flow pattern depicted by the 
specification. However, checking the existence of a flow 
path tree is not trivial, since often there would be large 
number of applicable rules at a particular time during the 
derivation. When a rule reaches a dead-end, it would be 
necessary to backtrack to previous choices and continue 
rule applications until a complete flow path is achieved or 
until all the rules are exhausted.  

To provide a solution to this non trivial conformance 
checking process we represent the leftmost derivations 
from the flow specification by a labeled directed graph, as 
shown in Figure 7, called the flow specification graph 
(FSG). The nodes of the graph are the partial and complete 
flow paths derivable from the specification starting from 
the initial variable that denotes the top level component. 
Our testing technique generates the FSG graph automati-
cally by dynamically extending it until all feasible paths in 
the graph are checked or the complete flow path that is 
traced from the model is obtained. 

Let FS=(P, T, R, S) be a flow specification. The FSG for 
this specification is a labeled graph, FSG=(N, E, R), where 
the nodes and edges of the graph is defined as follows. 

N={fp ∈ (P ∪ T)| S ⇒ fp by zero or more applications 
of the rules in R} and E={[u, v, A] ∈ N x N x R | u ⇒ v by 
the application of rule A}. 

Thus the derivation of a flow path (partial or com-
plete) u from the top level rule (i.e., ENTRANCE) is repre-
sented by the path from ENTRANCE to u. Thus, the prob-
lem of deciding the conformance of a complete flow path 
fp to the flow specification reduces to finding a path from 
ENTRANCE to fp.  

The relationship between the flow path tree and the 
FSG for the hypothetical flow specification is shown in 
Figure 7. In particular, we show the derivation path for the 
sample flow pattern, “afbgcdh”, where a, b, c, d, f, g, h are 
the names of the components in the model. The flow path 
tree for the flow constraints depicted in Table 1 is shown in 
Figure 6. The existence of a path from the starting rule to 
the final complete flow path is an indicator of the existence 
of a flow path tree for the given flow trace data. The proof 
of this fact is beyond the scope of this paper. 

The FSG of a flow specification can take many forms. 
If there is only one derivation path for a given flow pattern, 
then the form of the graph is tree. However, if there exists 
more than one derivation path, then there exists a cycle in 
the graph. The existence of a cycle in the flow specifica-
tion graph is an indicator of ambiguity in the specification.  

Since the conformance checking problem is reduced to 
finding a path in the FSG graph of the specification, we 
perform a graph search operation as illustrated in Figure 8. 
However, note that although the graph is locally finite, that 
is, each node has finite number of incident nodes, the graph 
itself can have infinitely many number of nodes. This is 
due to the recurring patterns of flows and circular rules in 
the specification.  
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Figure 6: Flow Path Tree 
 
Thus, the nodes of the graph are not constructed prior 

to the testing algorithm. The testing algorithm, as shown in 
Figure 8, builds the nodes of the graph as the paths are 
examined. The algorithm incrementally constructs the FSG 
and compares the flow path with respect to the paths exam-
ined in the graph. In order to facilitate backtracking in case 
a dead-end or infeasible path is selected, a stack mecha-
nism is used to keep track of the choices made so far. The 
technique constructs paths in the graph by applying the 
rules to the leftmost variable in the partial flow path exam-
ined so far. The string u contains the component names and 
is the prefix of the partial flow path uRiv. If the component 
sequence stored in u does not occur in the flow path then 
the algorithm reaches a dead-end and should backtrack to 
an earlier path and choose another rule to continue examin-
ing the paths. 

The rules are applied in the order they are numbered in 
the flow specification.The algorithm consists of two loops. 
The interior loop extends the current path by applying a 
rule to the final node in the path. The loop terminates when 
the unreachable condition holds (i.e., dead-end is reached) 
or the most recently completed derivation obtains a com-
plete flow path which contains only the component names.  
 When a dead-end is encountered the backtracking 
mechanism starts by popping the stack. When the stack is 
popped, the partial flow path at that node is restored and 
the next applicable rule is applied to continue path con-
struction in the FSG. However, if the loop terminates due 
to the derivation of a complete flow path the algorithm re-
turn the accept message indicating that the flow trace data 
is correct. 
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Figure 7: Derived Flow Specification Graph 
 

   
Flow Sequence/Precedence Testing Algorithm: 
  Input:   Flow specification FS=(V, C, R, TL) 
                     flow path fp and stack S 
            ruleno=0; 
           S.Push([TL,ruleno]) 
           repeat 
                 [current_path, ruleno]=S.Pop() 
                 unreachable=false 
                 repeat 
                       Let current_path=uRiv where Ri is the leftmost variable 
                         if u is not a prefix of f p then unreachable=true 
                         if there are no Ri rules numbered greater than ruleno then  
                             unreachable=true 
                         if not unreachable then 
                              Let  Ri → w be the first rule with id > ruleno  
                                                  and let j be the id of this rule 
                              S.Push([current_path,j]) 
                              current_path=concatenate(u,w,v) 
                              ruleno=0 
                        endif 
             until (unreachable) or (current_path is a complete flow path) 
      until current_path=fp or S.EMPTY() 
      if current_path=fp then accept else reject 
end. 
 

Figure 8: Flow Sequence/Precedence Testing Algorithm 

6 ASSESSMENT OF THE TESTING TECGNIQUE 

In this section we assess our testing technique by arguing 
about its error detecting capability. To illustrate, we show 
the applicability of the technique on a sample simulation 
model. The simulation model is seeded with specific types 
2
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of errors and flow trace data is collected. Then we perform 
automated object flow testing on the collected data.  

We consider two main types of errors: 
 
(1)  Causal Flow Sequence Errors: The model is said 

to have causal flow sequence error if there is a 
deviation in the causal sequence of flows with re-
spect to the specification. For instance, the com-
ponent to which the dynamic object moves might 
be a permissible component; however, it appears 
in the flow trace in the wrong causal order. Fur-
thermore, the model is said to have causal flow 
sequence error if there exists flows which are not 
included in the flow specification. This may be 
due to either model implementation error or in-
complete flow specification. 

(2)  Missing Flow Sequence Errors: The model is said 
to have missing flow error if the executable model 
does not generate flow traces that exercise the 
flow patterns specified in the flow specification. 
This may be due to missing flows in the model 
implementation. That is, some object flows that 
are feasible in the real world domain are not im-
plemented in the computerized model.  

 
Our technique catches all possible flow sequence er-

rors in the model. However, to catch missing flow se-
quence errors it is necessary to enforce coverage criteria on 
the specifications. That is, flow trace data collection con-
tinues until the specification is covered to some certain de-
gree by the flow traces obtained from the model execution. 
If the coverage criteria is not fulfilled after certain number 
of replications model tester analyzes the model statically to 
find the missing flows by checking the sections of the 
model that are not covered according to the coverage crite-
ria. We define coverage criteria on the FCG and FSG rep-
resentations. There are three criteria. 

 
(1)  FCG Node Coverage: All the nodes in the FCG 

should be covered. Since the nodes of FCG refer 
to the rules in the flow specification this coverage 
criteria requires the application of each rule at 
least once. Node coverage criteria is analogous to 
statement coverage in structural testing.  

(2)  FCG Edge Coverage: All the edges in the FCG 
should be covered. Since the edges refer to links 
among rules, this criteria requires all interactions 
among incident rules to be covered. This criteria 
is analogous to branch coverage criteria of struc-
tural testing. 

(3)  FSG Node Coverage: The FSG node coverage cri-
teria requires the coverage of all possible causal 
sequences to be checked. Although, the specifica-
tion graph is locally finite, there can be infinitely 
many paths in the graph due to circularity in the 
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specification. That is, specifying recurring pat-
terns of flows requires rules which reference 
themselves. Thus in a sense FSG node coverage is 
similar to path coverage in structural testing. 

7 CONCLUSIONS 

One of the fundamental conceptual frameworks, also called 
simulation strategy or formalism, of discrete-event simula-
tion is the process interaction world-view. Process interac-
tion framework enables a modeler to describe the life-cycle 
of an object that moves through the processes to engage in 
activities required by the system under study. The object-
flow testing technique, introduced in this paper, outlines a 
new V&V approach that is particularly applicable to dy-
namic process interaction based discrete-event simulation 
models. The technique is based on a new innovative 
method used to specify and verify the expected flow pat-
terns of the objects that engage in activities with the proc-
esses of the system under study. Therefore, the method is 
applicable to all models that has dynamic objects or trans-
actions that flow through the model components. We have 
described the overall methodology for the application of 
the technique, the necessary formalisms and associated 
validation decision procedures, and the error detecting ca-
pability of the approach. Causal flow sequence and missing 
flow detection are the primary types of errors detected by 
the technique. Three coverage criteria are discussed to de-
termine the conformance of the model with respect to ex-
pected/existing system flow patterns depicted by flow pat-
tern specifications.  
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