
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

RESOURCE GRAPHS FOR MODELING LARGE-SCALE, HIGHLY CONGESTED SYSTEMS

Paul Hyden

Department of Mathematical Sciences
O-309 Martin Hall

Clemson University
Clemson, SC 29634-0975, U.S.A.

 Lee Schruben
Theresa Roeder

Department of Industrial Engineering

and Operations Research
University of California at Berkeley

4135 Etcheverry Hall
Berkeley, CA 94720-1777, U.S.A.

ABSTRACT

Simulations often execute too slowly to be effective tools
for decision-making. In particular, this problem has been
found in semiconductor manufacturing where conventional
job-driven simulation models explicitly track each lot of
wafers as it progresses through the system. While a job-
driven simulation model offers some advantages, they
inherently execute slowly. This paper explicitly defines
resource-driven modeling. Here jobs are implicitly tracked
through their resource usage. Resource-driven simulations
typically run much faster than job-driven simulations. This
speed-up is insensitive to congestion and is most dramatic
when the system is highly congested and therefore most
interesting to the analyst. There can also be a significant
reduction in memory footprint. However, there is a
potential tradeoff in information loss.

1 INTRODUCTION

Most conventional simulation software packages are
designed around a job-driven approach. Here jobs are
modeled as active system entities while system resources
are passive. Describing how jobs move through their
processing steps, seizing available resources whenever
they are needed, creates the simulation model. Records of
every step of every job in the system are created and
maintained. Therefore, the speed and space complexity of
these simulations must be at least on the order of some
polynomial of the number of active jobs in the model. Job-
driven simulations are convenient for low-volume, high-
mix manufacturing or when fast simulation execution
speed is not as important as detailed information or system
animation.

In a resource-driven simulation, see (Schruben 2001),
all system entities such as jobs, tools, and operators are
called resources and are treated with equal status. The
models are organized around changes in resource

523
availability. At each resource state change, the
consequences for other resources are processed using
integer operations, typically incrementing or decrementing
the numbers of available resources and scheduling future
resource changes. For example, only integer counts of jobs
of particular types at different steps are necessary. The
system’s state is wholly described by the status of
resources, expressible as integers. The main advantages of
resource-driven simulations is that execution speed and
memory footprint do not change significantly as the system
becomes more congested. Job and resource-driven
simulations are not exclusive modeling styles but can and
should coexist in a simulation study.

2 DEFINITION OF RESOURCE-DRIVEN
MODELING

A resource-driven simulation model randomly generates a
jointly dependent, finite set of point processes. All system
performance statistics can be derived from counting the
numbers of occurrences of events of different types. Say
the system can be described using k types of resources. The
output from a single run of the simulation with random
number seed ω will consist of N(ω)=(C1

+,C1
-,…,Ck

+,Ck
-).

Here Ci
+ and Ci

- are point processes, indexed by time t, that
record when the availability of resource i increases and
decreases, respectively. For example, if “resource” j is the
number of jobs waiting in queue j, then the queue size at
time t will be Cj

+(t)-Cj
-(t). In resource-driven models,

changes in the availability of resources constitute all of the
activity of the simulation.

Computation of N(ω) evolves by processing the
implications of current resource availability changes on
future resource availability changes. As is common in
event scheduling simulations, all events are scheduled
relative to the current time. Here, time 0 will always
represent the current time. Since only the time prior to the
current time 0 is recorded, the counting processes

Hyden, Schruben, and Roeder

comprising N(ω) are only well defined for t<0. A future
resource change list serves as the list of scheduled events
and is comprised of all resource availability changes
scheduled after the current time 0. Denote t0(Cj

+) and t0(Cj)
as the time of the next future increase and decrease in
availability of resource j.

To facilitate the scheduling of resource availability
changes, define the function U(C,t) which adds an
additional point at time t≥0 to counting process C. This
schedules the resource availability change associated with
C to occur after t time units.

3 RESOURCE GRAPHS

The basic model development tool for a resource-driven
simulation is a resource graph that describes how resources
interact. The resource graph provides a useful visual
display of the relationships between resources, and
represents every event explicitly. A resource graph is a
derivative of an event graph (Schruben and Schruben
2000), so the definition is similar. However, a resource
graph has no time-delayed edges. The system resource
graph is composed of several subgraphs that describe the
actions triggered by changes in the availability of each type
of resource. These actions include scheduling future
resource changes. An individual resource subgraph is
initialized and run to completion for each scheduled
resource change. When there are multiple resource changes
scheduled at the same simulated time, the subgraph for the
highest priority resource change is processed first.

A resource graph is composed of nodes and edges.
Modifications of the resource state, called events, occur at
the nodes while conditions are represented with edges. In
Figure 1 a sample element of a resource graph is shown for
events A and B. When event A is executed, the actions
listed at {A actions} are executed, using inputA for the
values of input parameters. These actions involve changes
of the state as well as random variable generation. The
actions at event A are executed and the output parameters
outputAB are computed. If conditionAB is true, event B is
scheduled with priority priorityAB and parameter values
inputB←outputAB. The highest priority event is executed
next until no further events remain.

Figure 1: Resource Graph Element

Since many different resource changes may trigger the

same events, the resource graph can often represent many
subgraphs with few nodes by sharing common nodes
across subgraphs.
524
3.1 Resource Change Initialization
and Scheduling Events

There are several special events that will be defined for
every resource graph. For each resource R(i), i=1,2,…,k,
associate 4 events: R+(i), R-(i), +R(i,t), -R(i,t).

The resource change events R+(i) and R-(i) schedule
events and makes state changes that are caused by
increasing and decreasing, respectively, the number of
resources i available at the current time 0. Hence, when
t0(Cj

+)=0 [t0(Cj
-)=0], event R+(i) [R-(i)]initializes the

resource subgraph associated with an increase [decrease] of
resource i. Event priorities are associated within each
resource subgraph.

+R(i,t) [–R(i,t)] schedules a future increase [decrease]
of resource i to occur after t time units. This event calls the
function U(Ci

+,t) [U(Ci
-,t)]. An increase or decrease in

resource i should include the appropriate update of the
associated point process. (No changes in clock time are
permitted.)

3.2 Vertices

The resource graph consists of a set of vertices V
representing the events. Associated with event v∈V is a
mapping hv(Ri-1,Si-1,Ti-1,A,ω)→(Ri,Si) with

• Ri: value of resource variables at resource change i.
• Si: value of statistics at resource change i.
• Ti: simulation clock time at resource change i.
• A: attribute values for event v; these values were

determined at the time the event was scheduled.
• ω: the function may be a random variable in some

cases.

3.3 Edges

Directed edges D describe the conditions between events.
Edge dAB∈D (A,B∈V) is a mapping
dAB(Ri,Si,Ti,A,ω)→{true,false} evaluated at the termination
of event A that schedules B if true. When multiple events
are scheduled, events are processed in order according to
their priority. The priority of an event is determined by its
scheduling edge. The scheduled event with the lowest
valued priority is executed next.

3.4 Event List for Resource Graph

Note that time does not advance on the resource graph, so
the events list acts as a priority queue on the resource
subgraphs according to their priorities.

Hyden, Schruben, and Roeder

4 ALGORITHM

The basic algorithm for processing a resource-driven
simulation is a serial interaction between the resource
graph and the present resource availability changes.

1. Initialize a set of counting processes

N(ω)=(C1
+,C1

-,…,Ck
+,Ck

-), with at least one
resource change at t≥0.

2. Advance the clock by moving the next resource
change to the current time by setting t=0.

3. Process Resource Changes: Execute the resource
subgraph scheduled with the highest priority.

4. Return to 2 until the run is terminated.

5 RESOURCE GRAPH CONSTRUCTION
EXAMPLES

5.1 Resource Graph Example: G/G/S Queue

As a simple example, we will construct a resource graph
for a G/G/S queue. In the G/G/S queue, there are two types
of resources: servers [R(1)] and queues [R(2)]. As
mentioned in 3.1, the required events associated with
resource R(1) and R(2) are R+(1), R-(1), +R(1,t), -R(1,t)
and R+(1), R-(1), +R(1), -R(1), respectively.

For mnemonic purposes, we will denote resource R(1)
as S and resource R(2) as Q. The events associated with S
and Q become S+, +S(t), and Q+, +Q(t), (only increases
in server or job availability trigger resource graph
executions in this example).

5.1.1 Subgraph: Increase in Jobs in Queue

The event Q+ occurs when a new job arrives and increases
in the number of jobs in the queue (resource Q). The
associated resource subgraph includes all nodes and edges
that emanate from the Q+ node. Figure 2 displays the
subgraph for this resource change.

Figure 2: Q+ Subgraph
525
5.1.2 Subgraph: Increase in the Availability of Servers

The second type of resource change is an increase in server
availability (resource S) denoted by S+. The resource
subgraph associated with this event is executed when a
server completes service. This subgraph includes all nodes
and edges that emanate from the S+ node. Figure 3
displays the subgraph for this resource change.

Figure 3: S+ Subgraph

5.1.3 Increment Q Event (Q+)

This is the trigger event for the Q+ resource subgraph.
The immediate impact of increasing resource Q is included
here; the queue is increased {Q=Q+1}. If there is a server
available (S>0), service will begin immediately in the Start
event. The next job resource is slated to enter by
scheduling event, Enter.

5.1.4 Increment S Event (S+)

This is the trigger event for the S+ resource subgraph. The
immediate impact of increasing resource S is included
here; the servers are increased {S=S+1}. If there are jobs
waiting in the queue (Q>0), then service will begin
immediately in the Start event.

5.1.5 Scheduling Resource Change Events

The events that trigger Q+ and S+ to occur in the future
are denoted +Q(t) and +S(t), respectively.

5.1.6 Start Event

The same Start event appears in both the Q+ and S+
resource subgraphs. This Start event represents a job
starting service. Resources Q and S are decremented and
the associated point processed are updated. {Q=Q-1,
U(q-,0), S=S-1,U(s-,0)}. The service completion event is
then scheduled by the +S(t) vertex after a random service
time, t, is generated according to the function service and
random number stream ωS.

5.1.7 Enter Event

A Enter event represents the next arrival to the queue being
scheduled. The random time t until the next arrival occurs
is generated according to the function arrive and the

Hyden, Schruben, and Roeder

random stream ωE. Event Q+ is scheduled by the +Q(t)
vertex to occur after t time units.

5.1.8 Resource Graph

By combining the subgraphs for Q+ and S+, the resource
graph is formed. The resource graph is shown in Figure 4.
Note that the start event node only appears once because it
operates the same whether it was triggered by a server
increase (S+) or a queue increase (Q+).

The relative performance of a job-driven model and a
resource-driven model is shown in Figure 5. When the
system becomes more congested, the job-driven simulation
slows to a virtual stand still. The resource-driven
simulation execution speed is virtually unaffected. It is
precisely these bursts of high congestion that are typically
the most interesting in simulation studies of queueing
systems. Figure 6 presents the performance ratio of the
job-driven style to the resource-driven style, using the
same software package. The job-driven approach chokes
with increased congestion and the ratio skyrockets. When
the system breaks from extreme congestion, only the
frequency of easily processed arrivals keeps this ratio from
exploding.

Figure 4: Resource graph for G/G/S queue
526

Figure 5 : Run Times for a G/G/1 Queue Simulation Using
Different Styles (Altoik et al. 2001)

Figure 6: Ratio of Run Times for a G/G/1 Queue
Simulation Using the Same Software Package but
Different Styles

Hyden, Schruben, and Roeder

5.2 Job Shop Example

A more complex resource-driven example is a general job
shop simulation. A job shop consists of multiple stations
with different job types, each with possibly different
routings through the stations. Jobs may re-enter the same
station as is common in semiconductor manufacturing.
This model is based on an example from Law and Kelton
(2000).

As in all queueing system models, it is useful to
distinguish the two types of resources, queues and servers.
Q(i) will refer to the number of jobs at the ith queue, and
S(j) will refer to the number of available servers at the jth
station. The jobshop will have I queues, J stations and a
job types. As typical to a jobshop, jobs require a single
station at each step, meaning each station may serve
multiple queues while each queue can only be served by
one station. Different job types and jobs at different steps
of their routing are kept in separate queues.

To define our model and the relationship between
resources, it is useful to describe the following functions.
Note that each of these functions can be assumed to
execute in O(1) (constant) time.

• next(j) is the next queue that will be served by

station j. next(j)=0 indicates that all queues
served by S(j) are empty.

• next+(i,j): update of next(j) when Q(i) is
increased.

• next-(i,j): update of next(j) when Q(i) is
decreased.

• enter(k) is the queue that an newly arriving job of
type k increases

• type(i): is the job type of resources in queue i.
• server(i) is the station that serves Q(i).
• queue(j) is the queue served by S(j).
• choose(ωΕ,1):a random variable indicating which

queue to increase upon the next system arrival.
• arrive(ωΕ,2) : a random variable indicating the

simulation time until the next arrival.
• servicei,j(ωS,j): a random variable indicating the

service time for Q(i) on S(j).
• route(i) is the unique queue entered by a job that

last exited queue i. route(i)=0 indicates that the
job completes service after exiting queue i.

Although this model is much more complex, the

resource graph can be written as the composition of two
subgraphs for any size routing or number of servers. Using
event parameters enables this efficiency.

5.2.1 Subgraph: Increase of Queue i

The first type of resource change is an increase of a queue i
(resource Q(i)), which will be denoted Q+(i). This
527
subgraph occurs when there is an arrival to queue i. The
subgraph associated with increases to the queue includes
all nodes and edges that emanate from the Q+(i) node.
Figure 7 displays the resource subgraph for this resource
change.

Figure 7: Q+(i) Subgraph

5.2.2 Subgraph: Increases in Available Servers

The second type of resource change is an increase of the
idle servers at station i (resource S(i)), which will be
denoted event S+(i). This subgraph occurs when a server
has completed service. The associated subgraph includes
all nodes and edges that directly or indirectly emanate from
the S+ node. Figure 8 displays the subgraph for this
resource change.

Figure 8: S+(j) Subgraph

5.2.3 Increase Queue Event (Q+(i))

This is the trigger event for the Q+(i) subgraph. The
immediate impact of a job entering queue i and increasing
resource Q(i) is included here. The queue is increased

Hyden, Schruben, and Roeder

{Q(i):=Q(i)+1}. In addition, the next queue to be served
by server(i) is updated. This is necessary because each
station holds a one-to-many relationship with the queues. If
there is a server available at the station serving queue i
(S(server(i)>0), service begins by scheduling the Start
event for queue i and station server(i). If this job is
entering the first queue on its routing, the next job is slated
to enter by scheduling event Enter.

5.2.4 Increase Servers Event (S+(j))

This is the trigger event for the S+(j) subgraph. The
immediate impact of increasing resource S(j) is included
here. The servers are increased {S(j):=S(j)+1}, and if there
is a job waiting for service at station j (next(j)>0), service
begins by scheduling the event start.

5.2.5 Scheduling Resource Change Events

The events that schedule Q+(i) and S+(j) to occur in t>0
time units are denoted +Q(j,t) and +S(j,t), respectively.

5.2.6 Start(i,j) Event

A Start(i,j) event represents a job leaving queue i to start
service at station j. The server is freed at the completion of
service. The following state changes occur for a start event:

• Resources Q(i) and S(j) are decremented and the

associated point processed are updated.
{Q(i)=Q(i)-1,U(qi

-,0), S(j)=S(j)-1,U(sj
-,0)}.

• A random service time, t, is generated according
to the function servicei,j and random stream ωs.

• The server is slated for completion by scheduling
event +S(j,t).

• If the job is not finished, it is moved to the next
queue by scheduling event +Q(route(i),t).

Note that the same start event appears in both the Q(i)+
and S(j)+ subgraphs.

5.2.7 Enter Event

A Enter event represents a job entering the queue. Each time
this resource enters, the next arrival to the queue is scheduled.
The following state changes occur for a enter event:

• The random time t until the next arrival is

generated according the to the function arrive and
random stream ωE,1.

• The entering queue i of the next arrival is
generated according to the function choose and
random stream ωE,2.

• Event Q+(i) is scheduled to occur in t time units.
528
5.2.8 Resource Graph

By combining the subgraphs for Q+(i) and S+(j), the
resource graph is formed. The resource graph is shown in
Figure 9. Note that the Start event node only appears once
because it operates the same whether it was triggered by a
server increase (S+(i)) or a queue increase (Q+(j)).

Figure 9: Resource Graph for General Job Shop of Any
Size with Any Number of Job Types

6 CONCLUSION

Resource graphs are presented for developing simulation
models that focus on changes in resource availability and
limit resource representations to integers. Subgraphs
isolate the consequences of a single change in resource
availability and explicitly schedule future resource
availability changes. This simplifies the initial model
development by breaking the system down into
components that can later be recombined. Resource-driven
modeling can speed up execution time, making simulation
more relevant to the decision making process.

REFERENCES

Altoik, T., Kelton, W. D., L’Ecuyer, P., Nelson, B. L.,
Schmeiser, B. W., Schriber, T. J., Schruben, L. W.,
And Wilson, J. R. (2001), Various Ways Academics
Teach Simulation: Are They All Appropriate? Panel In
The Proceedings Of The 2001 Winter Simulation
Conference, Arlington, VA.

Kelton, W. D. and R.P. Sadowski, and D.A. Sadowski
(1998), Simulation with Arena. McGraw-Hill.

Law, A. M. and W. D. Kelton (2000). Simulation Modeling
and Analysis. Boston, McGraw-Hill.

Schruben, Donna A. and Lee. W. Schruben (2000). Event
Graph Modeling. Custom Simulations.

Schruben, Lee W. (2001), “Mathematical Programming
Models of Discrete Event System Dynamics”,

Hyden, Schruben, and Roeder

Proceedings of the 2000 Winter Simulation
Conference, December 10-13, 2000, Orlando FL.

AUTHOR BIOGRAPHIES

PAUL HYDEN is an Assistant Professor in the
Department of Mathematical Sciences at Clemson
University. He received all of his degrees in Operations
Research and Industrial Engineering from Cornell
University. His email address is <hyden@clemson.
edu>.

LEE SCHRUBEN is Professor and Chairman of the
Department of Industrial Engineering and Operations
Research at Berkeley. Prior to joining the Berkeley faculty
he was in the School of Operations Research and Industrial
Engineering at Cornell University where he held the
Andrew S. Schultz Professorship in Industrial Engineering.
His email address is <schruben@ieor.berkeley.
edu>.

THERESA ROEDER is a Ph.D. student in the
Department of Industrial Engineering and Operations
Research at UC Berkeley. She received B.S. and M.S.
degrees in Management Science from Case Western
Reserve University, and an M.S. in IEOR from Berkeley.
Her email address is <roeder@ieor.berkeley.
edu>.
529

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

