
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

A FRAMEWORK FOR DISTRIBUTED SIMULATION OPTIMIZATION

Björn Gehlsen
Bernd Page

Department for Informatics

University of Hamburg
Vogt-Kölln-Str. 30

D-22527 Hamburg, GERMANY

ABSTRACT

The system presented bridges the gap between three differ-
ent research areas: discrete event simulation, heuristic op-
timization methods and distributed systems technology. Its
goal is to provide a framework which supports an efficient
implementation of simulation optimization projects, in-
cluding heuristic optimum seeking procedures and parallel
execution of experiments. It is written completely in Java
and only uses components that are publicly available, in-
cluding software libraries from academic institutions or the
Java API from Sun Microsystems. The framework is well
applicable for education and further research.

1 INTRODUCTION

Simulation projects often support the analysis of complex
systems. Usually, some scenarios to be evaluated are de-
termined before the simulation runs are started. When a
simulation project aims at finding a good or even optimal
configuration with respect to some quality measure, the
need for an integration of simulation tools with optimiza-
tion methods arises. One drawback of simulation optimiza-
tion is the huge computational effort usually generated by
such tasks. It results from the need to execute many simu-
lation experiments, each typically causing a considerable
machine load.

This problem is tackled by both using effective and
fast optimization strategies and operating several simula-
tion engines for experiment execution in parallel. The
framework DISMO (DIstributed SiMulation Optimiza-
tion), which is described in this article, shows a noncom-
mercial approach to distributed simulation optimization.
Open source developments from academic institutions are
used for simulation and optimization. This allows for op-
timal integration of the framework’s components. Addi-
tionally, it is of particular value as some commercial prod-
ucts require a separate license for every machine involved
in a distributed simulation optimization project.

508
 The paper is organized as follows: The next section
introduces DESMO-J, a simulator developed at the Univer-
sity of Hamburg. In Section 3, the experimental frame and
some foundations of simulation optimization are discussed.
A concept for using Genetic Algorithms and Java’s Re-
mote Method Invocation (RMI) for simulation optimiza-
tion purposes is developed in Sections 4 and 5 respectively.
This leads to a system architecture which integrates the re-
quired tasks. It is presented in Section 6. Finally, we offer
some conclusions and give a short outlook on further re-
search.

2 A JAVA-BASED FRAMEWORK FOR
DISCRETE EVENT SIMULATION

A framework for Discrete Event Simulation and MOdeling
(DESMO) was developed at the University of Hamburg in
the late 1980s. It has been continuously evolved over the
last decade. Starting with Modula-2, the framework was
ported to various programming languages including Small-
talk and C++. The latest version is DESMO-J, presented by
Lechler and Page (1999). It is based on a fully object ori-
ented architecture and is completely implemented in Java.

Current work on DESMO-J includes

• the implementation of dedicated classes for the

simulation of production systems,
• an implementation of the object oriented DESMO

architecture in Delphi and,
• the integration with a material networks approach

for industrial environmental management systems.

As every DESMO-J model is a Java program, features

of Java also apply to DESMO-J. The framework as well as
implemented models are platform independent. Experi-
ments were run successfully under Solaris, Linux, Win-
dows NT/98/ME and MacOS.

Java is easy to learn and widely used; thus a modeler
is most likely not concerned with learning a new pro-

Gehlsen and Page

gramming language. So fast and flexible model develop-
ment compensates for Java’s competitive disadvantage
with respect to execution speed. Utilities like javadoc
allow the generation of model documentation from the
model builder’s comments in the source code.

Furthermore, introspection as well as remote method
invocation (RMI) is supported by the standard Java pack-
ages java.lang.reflect and java.rmi respec-
tively. It will be shown later how these features can be
used with DISMO for collecting information on model
classes or to instantiate and execute experiments on remote
machines. DESMO-J is used as a simulator, i.e. a system
executing (remote) models, in the DISMO framework. In
contrary to many commercial tools, DESMO-J does not
require separate licences for remote servers as it is pub-
lished under the GNU public license.

The source code and a Java archive can be found on
the DESMO-J website (DESMO-J 2000) together with a
complete API documentation and an extensive tutorial. For
more details on DESMO-J the reader is referred to Page et
al. (2000).

3 THE EXPERIMENTAL FRAME

A “specification of the conditions under which the system
is observed or experimented with” is known as an experi-
mental frame (Zeigler et al. 2000). It “operationally formu-
lates the objectives that motivate a modeling and simula-
tion project”, which can roughly be split into the three
phases of model building, experiment executions and out-
put analysis.

Unfortunately, building a model which adequately rep-
resents a real or virtual system of interest still requires
considerable effort. This task includes an analysis of the
system, the model’s implementation as well as its verifica-
tion and validation. Realistic model runs additionally re-
quire a collection of adequate data. The work of Bachmann
(2000) aims at easing the process of model building sig-
nificantly by composing models from distributed and reus-
able modules which communicate on a CORBA-based
platform independent architecture. In contrary, DISMO
concentrates on the experimental phase assuming that an
appropriate model is available to the simulation analyst. It
could be chosen from a model base or built from existing
modules, if available; but very often it has to be built
newly to meet the project’s requirements completely. Once
a model has been built, these efforts are to be justified by
profitable results obtained during multiple model runs.

The experimental phase of a simulation project or
study usually consists of many model runs or experiments
with different values set for the model’s parameters. For
statistical reasons, an experiment itself can be composed of
many replications, varying only seed values for random
number generators but keeping application specific pa-
509
rameter values fixed. Results of replication runs need to be
aggregated to a single configuration’s evaluation.

3.1 Model Parameterization

To start the experimental phase, DISMO lets the analyst
initialize a chosen model by setting some values depending
on the goals of the simulation study. These settings cannot
be provided in advance by a model builder although de-
fault values might be given. They include the specification
of which input variables to vary, which output measures to
observe and how long to simulate.

As the number of possible parameter vectors grows
exponentially with the number of variable input parame-
ters, searching this space can be eased by keeping the latter
small. It helps to consider which parameters do not need to
be changed during the project’s simulation runs. Some of
the input parameters may be uncontrollable in the real sys-
tem anyway. Thus their variation could not be imple-
mented later and might not be worth consideration. In a
different context it just might be the intention to examine
the consequences of changing some (apparently) uncon-
trollable parameters and to examine whether a big effort
might pay off.

Usually the model runs produce much more data than
necessary. A choice of which responses are relevant and
worth monitoring should be made before the experiments
are started as well as how to aggregate or summarize
model output. It might be necessary to specify start and
termination points for single runs or to create batch means
from long runs depending on the model and the project.

3.2 Replications of Model Runs

With every experiment, a single configuration of the real
system is evaluated. It is represented by a vector of input
parameter values. So the model can be viewed as a com-
plex function mapping a specified system configuration to
corresponding results.

Most simulation models contain stochastic elements,
e.g. probability distributions. They may take random num-
bers as input values and deliver random output correspond-
ing to the distribution’s parameters specified in the model.
Stochastic input values lead to uncertain, noisy output.
Thus, one is no longer interested in a single evaluation of
an input vector but the corresponding means, standard de-
viations, and confidence intervals of the results. This re-
quires multiple replications of each configuration to be run
in order to average out the output’s stochastic behavior.

DISMO combines many replications to a model run
evaluating a certain parameter vector. Each replication
evaluates the same parameter values but differs from others
in the initialization of their random number streams. The
number of replications per run is left adjustable to the ana-
lyst.

Gehlsen and Page

The output is then aggregated and assessed by an ob-
jective function returning a scalar value. This guarantees
that outputs of different model runs are comparable with
respect to the quality defined within the project. For the
time being DISMO simplifies the task of output analysis
by simply averaging the objective values corresponding to
the replication’s outputs. A survey of more precise meth-
ods as well as further references on output analysis are pre-
sented by Kelton (1997 and 1999). DISMO hides replica-
tions from the user, who may only want to quantify the
number of replications to observe for each configuration.

3.3 Experimental Design

The experimental design determines which parameter val-
ues to choose for the model runs at issue. The number of
possible input parameter vectors grows exponentially with
the number of input variables. Thus, an exhaustive search
of the entire solution space is infeasible within reasonable
time, at least for problems with practical relevance.

The system configurations to be evaluated should be
chosen carefully and with the objectives of the simulation
project in mind to protect a simulation analyst from unsys-
tematic and ineffective “hit-or-miss” sequences of simula-
tion runs. Chapter 12 of Law and Kelton (2000) lists some
strategies to produce a mature plan of experiments. Their
goal is to find a small but right fraction of all possible ex-
periments to be run.

Executing model runs (experiments) according to the
precedent experimental design generates corresponding
output data which has to be aggregated and interpreted
later. Then, useful information, which supports decision
making, can be obtained from it, hopefully.

3.4 Simulation Optimization

A classical experimental design determines the system
configurations to be evaluated before the simulation runs
are started. Thus, knowledge about the structure or the be-
havior of the system, which is obtained during the experi-
ments, does not influence the sequence of experiments.
Unlike classical experimental design, optimization meth-
ods provide new and improved input parameter values
more systematically. They can even take results of former
model runs into consideration.

In contrast to evaluating a set of previously given con-
figurations, a simulation project may aim at optimizing the
simulated system, i.e. gathering certain values for the
model’s input parameters, which produce model outputs
that maximize or minimize a corresponding performance
measure. This prerequisite demands optimization tools for
simulation projects. They are capable of finding one or
more elements of a typically large solution space or search
space which optimize a given objective function. Concep-
tually DISMO is designed to use any optimization method.
51
The current prototype uses Genetic Algorithms. This heu-
ristic optimization method suitable for use with simulation
models will be presented in Section 4.
 As shown in Figure 1, simulation and optimization are
arranged cyclically. Starting with a given or randomly gen-
erated set of simulation input values, simulation and opti-
mization alternate until some termination condition is met.
An application specific objective function is used to rate
the output corresponding to the simulation input. From a
simulation analyst’s point of view, the optimization
method is wrapped around the simulation model; it re-
ceives the model’s aggregated results, evaluates the output
and generates new input values for the model.

From an optimization point of view, the model is seen
as a black box evaluating a complex function which cannot
be given in a closed form. It transforms the input vectors,
each representing a different scenario, to outputs which are
then compared using their objective function’s values.

Figure 1: Simulation optimization cycle. Shaded objects
are application specific and to be provided by the simula-
tion analyst.

The optimization method itself can be customized by

setting some technical parameters. In case of heuristic
methods these parameters mainly specify the heuristic’s
accuracy. For Genetic Algorithms they include the popula-
tion size, the number of generations observed and prob-
abilities for applying the different genetic operators. Con-
sidering a simulation optimization project, the classical
experimental frame is to be extended by the adjustment of
these parameters.

4 GENETIC ALGORITHMS FOR
SIMULATION OPTIMIZATION

In simulation models, analytical information about the
structure of the search space is not available. Particularly,
there are no derivatives. They could be used to find ex-
trema of the objective function which could then serve as

 simulation
runs

optimization
method

simulation
model

output
aggregation

objective
function

application context
0

Gehlsen and Page

indicators for optimal system configurations. Thus, optimi-
zation methods used in simulation projects have to do
without this information. Genetic Algorithms (GA) belong
to the class of direct search strategies. In a direct search
every considered solution is rated using the objective func-
tion values only. Thus, no closed form of the problem and
no further analytical information is required to direct the
search process towards good or preferably optimal ele-
ments of the search space. The execution of a model run
yields the evaluation data.

GA simulate the principles of biological evolution for
the purpose of optimization. As a heuristic optimization
method, GA do not guarantee to find optimum solutions,
but they are looking for elements in a given search space
which are good in terms of a specified measure. As only a
fraction of the solution space is visited, GA finish after a
reasonable time. Often, good solutions are found even in
large spaces for which an exhaustive search would be in-
feasible anyway.

GA provide a general process model for heuristic opti-
mization. We use GA in simulation projects to find input pa-
rameter values which result in a good or profitable behavior
of the observed system in terms of the objective measure.
The intention of the following subsections is to give an idea
of GA being well suitable to guide the experimental design
of a simulation project. More detailed literature on GA in-
clude Davis (1991) and Goldberg (1989). In the DISMO
framework, the Java Distributed Evolutionary Algorithms
Library (JDEAL), which is described by Costa et al. (2001),
is used for implementing GA.

4.1 The Basic Genetic Algorithm

A Genetic Algorithm (GA) is an iterative, population-
based, direct search strategy. The search space is usually
given as the solution space of the application. In a simula-
tion project, the solution space is the set of all controllable
input parameter vectors for the model used, which corre-
spond to feasible configurations of the real system under
consideration.

A GA, i.e. its genetic operators do not work on the
problem’s solutions but rather on representatives. A suit-
able encoding maps solutions (phenotypes) to representa-
tives (genotypes), which are often realized as linear bit-
strings. Arrays of integers or floating-point numbers are
other realizations of genotypes. By using representatives,
the genetic operators (selection, crossover, mutation)
which manipulate the genotypes can be defined and im-
plemented problem independently.

During every iteration (generation) a GA is working
on a set (population) of representatives of solutions (indi-
viduals). On the analogy of nature, in every generation the
fittest members have the highest probability to produce
offspring using their favorable characteristics. In every
single generation of a GA, the individuals of the current
511
population are evaluated and ranked according to their fit-
ness. Then some of the individuals are selected to produce
offspring by a selection operator which prefers individuals
with higher fitness to guide the algorithm towards promis-
ing regions of the search space. Selected individuals are
reproduced using a crossover operator (2 ancestors) and/or
a mutation operator (1 ancestor) with a given probability.
Finally, a new generation’s population is built and (some
of) the old individuals are replaced by the new offspring.

A number of technical parameters is used to control
the behavior of a GA. They include population size, maxi-
mum number of generations, and probability measures for
applying the different genetic operators. They adjust the
balance between exploration of the whole space and ex-
ploitation of certain promising regions. Thus, these pa-
rameters determine the desired accuracy of the heuristic
algorithm which usually conflicts with fast termination.

4.2 Customization of Genetic Algorithms
for Use Within Simulation Projects

Generally, GA are domain independent and require no
prior knowledge of the application context. Nevertheless,
two main components of GA have to be specified depend-
ing on the application in order to be more effective than
random search: the encoding of solutions (a mapping from
the decision space to the individual space) and the objec-
tive function (Szczerbicka et al. 1998). So a GA can be
customized for parameter optimization of simulation mod-
els by implementing these components specifically.

The objective function connects knowledge on the ap-
plication domain and the encoding. The encoding should
be chosen regarding the application context, e.g. similar
solutions to the observed system should be represented by
similar individuals. The objective function reflects the sub-
jective ratings governing the simulation project and so ef-
fects the calculation of an individual’s fitness. Thus, in
DISMO the objective is provided with the model or im-
plemented by the simulation analyst with respect to the
goals of the current project before the experiment runs are
started.

Principally, a GA is application independent.
Michalewicz (1996) poses some guiding questions for the
implementation of GA concerning the feasibility of interim
solutions, which are worth consideration. A GA’s genetic
operators may produce individuals which are infeasible,
e.g. whose corresponding solutions are not valid in the ap-
plication context. As these solutions’ offspring may be fea-
sible again, new paths through infeasible regions of the
search space are discovered this way and may lead to fea-
sible regions which would remain undiscovered otherwise.
In a GA for the parameter optimization of simulation mod-
els, infeasible solutions should be kept off from evaluation
by simulation as this would waste valuable computation

Gehlsen and Page

time. Genetic operators can also be implemented to gener-
ally avoid the generation of infeasible solutions.

4.3 Parallel Genetic Algorithms

The population-based nature of GA offers a straightfor-
ward approach for parallelism. The individual’s evalua-
tions are categorically independent of each other. When
applying GA within a simulation project, an individual rep-
resents a vector of concrete input parameter values and an
individual’s evaluation corresponds to a run or a set of
replication runs of the underlying model with its parameter
values. Thus paralleling independent and time consuming
tasks promises to be a substantial benefit to the overall sys-
tem performance.

In the literature, different approaches of parallelism in
GA are reviewed. Global population models consider the
whole population and parallel crossover and evaluation.
Coarse grain models or island models build distinct sub-
populations which are observed separately on different
processors, and allow migration of individuals in a limited
number only. Last, fine grain models, or cellular GA,
which can be shown to be a subclass of cellular automata
assign a separate processor to each individual and restrict
genetic operation to neighboring individuals (Whitley
2000).

The framework described aims at supporting models
built by different persons who might not consider during
implementation that later the model runs will be executed
remotely. Therefore, in DISMO, the evaluation of indi-
viduals, i.e. the simulation runs, are executed on a remote
server, but one global population is controlled on a single
client machine. The corresponding class (Experiment-
Manager) is described in Section 6.

5 REMOTE EXECUTION OF
SIMULATION RUNS

Simulation experiments are complex tasks which require
considerable resources even on modern computer systems.
When multiple simulation runs are essential for a simula-
tion project, the delegation of experiment execution to a
number of remote machines is very paying. As communi-
cation overhead can be neglected among independent
model runs, a near-linear speedup can be achieved.

5.1 Encapsulated Experiments

For the purpose of experiment delegation, a coordinating
machine needs to give its servers a precise instruction of
their duty. A complete description of a model run including
input parameter values and a reference to the model class is
encapsulated in the class SimTask (see Section 6).

In each iteration, the simulation client constructs
SimTask objects for every individual of the current popu-
512
+execute()

«Interface»
dismo.rmi.Task

+execute()
+runExperiment()
+getExpName()

-mClass
-pTypes
-pValues
-expName
-seedValue
-optModelObject
-thisExperiment

dismo.SimTask

+executeTask()

«Interface»
dismo.rmi.Service

«Interface»
java.rmi.Remote

java.rmi.UnicastRemoteObject

+executeTask()
+main()

dismo.rmi.Server

«Interface»
java.io.Serializable

+simulateExperimentArray()
+setRunsPerParameterSet()
+getRunsPerParameterSet()

-mySimStudyManager
-runsPerParameterSet

ExperimentManager

+executeTasks()
+setRemoteMachines()
+contactRemoteMachines()

-mySimStudyManager
-remoteMachines
-remoteServices
-currentServiceIndex

DistributionManager

-calls

* 1

-constructs*

1

-calls

1

0..*

-delivers SimTasks

1 1

lation as well as their replications. It then passes them to
the remote machines and receives the corresponding
simulation results after the remote model run has finished.

5.2 Deployment of Simulation Tasks

In each generation of the optimization process, the popula-
tion represents a set of independent experiments. There-
fore, a set of remote machines is prepared to accept re-
quests for executing model runs. A simple server program
is located on all available remote machines. Upon activa-
tion, this server process registers itself as the ‘DISMO-
Service’ with the registry of its machine and can then be
reached from clients supplying the servers with simulation
tasks to be executed.

Figure 2: UML diagram of RMI related classes of DISMO

A local machine (simulation client) coordinates the

construction of model run descriptions which are passed to
the remote servers as a parameter of a remote method call.
Favourably, every single run is allocated to its own remote
machine. Even parallel execution of independent simula-
tion runs on a single machine is possible, as DISMO
organizes every single run into a separate Java thread.

5.3 Remote Method Invocation

In the DISMO system, Java Remote Method Invocation
(RMI) is used to spread the current population of the GA.
RMI is a core Java API and class library. It supports the
implementation of remote objects. Methods on remote ob-
jects can be called by local objects as if they were residing
on the local machine. In the same way, arguments can be
passed on to the remote servers and return values are re-
ceived (Figure 2).

To invoke methods on remote objects, a reference to
the remote object is required. These so called remote refer-
ences are stored in a registry, a small program running on
the server’s machine. The registry can be asked for the re-
mote reference by the name the remote object is registered
with. More technical details on RMI can be found in Har-

Gehlsen and Page

old (2000) as well as in the Java API documentation of the
package java.rmi (Sun Microsystems 2001).

It is planned to include a Lightweight Directory Ac-
cess Server (LDAP) to control the registered server ma-
chines and to make them known to clients requesting any
DISMO service. Unlike in the current version, also tasks
for generating new parameter values and fitness evaluation
could be executed remotely.

6 SYSTEM ARCHITECTURE

The framework DISMO presented in this contribution
aimes at optimizing systems which are evaluated through
distributed runs of a discrete simulation model. Therefore,
the framework involves a simulator, optimization methods
and a distribution mechanism, all controlled by a simula-
tion study manager (Figure 3). It assumes that an appropri-
ate model and an objective function are supplied by the
simulation analyst.

Figure 3: DISMO system architecture

6.1 Simulation Tasks

Conceptually, DISMO separates a simulation model from
single experiment runs. The notion of a simulation task is
introduced to encapsulate concrete parameter values and a
model specification. It is implemented as a Java class
SimTask and provides a method execute(), that can
be activated on a remote machine. For that purpose a Sim-
Task object is passed to a remote server as an argument of
a remote method call.

6.2 Model Requirements

The execution of model runs is to be initialized with different
parameter values which have to be provided independently
from the model. Therefore, the model is supposed to imple-
ment the interface Executable which allows introspection

objective

DistributionManager

Experiment
Manager

Optimization
Manager

optimization
method

SimStudyManagerGUI exp.-bank

simulator

simulation
server

evaluation
server

model

DISMO
513
of the model for a calling program (SimStudyManager).
So the types of the model’s input variables can be exported as
well as default values or feasibility intervals for it’s values,
where appropriate. No concrete values for parameters (except
defaults) should be implemented in the model itself.

The interface Executable enforces a model to pro-
vide methods which inform the SimStudyManager
about properties of the model, particularly about

• the model’s name including a short description,
• the name, type, default value, lower and upper

bound of the model’s parameters,
• whether a parameter’s value is variable or constant,
• the model’s result types,
• the model’s result values.

These details are required to initialize the Experi-

ment- and OptimizationManager as well as to
check compatibility with the objective function which im-
plements a method evaluate() taking the model’s ag-
gregated result values as input parameters.

6.3 Distributed Simulation Optimization with DISMO

Before any experiment is executed, the simulation study
manager (SimStudyManager) lets the analyst define a
model and the objective function to use during the project.
Additionally it collects some required technical parameters
(e.g. population size, probabilities for genetic operators,
maximal iteration number and number of replications per
simulation run) as well as model specific parameters. Fi-
nally it constructs an ExperimentManager, an Opti-
mizationManager and a DistributionManager
for the current simulation project.

The OptimizationManager starts to generate the
first simulation input parameters. The ExperimentMan-
ager constructs SimTask objects and passes them to the
DistributionManager. The DistributionMan-
ager maintains a list of the available remote services each
of which represents a server process on a remote machine.
It deploys SimTask objects as arguments of an RMI call
to remote machines for execution. After completion the
simulation results are returned to the Optimization-
Manager where evaluation, selection, recombination and
replacement result in a new set of parameter values which
will be used as simulation input for the next iteration.

7 CONCLUSIONS AND OUTLOOK

The DISMO Framework successfully implements the func-
tionality of automatic instantiation and execution of simula-
tion experiments. Optimization methods are used to find good
values for the simulation model’s parameters systematically.
DISMO also allows the resulting load to be paralleled on

Gehlsen and Page

available machines across a network, so an almost linear
speed-up can be achieved by using a LAN of workstations
which often have some free capacity. Remote execution of
simulation experiments are realized by using standard Java
components, from the java.lang.reflect and
java.rmi API, available from Sun Microsystems (Sun Mi-
crosystems 2001).

DISMO is an academic framework. Future extensions in-
clude a visualization component. For real world applications
of the framework a container terminal simulation in coopera-
tion with the port of Hamburg is under consideration.

ACKNOWLEDGMENTS

Ruth Meyer deserves special thanks for interesting discus-
sions and valuable ideas. She also made several suggestions
to improve the accuracy and clarity of this paper. The re-
search presented is partially based on the work of several
students involved in the development of DESMO, particu-
larly Tim Lechler, Olaf Neidhardt and Sönke Claassen, who
recently developed, evolved and documented DESMO-J.

REFERENCES

Bachmann, R. 2000. HLA und CORBA: Partner oder
Konkurrenten? In Simulationstechnik, 14. Symposium
in Hamburg, (in German), ed. D. Möller, 141-146. Er-
langen: European Publishing House.

Costa, J., N. Lopes, and P. Silva. 2001. JDEAL. The Java
Distributed Evolutionary Algorithms Library [online].
Available online via <http://laseeb.ist.
utl.pt/sw/jdeal/> [accessed March 16, 2001].

Davis, L. D. 1991. Handbook of Genetic Algorithms. New
York: Van Nostrand Reinhold.

DESMO-J. 2000. The DESMO-J homepage [online].
Available online via <http://www.desmoj.de>
[accessed July 4, 2001].

Goldberg, D. E. 1989. Genetic Algorithms in Search, Op-
timization and Machine Learning. Reading. Addison
Wesley.

Harold, E. R. 2000. Java Network Programming, 2nd Edi-
tion. Sebastopol, CA: O’Reilly&Associates.

Kelton, W.D. 1997. Statistical analysis of simulation out-
put. In Proceedings of the 1997 Winter Simulation
Conference, ed. S. Andradóttir, K. J. Healy, D. H.
Withers, and B. L. Nelson, 23–30.

Kelton, W.D. 1999. Designing Simulation Experiments. In
Proceedings of the 1999 Winter Simulation Confer-
ence, ed. P. A. Farrington, H. B. Nembhard, D. T.
Sturrock, and G. W. Evans, 33–38.

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and
Analysis, 3rd ed. Boston: McGraw Hill.

Lechler, T. and B. Page. 1999. DESMO-J : An Object Ori-
ented Discrete Simulation Framework in Java. In Pro-
ceedings of the 11th European Simulation Symposium,
514
ed. G. Horton, D. Möller, and U. Rüde, 46-50. Erlan-
gen: SCS Publishing House.

Michalewicz, Z. 1996. Evolutionary Computation and
Heuristics. In Meta-Heuristics: Theory & Applica-
tions, ed. I. H. Osman, and J. P. Kelly, 37-52. Norwell:
Kluver Academic Publishers.

Page, B., T. Lechler, and S. Claassen. 2000. Objektorientierte
Simulation mit dem Framework DESMO-J (in German).
Hamburg: Libri Books on Demand.

Sun Microsystems. 2001. The Source for Java Technology.
[online]. Available online via <http://java.
sun.com> [accessed March 21, 2001].

Szczerbicka, H., M. Becker, M. Syrjakow. 1998. Genetic
Algorithms: A Tool for Modelling, Simulation, And
Optimization of Complex Systems. In Cybernetics and
Systems: An International Journal, Vol. 29, 639-659.

Whitley, D. 2000. A Genetic Algorithm Tutorial. [online].
Available online via <http://samizdat.
mines.edu/ga_tutorial> [accessed September
4, 2000].

Zeigler, B., H. Praehofer, and T. G. Kim. 2000. Theory of
Modeling and Simulation, 2nd Edition. San Diego:
Academic Press.

AUTHOR BIOGRAPHIES

BJÖRN GEHLSEN is a scientific assistant and Ph.D.
candidate at the Department for Informatics at the Univer-
sity of Hamburg from where he received his M.S. degree in
Computer Science. He focused on operations research and
heuristic optimization methods for NP-hard problems and
worked on different research projects on traffic simulation
and on concepts for accessing distributed databases. His
current research includes the integration of simulation tools
with optimization methods, using distributed system tech-
nology. He is a member of the ACM, the German Infor-
matics Society (Gesellschaft für Informatik) and the Ger-
man speaking simulation society ASIM. His e-mail address
is <gehlsen@informatik.uni-hamburg.de>.

BERND PAGE is a professor for applied computer sci-
ence at the University of Hamburg where he leads the
simulation group. He received his Ph.D. from the Techni-
cal University of Berlin and also holds a M.S. from Stan-
ford University. Before his appointment at the Department
of Computer Science at the University of Hamburg in 1984
he was working as a scientific associate in the Environ-
mental Information System Group at the German Federal
Environmental Agency in Berlin. His research interests in-
clude discrete event simulation software and programming
techniques as well as Environmental Informatics. Dr. Page
is the author of a well recognized German textbook on dis-
crete event system simulation and more recently of a book
on object oriented simulation in Java. His email address is
<page@informatik.uni-hamburg.de>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

