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ABSTRACT 

The system presented bridges the gap between three differ-
ent research areas: discrete event simulation, heuristic op-
timization methods and distributed systems technology. Its 
goal is to provide a framework which supports an efficient 
implementation of simulation optimization projects, in-
cluding heuristic optimum seeking procedures and parallel 
execution of experiments. It is written completely in Java 
and only uses components that are publicly available, in-
cluding software libraries from academic institutions or the 
Java API from Sun Microsystems. The framework is well 
applicable for education and further research. 

1 INTRODUCTION 

Simulation projects often support the analysis of complex 
systems. Usually, some scenarios to be evaluated are de-
termined before the simulation runs are started. When a 
simulation project aims at finding a good or even optimal 
configuration with respect to some quality measure, the 
need for an integration of simulation tools with optimiza-
tion methods arises. One drawback of simulation optimiza-
tion is the huge computational effort usually generated by 
such tasks. It results from the need to execute many simu-
lation experiments, each typically causing a considerable 
machine load.  

This problem is tackled by both using effective and 
fast optimization strategies and operating several simula-
tion engines for experiment execution in parallel. The 
framework DISMO (DIstributed SiMulation Optimiza-
tion), which is described in this article, shows a noncom-
mercial approach to distributed simulation optimization. 
Open source developments from academic institutions are 
used for simulation and optimization. This allows for op-
timal integration of the framework’s components. Addi-
tionally, it is of particular value as some commercial prod-
ucts require a separate license for every machine involved 
in a distributed simulation optimization project.  
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 The paper is organized as follows: The next section 
introduces DESMO-J, a simulator developed at the Univer-
sity of Hamburg. In Section 3, the experimental frame and 
some foundations of simulation optimization are discussed. 
A concept for using Genetic Algorithms and Java’s Re-
mote Method Invocation (RMI) for simulation optimiza-
tion purposes is developed in Sections 4 and 5 respectively. 
This leads to a system architecture which integrates the re-
quired tasks. It is presented in Section 6. Finally, we offer 
some conclusions and give a short outlook on further re-
search.  

2 A JAVA-BASED FRAMEWORK FOR 
DISCRETE EVENT SIMULATION 

A framework for Discrete Event Simulation and MOdeling 
(DESMO) was developed at the University of Hamburg in 
the late 1980s. It has been continuously evolved over the 
last decade. Starting with Modula-2, the framework was 
ported to various programming languages including Small-
talk and C++. The latest version is DESMO-J, presented by 
Lechler and Page (1999). It is based on a fully object ori-
ented architecture and is completely implemented in Java.  

Current work on DESMO-J includes  
 
• the implementation of dedicated classes for the 

simulation of production systems, 
• an implementation of the object oriented DESMO 

architecture in Delphi and, 
• the integration with a material networks approach 

for industrial environmental management systems. 
 
As every DESMO-J model is a Java program, features 

of Java also apply to DESMO-J. The framework as well as 
implemented models are platform independent. Experi-
ments were run successfully under Solaris, Linux, Win-
dows NT/98/ME and MacOS.  

Java is easy to learn and widely used; thus a modeler 
is most likely not concerned with learning a new pro-
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gramming language. So fast and flexible model develop-
ment compensates for Java’s competitive disadvantage 
with respect to execution speed. Utilities like javadoc 
allow the generation of model documentation from the 
model builder’s comments in the source code.  

Furthermore, introspection as well as remote method 
invocation (RMI) is supported by the standard Java pack-
ages java.lang.reflect and java.rmi respec-
tively. It will be shown later how these features can be 
used with DISMO for collecting information on model 
classes or to instantiate and execute experiments on remote 
machines. DESMO-J is used as a simulator, i.e. a system 
executing (remote) models, in the DISMO framework. In 
contrary to many commercial tools, DESMO-J does not 
require separate licences for remote servers as it is pub-
lished under the GNU public license. 

The source code and a Java archive can be found on 
the DESMO-J website (DESMO-J 2000) together with a 
complete API documentation and an extensive tutorial. For 
more details on DESMO-J the reader is referred to Page et 
al. (2000).  

3 THE EXPERIMENTAL FRAME 

A “specification of the conditions under which the system 
is observed or experimented with” is known as an experi-
mental frame (Zeigler et al. 2000). It “operationally formu-
lates the objectives that motivate a modeling and simula-
tion project”, which can roughly be split into the three 
phases of model building, experiment executions and out-
put analysis.  

Unfortunately, building a model which adequately rep-
resents a real or virtual system of interest still requires 
considerable effort. This task includes an analysis of the 
system, the model’s implementation as well as its verifica-
tion and validation. Realistic model runs additionally re-
quire a collection of adequate data. The work of Bachmann 
(2000) aims at easing the process of model building sig-
nificantly by composing models from distributed and reus-
able modules which communicate on a CORBA-based 
platform independent architecture. In contrary, DISMO 
concentrates on the experimental phase assuming that an 
appropriate model is available to the simulation analyst. It 
could be chosen from a model base or built from existing 
modules, if available; but very often it has to be built 
newly to meet the project’s requirements completely. Once 
a model has been built, these efforts are to be justified by 
profitable results obtained during multiple model runs.  

The experimental phase of a simulation project or 
study usually consists of many model runs or experiments 
with different values set for the model’s parameters. For 
statistical reasons, an experiment itself can be composed of 
many replications, varying only seed values for random 
number generators but keeping application specific pa-
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rameter values fixed. Results of replication runs need to be 
aggregated to a single configuration’s evaluation. 

3.1 Model Parameterization 

To start the experimental phase, DISMO lets the analyst 
initialize a chosen model by setting some values depending 
on the goals of the simulation study. These settings cannot 
be provided in advance by a model builder although de-
fault values might be given. They include the specification 
of which input variables to vary, which output measures to 
observe and how long to simulate.  

As the number of possible parameter vectors grows 
exponentially with the number of variable input parame-
ters, searching this space can be eased by keeping the latter 
small. It helps to consider which parameters do not need to 
be changed during the project’s simulation runs. Some of 
the input parameters may be uncontrollable in the real sys-
tem anyway. Thus their variation could not be imple-
mented later and might not be worth consideration. In a 
different context it just might be the intention to examine 
the consequences of changing some (apparently) uncon-
trollable parameters and to examine whether a big effort 
might pay off. 

Usually the model runs produce much more data than 
necessary. A choice of which responses are relevant and 
worth monitoring should be made before the experiments 
are started as well as how to aggregate or summarize 
model output. It might be necessary to specify start and 
termination points for single runs or to create batch means 
from long runs depending on the model and the project. 

3.2 Replications of Model Runs 

With every experiment, a single configuration of the real 
system is evaluated. It is represented by a vector of input 
parameter values. So the model can be viewed as a com-
plex function mapping a specified system configuration to 
corresponding results.  

Most simulation models contain stochastic elements, 
e.g. probability distributions. They may take random num-
bers as input values and deliver random output correspond-
ing to the distribution’s parameters specified in the model. 
Stochastic input values lead to uncertain, noisy output. 
Thus, one is no longer interested in a single evaluation of 
an input vector but the corresponding means, standard de-
viations, and confidence intervals of the results. This re-
quires multiple replications of each configuration to be run 
in order to average out the output’s stochastic behavior.  

DISMO combines many replications to a model run 
evaluating a certain parameter vector. Each replication 
evaluates the same parameter values but differs from others 
in the initialization of their random number streams. The 
number of replications per run is left adjustable to the ana-
lyst.  
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The output is then aggregated and assessed by an ob-
jective function returning a scalar value. This guarantees 
that outputs of different model runs are comparable with 
respect to the quality defined within the project. For the 
time being DISMO simplifies the task of output analysis 
by simply averaging the objective values corresponding to 
the replication’s outputs. A survey of more precise meth-
ods as well as further references on output analysis are pre-
sented by Kelton (1997 and 1999). DISMO hides replica-
tions from the user, who may only want to quantify the 
number of replications to observe for each configuration. 

3.3 Experimental Design 

The experimental design determines which parameter val-
ues to choose for the model runs at issue. The number of 
possible input parameter vectors grows exponentially with 
the number of input variables. Thus, an exhaustive search 
of the entire solution space is infeasible within reasonable 
time, at least for problems with practical relevance.  

The system configurations to be evaluated should be 
chosen carefully and with the objectives of the simulation 
project in mind to protect a simulation analyst from unsys-
tematic and ineffective “hit-or-miss” sequences of simula-
tion runs. Chapter 12 of Law and Kelton (2000) lists some 
strategies to produce a mature plan of experiments. Their 
goal is to find a small but right fraction of all possible ex-
periments to be run.  

Executing model runs (experiments) according to the 
precedent experimental design generates corresponding 
output data which has to be aggregated and interpreted 
later. Then, useful information, which supports decision 
making, can be obtained from it, hopefully. 

3.4 Simulation Optimization 

A classical experimental design determines the system 
configurations to be evaluated before the simulation runs 
are started. Thus, knowledge about the structure or the be-
havior of the system, which is obtained during the experi-
ments, does not influence the sequence of experiments. 
Unlike classical experimental design, optimization meth-
ods provide new and improved input parameter values 
more systematically. They can even take results of former 
model runs into consideration.  

In contrast to evaluating a set of previously given con-
figurations, a simulation project may aim at optimizing the 
simulated system, i.e. gathering certain values for the 
model’s input parameters, which produce model outputs 
that maximize or minimize a corresponding performance 
measure. This prerequisite demands optimization tools for 
simulation projects. They are capable of finding one or 
more elements of a typically large solution space or search 
space which optimize a given objective function. Concep-
tually DISMO is designed to use any optimization method. 
51
The current prototype uses Genetic Algorithms. This heu-
ristic optimization method suitable for use with simulation 
models will be presented in Section 4.  
 As shown in Figure 1, simulation and optimization are 
arranged cyclically. Starting with a given or randomly gen-
erated set of simulation input values, simulation and opti-
mization alternate until some termination condition is met. 
An application specific objective function is used to rate 
the output corresponding to the simulation input. From a 
simulation analyst’s point of view, the optimization 
method is wrapped around the simulation model; it re-
ceives the model’s aggregated results, evaluates the output 
and generates new input values for the model.  

From an optimization point of view, the model is seen 
as a black box evaluating a complex function which cannot 
be given in a closed form. It transforms the input vectors, 
each representing a different scenario, to outputs which are 
then compared using their objective function’s values.  

 

 

Figure 1: Simulation optimization cycle. Shaded objects 
are application specific and to be provided by the simula-
tion analyst. 

 
The optimization method itself can be customized by 

setting some technical parameters. In case of heuristic 
methods these parameters mainly specify the heuristic’s 
accuracy. For Genetic Algorithms they include the popula-
tion size, the number of generations observed and prob-
abilities for applying the different genetic operators. Con-
sidering a simulation optimization project, the classical 
experimental frame is to be extended by the adjustment of 
these parameters. 

4 GENETIC ALGORITHMS FOR  
SIMULATION OPTIMIZATION 

In simulation models, analytical information about the 
structure of the search space is not available. Particularly, 
there are no derivatives. They could be used to find ex-
trema of the objective function which could then serve as 
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indicators for optimal system configurations. Thus, optimi-
zation methods used in simulation projects have to do 
without this information. Genetic Algorithms (GA) belong 
to the class of direct search strategies. In a direct search 
every considered solution is rated using the objective func-
tion values only. Thus, no closed form of the problem and 
no further analytical information is required to direct the 
search process towards good or preferably optimal ele-
ments of the search space. The execution of a model run 
yields the evaluation data.  

GA simulate the principles of biological evolution for 
the purpose of optimization. As a heuristic optimization 
method, GA do not guarantee to find optimum solutions, 
but they are looking for elements in a given search space 
which are good in terms of a specified measure. As only a 
fraction of the solution space is visited, GA finish after a 
reasonable time. Often, good solutions are found even in 
large spaces for which an exhaustive search would be in-
feasible anyway. 

GA provide a general process model for heuristic opti-
mization. We use GA in simulation projects to find input pa-
rameter values which result in a good or profitable behavior 
of the observed system in terms of the objective measure. 
The intention of the following subsections is to give an idea 
of GA being well suitable to guide the experimental design 
of a simulation project. More detailed literature on GA in-
clude Davis (1991) and Goldberg (1989). In the DISMO 
framework, the Java Distributed Evolutionary Algorithms 
Library (JDEAL), which is described by Costa et al. (2001), 
is used for implementing GA. 

4.1 The Basic Genetic Algorithm 

A Genetic Algorithm (GA) is an iterative, population-
based, direct search strategy. The search space is usually 
given as the solution space of the application. In a simula-
tion project, the solution space is the set of all controllable 
input parameter vectors for the model used, which corre-
spond to feasible configurations of the real system under 
consideration.  

A GA, i.e. its genetic operators do not work on the 
problem’s solutions but rather on representatives. A suit-
able encoding maps solutions (phenotypes) to representa-
tives (genotypes), which are often realized as linear bit-
strings. Arrays of integers or floating-point numbers are 
other realizations of genotypes. By using representatives, 
the genetic operators (selection, crossover, mutation) 
which manipulate the genotypes can be defined and im-
plemented problem independently.  

During every iteration (generation) a GA is working 
on a set (population) of representatives of solutions (indi-
viduals). On the analogy of nature, in every generation the 
fittest members have the highest probability to produce 
offspring using their favorable characteristics. In every 
single generation of a GA, the individuals of the current 
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population are evaluated and ranked according to their fit-
ness. Then some of the individuals are selected to produce 
offspring by a selection operator which prefers individuals 
with higher fitness to guide the algorithm towards promis-
ing regions of the search space. Selected individuals are 
reproduced using a crossover operator (2 ancestors) and/or 
a mutation operator (1 ancestor) with a given probability. 
Finally, a new generation’s population is built and (some 
of) the old individuals are replaced by the new offspring.  

A number of technical parameters is used to control 
the behavior of a GA. They include population size, maxi-
mum number of generations, and probability measures for 
applying the different genetic operators. They adjust the 
balance between exploration of the whole space and ex-
ploitation of certain promising regions. Thus, these pa-
rameters determine the desired accuracy of the heuristic 
algorithm which usually conflicts with fast termination. 

4.2 Customization of Genetic Algorithms  
for Use Within Simulation Projects 

Generally, GA are domain independent and require no 
prior knowledge of the application context. Nevertheless, 
two main components of GA have to be specified depend-
ing on the application in order to be more effective than 
random search: the encoding of solutions (a mapping from 
the decision space to the individual space) and the objec-
tive function (Szczerbicka et al. 1998). So a GA can be 
customized for parameter optimization of simulation mod-
els by implementing these components specifically. 

The objective function connects knowledge on the ap-
plication domain and the encoding. The encoding should 
be chosen regarding the application context, e.g. similar 
solutions to the observed system should be represented by 
similar individuals. The objective function reflects the sub-
jective ratings governing the simulation project and so ef-
fects the calculation of an individual’s fitness. Thus, in 
DISMO the objective is provided with the model or im-
plemented by the simulation analyst with respect to the 
goals of the current project before the experiment runs are 
started. 

Principally, a GA is application independent. 
Michalewicz (1996) poses some guiding questions for the 
implementation of GA concerning the feasibility of interim 
solutions, which are worth consideration. A GA’s genetic 
operators may produce individuals which are infeasible, 
e.g. whose corresponding solutions are not valid in the ap-
plication context. As these solutions’ offspring may be fea-
sible again, new paths through infeasible regions of the 
search space are discovered this way and may lead to fea-
sible regions which would remain undiscovered otherwise. 
In a GA for the parameter optimization of simulation mod-
els, infeasible solutions should be kept off from evaluation 
by simulation as this would waste valuable computation 
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time. Genetic operators can also be implemented to gener-
ally avoid the generation of infeasible solutions.  

4.3 Parallel Genetic Algorithms 

The population-based nature of GA offers a straightfor-
ward approach for parallelism. The individual’s evalua-
tions are categorically independent of each other. When 
applying GA within a simulation project, an individual rep-
resents a vector of concrete input parameter values and an 
individual’s evaluation corresponds to a run or a set of 
replication runs of the underlying model with its parameter 
values. Thus paralleling independent and time consuming 
tasks promises to be a substantial benefit to the overall sys-
tem performance.  

In the literature, different approaches of parallelism in 
GA are reviewed. Global population models consider the 
whole population and parallel crossover and evaluation. 
Coarse grain models or island models build distinct sub-
populations which are observed separately on different 
processors, and allow migration of individuals in a limited 
number only. Last, fine grain models, or cellular GA, 
which can be shown to be a subclass of cellular automata  
assign a separate processor to each individual and restrict 
genetic operation to neighboring individuals (Whitley 
2000). 

The framework described aims at supporting models 
built by different persons who might not consider during 
implementation that later the model runs will be executed 
remotely. Therefore, in DISMO, the evaluation of indi-
viduals, i.e. the simulation runs, are executed on a remote 
server, but one global population is controlled on a single 
client machine. The corresponding class (Experiment-
Manager) is described in Section 6.  

5 REMOTE EXECUTION OF  
SIMULATION RUNS 

Simulation experiments are complex tasks which require 
considerable resources even on modern computer systems. 
When multiple simulation runs are essential for a simula-
tion project, the delegation of experiment execution to a 
number of remote machines is very paying. As communi-
cation overhead can be neglected among independent 
model runs, a near-linear speedup can be achieved. 

5.1 Encapsulated Experiments 

For the purpose of experiment delegation, a coordinating 
machine needs to give its servers a precise instruction of 
their duty. A complete description of a model run including 
input parameter values and a reference to the model class is 
encapsulated in the class SimTask (see Section 6). 

In each iteration, the simulation client constructs 
SimTask objects for every individual of the current popu-
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lation as well as their replications. It then passes them to 
the remote machines and receives the corresponding 
simulation results after the remote model run has finished. 

5.2 Deployment of Simulation Tasks 

In each generation of the optimization process, the popula-
tion represents a set of independent experiments. There-
fore, a set of remote machines is prepared to accept re-
quests for executing model runs. A simple server program 
is located on all available remote machines. Upon activa-
tion, this server process registers itself as the ‘DISMO-
Service’ with the registry of its machine and can then be 
reached from clients supplying the servers with simulation 
tasks to be executed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: UML diagram of RMI related classes of DISMO 
 
A local machine (simulation client) coordinates the 

construction of model run descriptions which are passed to 
the remote servers as a parameter of a remote method call. 
Favourably, every single run is allocated to its own remote 
machine. Even parallel execution of independent simula-
tion runs on a single machine is possible, as DISMO 
organizes every single run into a separate Java thread.  

5.3 Remote Method Invocation 

In the DISMO system, Java Remote Method Invocation 
(RMI) is used to spread the current population of the GA. 
RMI is a core Java API and class library. It supports the 
implementation of remote objects. Methods on remote ob-
jects can be called by local objects as if they were residing 
on the local machine. In the same way, arguments can be 
passed on to the remote servers and return values are re-
ceived (Figure 2). 

To invoke methods on remote objects, a reference to 
the remote object is required. These so called remote refer-
ences are stored in a registry, a small program running on 
the server’s machine. The registry can be asked for the re-
mote reference by the name the remote object is registered 
with. More technical details on RMI can be found in Har-
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old (2000) as well as in the Java API documentation of the 
package java.rmi (Sun Microsystems 2001).  

It is planned to include a Lightweight Directory Ac-
cess Server (LDAP) to control the registered server ma-
chines and to make them known to clients requesting any 
DISMO service. Unlike in the current version, also tasks 
for generating new parameter values and fitness evaluation 
could be executed remotely. 

6 SYSTEM ARCHITECTURE 

The framework DISMO presented in this contribution 
aimes at optimizing systems which are evaluated through 
distributed runs of a discrete simulation model. Therefore, 
the framework involves a simulator, optimization methods 
and a distribution mechanism, all controlled by a simula-
tion study manager (Figure 3). It assumes that an appropri-
ate model and an objective function are supplied by the 
simulation analyst. 

 

Figure 3: DISMO system architecture 

6.1 Simulation Tasks 

Conceptually, DISMO separates a simulation model from 
single experiment runs. The notion of a simulation task is 
introduced to encapsulate concrete parameter values and a 
model specification. It is implemented as a Java class 
SimTask and provides a method execute(), that can 
be activated on a remote machine. For that purpose a Sim-
Task object is passed to a remote server as an argument of 
a remote method call.  

6.2 Model Requirements 

The execution of model runs is to be initialized with different 
parameter values which have to be provided independently 
from the model. Therefore, the model is supposed to imple-
ment the interface Executable which allows introspection 
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of the model for a calling program (SimStudyManager). 
So the types of the model’s input variables can be exported as 
well as default values or feasibility intervals for it’s values, 
where appropriate. No concrete values for parameters (except 
defaults) should be implemented in the model itself.  

The interface Executable enforces a model to pro-
vide methods which inform the SimStudyManager 
about properties of the model, particularly about 

 
• the model’s name including a short description, 
• the name, type, default value, lower and upper 

bound of the model’s parameters,  
• whether a parameter’s value is variable or constant, 
• the model’s result types, 
• the model’s result values. 
 
These details are required to initialize the Experi-

ment- and OptimizationManager as well as to 
check compatibility with the objective function which im-
plements a method evaluate() taking the model’s ag-
gregated result values as input parameters.  

6.3 Distributed Simulation Optimization with DISMO 

Before any experiment is executed, the simulation study 
manager (SimStudyManager) lets the analyst define a 
model and the objective function to use during the project. 
Additionally it collects some required technical parameters 
(e.g. population size, probabilities for genetic operators, 
maximal iteration number and number of replications per 
simulation run) as well as model specific parameters. Fi-
nally it constructs an ExperimentManager, an Opti-
mizationManager and a DistributionManager 
for the current simulation project. 

The OptimizationManager starts to generate the 
first simulation input parameters. The ExperimentMan-
ager constructs SimTask objects and passes them to the 
DistributionManager. The DistributionMan-
ager maintains a list of the available remote services each 
of which represents a server process on a remote machine. 
It deploys SimTask objects as arguments of an RMI call 
to remote machines for execution. After completion the 
simulation results are returned to the Optimization-
Manager where evaluation, selection, recombination and 
replacement result in a new set of parameter values which 
will be used as simulation input for the next iteration. 

7 CONCLUSIONS AND OUTLOOK 

The DISMO Framework successfully implements the func-
tionality of automatic instantiation and execution of simula-
tion experiments. Optimization methods are used to find good 
values for the simulation model’s parameters systematically. 
DISMO also allows the resulting load to be paralleled on 
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available machines across a network, so an almost linear 
speed-up can be achieved by using a LAN of workstations 
which often have some free capacity. Remote execution of 
simulation experiments are realized by using standard Java 
components, from the java.lang.reflect and 
java.rmi API, available from Sun Microsystems (Sun Mi-
crosystems 2001). 

DISMO is an academic framework. Future extensions in-
clude a visualization component. For real world applications 
of the framework a container terminal simulation in coopera-
tion with the port of Hamburg is under consideration. 
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