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ABSTRACT

This paper discusses the validity of using common random
numbers (CRNs) with two-stage selection procedures to im-
prove the possibility of correct selection and discusses the
intrinsic subset pre-selection of the Enhanced Two-Stage
Selection (ETSS) procedure. We propose using CRNs with
Rinott’s two-stage selection and ETSS procedures when
the underlying processes satisfy certain conditions. An
experimental performance evaluation demonstrates the im-
provement in the possibility of correct selection of using
CRNs with two-stage selection procedures and the intrinsic
subset pre-selection of the ETSS procedure.

1 INTRODUCTION

Discrete-event simulation has been widely used to compare
alternative system designs or operating policies. When
evaluating k alternatives, we often would like to select one
as the best and to control the probability that the selected
alternative really is best. Let µi denote the (unknown)
expected response of alternative i . Our goal is to find
the alternative with the smallest expected response µ∗ =
min1≤i≤k µi . If the goal is to select an alternative with
the biggest expected response, just replace min by max in
expression for µ∗. We achieve this goal by using a class
of ranking and selection (R&S) procedures.

Many R&S procedures are directly or indirectly based on
Dudewicz and Dalal’s (1975) or Rinott’s (1978) indifference-
zone-selection procedures. However, their procedures re-
quire the simulation output sequence is independent and
normally distributed. It is known that using common ran-
dom numbers (CRNs) to the simulation of each design
can reduce the variance of estimates of the pairwise differ-
ence of sample means. However, because the assumption
of independent samples across designs is used to develop
the two-stage selection procedures, CRNs are generally not
used with those procedures for variance reduction. For an
overview of existing methods of R&S see Bechhofer, Sant-
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ner, and Goldsman (1995), Goldsman and Nelson (1998),
or Law and Kelton (2000).

Nelson and Matejcik (1995) develop a selection pro-
cedure that does not require independent samples across
systems. They compare their procedure with Clark and
Yang’s (1986) procedure, which is based on the Bonferroni
inequality. Both procedures are valid with CRNs. Nelson
and Matejcik (1995) point out that procedures based on
the Bonferroni inequality become more conservative as the
number of alternatives, k, increases. At some point this
conservatism overwhelms the benefit from CRNs. Instead,
their procedure is based on the assumption that the covari-
ance matrix has a particular structure known as sphericity.
Chick and Inoue (2000) compare the performance of the
indifference-zone procedures of Nelson and Matejcik (1995),
Clark and Yang (1986) and their Bayesian-based procedures.
Both indifference-zone procedures are a bit more difficult
to apply than Dudewicz and Dalal or Rinott’s procedure
because the first-stage data from all k systems must be saved
to compute the required sample size at the second-stage.

Let CS denote the event of “correct selection.” In a
stochastic simulation such a CS can never be guaranteed
with certainty. The possibility of CS denoted by P(C S),
is a random variable dependent on sample sizes and other
uncontrollable factors. Let PI (C S) denote the possibility
of correct selection when samples are independent within
each alternative and across alternatives, and PC (C S) denote
the possibility of correct selection when CRNs are used,
i.e., independent sampling within each alternative but not
across alternatives. The positive effects of using CRNs with
Rinott and ETSS procedures is not guaranteed. However,
our experimental results show that under certain conditions
when input random numbers are positively correlated (a
necessary condition for CRNs to be effective), the possibility
of correct selection PC (C S) is larger than PI (C S) for Rinott
and ETSS (Chen and Kelton 2000c) procedures.

In Section 2 we provide background necessary to un-
derstand our proposed procedure. In Section 3 we present
our proposed procedure for selection. In Section 4, we
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show our empirical-experiment results. In Section 5, we
give concluding remarks.

2 BACKGROUND

This section gives some general background of ranking and
selection procedures and does not involve CRNs. The use
of CRNs will be introduced in Section 3.2.

First, some notation:

Xij : the average of the observations from the j th repli-
cation or batch of the i th alternative,

Ni : the number of replications or batches for alternative
i ,

µi : the expected performance measure for alternative i ,
i.e., µi = E(Xij ),

µ̂i : the sample mean performance measure for alterna-
tive i , i.e.,

∑Ni
j=1 Xij /Ni ,

σ 2
i : the variance of the observed performance measure

of alternative i from one replication or batch, i.e.,
σ 2

i = Var(Xij ),
S2

i (Ni ): the sample variance of alternative i with Ni

replications or batches, i.e., S2
i (Ni ) = ∑Ni

j=1(Xij −
µ̂i )

2/(Ni − 1).

2.1 Indifference-Zone-Selection Procedures

Let µil be the lth smallest of the µi ’s, so that µi1 ≤ µi2 ≤
. . . ≤ µik . Our goal is to select an alternative with the
smallest expected response µi1 . In practice however, if µi1
and µi2 are very close together, we might not care if we
mistakenly choose alternative i2, whose expected response is
µi2 . The “practically significant” difference d∗ (a positive
real number) between a best and next-best alternative is
called the indifference zone in the statistical literature and
represents the smallest difference about which we care.
Therefore, we want a procedure that avoids making a large
number of replications or batches to resolve differences
less than d∗. That is, we want P(C S) ≥ P∗ provided that
µi2 − µi1 ≥ d∗, where the minimal CS probability P∗ and
the “indifference” amount d∗ are both specified by the user.

2.2 The Two-Stage Rinott Procedure

The two-stage procedure of Rinott (1978) has been widely
studied and applied. Let n0 be the number of initial repli-
cations or batches from each alternative. The first-stage
sample means µ̂

(1)
i = ∑n0

j=1 Xij /n0, and sample variances

S2
i (n0) =

∑n0
j=1(Xij − µ̂

(1)
i )2

n0 − 1
,
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for i = 1, 2, . . . , k are computed. Based on the number of
initial replications or batches n0 and the sample variances
S2

i (n0) obtained from the first stage, the number of additional
simulation replications or batches for each alternative in the
second stage is Ni − n0, where

Ni = max(n0, �(hSi (n0)/d∗)2�), for i = 1, 2, . . . , k. (1)

Here �z� is the smallest integer that is greater than or equal
to the real number z, and h (which depends on k, P∗, and
n0) is a constant which solves Rinott’s (1978) integral (h
can also be found from tables in Wilcox, 1984). We then
compute the overall sample means µ̂i = ∑Ni

j=1 Xij /Ni , and
select the alternative with the smallest µ̂i as best. Basically,
the computing budget is allocated proportional to the sample
variances from the first stage.

2.3 Subset Pre-Selection

Goldsman et al. (1999) describe a procedure to pre-select a
subset of alternatives, excluding the other (inferior) alterna-
tives from further consideration. This procedure is denoted
as SSPS in our discussion.

Let µ̂ jl be the lth smallest of the µ̂i ’s from the first stage,
so that µ̂ j1 ≤ µ̂ j2 ≤ . . . ≤ µ̂ jk . Then µ̂ j1 is automatically
included in the subset. For all i �= j1 , let t1−α,n be the 1−α

quantile of the t distribution with n degrees of freedom (df)

t = t
1−(P∗)

1
k−1 ,n0−1

,

S2
i, j1 =

∑n0
j=1(Xij − X j1 j − (µ̂i − µ̂ j1))

2

n0 − 1
, (2)

and

Wi, j1 = t Si, j1 /
√

n0.

Then alternative i will be included in the subset only if
µ̂i − µ̂ j1 ≤ (Wi, j1 − d∗)+, where (a)+ = max(0, a).

2.4 An Enhanced Two-Stage Selection (ETSS) Procedure

Chen and Kelton (2000c) propose an ETSS procedure that
takes into account not only the sample variances but also the
difference of sample means across alternatives. They show
that ETSS procedure achieves P(C S) ≥ P∗ and significantly
reduces the number of total simulation replications or batches
when compares to Rinott’s procedure. Let

ri = max(µ̂i − µ̂ j1, d∗)/d∗, (3)

and

hi = h/ri , (4)
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(here h has the same value as Rinott’s procedure) then
ETSS procedure computes the number of required simulation
replications or batches for each alternative based on the
following formula

Ni = max(n0, �(hi Si (n0)/d∗)2�), for i = 1, 2, . . . , k. (5)

The difference between equations (5) and (1) is that hi

instead of h is used. The information of the difference of
the sample means between alternative designs is embedded
in the value of hi through ri of equation (3), thus, equation
(5) utilizes the information of both the sample means and
variances.

3 METHODOLOGIES

In this section we show the validity of using CRNs with
Rinott and ETSS procedures to increase P(C S). If the
input data are not i.i.d. normal, users can use batch means
(see Chen and Kelton 2000a, b) to obtain sample means
that are essentially i.i.d. normal.

3.1 Prologue

Rinott’s procedure assumes input data are i.i.d. normal and
is based on the least favorable configuration (LFC), i.e.,
µi1 + d∗ = µi2 = . . . = µik . Without loss of generality,
assuming µil − µi1 ≥ d∗ for il �= i1. The possibility of
correct selection is

PI (C S) = P(µ̂i1 < µ̂il , for l = 2, 3, . . . , k).

Let

Ti = µ̂i − µi

d∗/h
,

then

PI (C S) = P(Til ≥ Ti1 − µil − µi1

d∗/h
, for l = 2, 3, . . . , k).

If we let f and F denote the density and distribution function,
respectively, of the t distribution with n0 − 1 degrees of
freedom. By conditioning on Ti1 = t and based on the
LFC, it can be shown that

PI (C S) ≥
∫ ∞

−∞
F (h + t)k−1 f (t)dt ≥ P∗ (6)

see Rinott (1978).
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3.2 Using Common Random Numbers

Rinott’s procedure is derived on the assumption that sam-
ples across alternatives are independent. We show that
using CRNs can improve the probability of correct se-
lection for a given sample size. We assume that, under
properly synchronized CRNs, Cov[Xaj , Xbj ] > 0, further-
more, Cov[Xaj , Xa′ j ′ ] = 0, for any a, a′ and j �= j ′,
because samples are independent within each alternative.
Thus, Cov[µ̂a, µ̂b] > 0 for a �= b. Therefore,

V ar [µ̂a−µ̂b] = V ar [µ̂a]+V ar [µ̂b]−2Cov[µ̂a, µ̂b] (7)

will be smaller than in the case of independent sampling.
While there are examples of CRNs “backfiring” and causing
Cov[µ̂a, µ̂b] < 0 (e.g., Wright and Ramsay 1979), most
analyst agree that such instances are rare and we do not
consider such situations. We will start our discussion with
any pair of alternatives µi1 and µil for l = 2, . . . , k. Thus,
with CRNs

PC (C S) = P[µ̂i1 < µ̂il |µi1 < µil ].

The standard deviation within each alternative from the first
stage is not influenced by CRNs. Thus, the required number
of simulation replications or batches for each alternative
determined by equations (1) or (5) should be consistent
regardless of whether CRNs are used. However, since
V ar [µ̂i1 − µ̂i2 ] should be smaller when CRNs are used, it
is less likely that µ̂i1 − µ̂il will be positive, i.e., that CS
will not occur, since µi1 − µil < 0.

Proposition I: For any pairwise comparison between
µ̂i1 and µ̂il , the probability of correct selection of two-stage
selection procedures is improved when we use CRNs, i.e.,
PC(µ̂i1 < µ̂il ) ≥ PI (µ̂i1 < µ̂il ). Proof: See Appendix A.

Let random variable Yl = µ̂il −µ̂i1 and event El denote
Yl > 0, for l = 2, 3, . . . , k. We can generalize the P(C S)

when the number of alternative is k ≥ 2.

P(C S)

= P(E2 and E3 and . . . and Ek)

= P(E2)P(E3|E2) . . . P(Ek |E2, E3, . . . , Ek−1).

The covariance of Yi and Y j is

Cov(Yi , Y j )

= Cov(µ̂i − µ̂i1 , µ̂ j − µ̂i1)

= Cov(µ̂i , µ̂ j ) − Cov(µ̂i , µ̂i1 ) −
Cov(µ̂i1 , µ̂ j ) + Cov(µ̂i1 , µ̂i1 ).

In the case of independent sampling across alter-
natives, Cov(µ̂i , µ̂ j ) = 0, for i �= j . Therefore,
Cov(Yi , Y j ) = V ar(µ̂i1) > 0 and the correlation coeffi-
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cient ρI = Cov(Yi,Y j )

σYi σY j
> 0, i.e., Ei and E j are positively

correlated. Thus, for l = 3, . . . , k,

PI (El |E2, E3, . . . , El−1) �= PI (El),

and by Slepian’s inequality (Tong 1980)

PI (C S) ≥ PI (E2)PI (E3) . . . PI (Ek).

In the case of CRNs, Cov(µ̂i , µ̂ j ) ≥ 0, for i �= j .
Therefore, Cov(Yi , Y j ) could be positive, zero, or negative.
Let consider the case k = 3 and assume that Y3 and Y2 are
bivariate normal, then the conditional probability density
function of Y3 given Y2 fY3|Y2(y3, y2) has a normal distri-
bution with mean µY3 + ρ(y2 − µY2)σY3/σY2 and variance
σ 2

Y (1 − ρ2). The marginal variance σ 2
Y3

and σ 2
Y2

should
be the same regardless whether CRNs are used. However,
the correlation coefficient with CRNs ρC could be positive,
zero, or negative. If ρC ≥ ρI > 0, then EC(Y3|Y2 >

µY2) ≥ EI (Y3|Y2 > µY2), σ 2
Y (1 − ρ2

C ) ≤ σ 2
Y (1 − ρ2

I ),
and PC (E3|E2) ≥ PI (E3|E2). Therefore, when we use
CRNs with two-stage selection procedures we benefit from
PC (E2) ≥ PI (E2) and maybe PC (El |E2, E3, . . . , El−1) ≥
PI (El |E2, E3, . . . , El−1), for l = 3, 4, . . . , k. However, if
ρI > ρC , then EI (Y3|Y2 > µY2) > EC(Y3|Y2 > µY2) and
we may have PI (E3|E2) > PC (E3|E2). Thus, using CRNs
may “backfire” and causing PI (C S) > PC (C S).

The sample size of the ETSS is determined by both the
sample variance within each alternative and the difference
of sample means across alternatives. If we consider the
factor of the sample variance within each alternative alone,
we will not only increase P(C S) but also reduce the total
number of replications or batches when CRNs are used
with the ETSS procedure. This is because hi is squared in
equation (5) and the variance of µ̂i is reduced when CRNs
are used.

The number of replications or batches allocated in
the second stage will be greater (say by x replications or
batches) if the sample mean is underestimated (µ̂i = µi −ε

for some ε > 0) than using the true mean µi . The number
of replications or batches allocated in the second stage will
be smaller (say by y replications or batches) if the sample
mean is overestimated (µ̂i = µi + ε) than using the true
mean µi . Furthermore, x > y and the difference between
x and y increases as the amount of the deviation ε from
the true mean increases.

For example, let ni be the number of replications or
batches for alternative i at the second stage when we know
the true mean µi , niu be the number of replications or batches
for alternative i when µ̂i = µi − ε, where ε > 0 and nio be
the number of replications or batches for alternative i when
µ̂i = µi +ε. Then x (= niu −ni ) > y (= ni −nio ) because
( h

ri −rε
)2 − (h/ri )

2 > (h/ri )
2 − ( h

ri +rε
)2, where rε = ε/d∗
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and assuming µ̂i − µ̂ j1 > d∗. The difference between
niu − ni and ni − nio increases as the deviation ε from the
true mean increases. Therefore, ETSSC (using CRNs with
the ETSS procedure) can reduce the number of replications
or batches when we reduce the variance of µ̂il .

If we consider the factor of the difference of the sample
mean δi = µ̂i − µ̂ j1 , using CRNs with ETSS may increase
the total number of replications or batches. This is because
with independent sampling when we have unusual large
sample mean µ̂i1 in the first stage µ̂i1 > µ̂ j1 , δi > µ̂i − µ̂i1
and results in smaller total number of replications or batches.
With CRNs when we have unusual large sample mean µ̂i1
in the first stage, sample means of all other alternatives will
tend to large as well. Therefore, most probably µ̂ j1 = µ̂i1
and smaller δi is used and results in larger total number of
replications or batches. Because ETSS uses the value δi to
compute the number of total replications or batches, using
ETSS with CRNs has an additional benefit that it increases
the precision of the difference of the sample means δi .

Note that the subset selection of SSPS requires inde-
pendent sampling across alternatives. Therefore, CRNs and
SSPS cannot be used at the same time. However, we can
use independent sampling at the first stage with subset se-
lection and use CRNs at the second stage of the Rinott and
ETSS procedures. Moreover, ETSS will allocate few or no
replications or batches for inferior alternatives at the second
stage. That is, ETSS has an intrinsic subset pre-selection
built-in. Alternative i having Ni = n0 can be viewed as
being excluded from further consideration. Furthermore,
if N j1 = n0 and µ̂ j1 = min1≤i≤k µ̂i , then alternative j1
will still be returned from our procedure. Therefore, we
recommend using CRNs with ETSS and bypassing SSPS.

4 EMPIRICAL EXPERIMENTS

In this section we present some empirical results with the
Rinott, and ETSS procedures under both independent sam-
pling across alternatives (denoted as RinottI and ETSSI ), as
well as using CRNs (denoted as RinottC and ETSSC ). We
also compare the SSPS and the intrinsic pre-selection of the
ETSS procedure. The purpose of the experiments was not
only to test the methods thoroughly, but also to demonstrate
empirically the efficiency improvement of using CRNs with
these two procedures. For the first three experiments, the
CRNs are completely synchronized, therefore, the covari-
ance structures should be as discussed in the beginning of
Section 3.2. On the other hand, the CRNs are not com-
pletely synchronized in experiment 4, because a portion of
the same random number streams may be used to generate
Xaj as well as Xa′ j ′ , where a �= a′ and j �= j ′. Therefore,
the covariance structures may deviate from our assumptions,
i.e., for some a �= a′ and j �= j ′ Cov[Xaj , Xa′ j ′ ] > 0.
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Table 1: P(CS) and Sample Sizes for Experiment 1

P∗ = 0.90 P∗ = 0.95
n0 Procedure P(C S) 
T P(C S) 
T
20 RinottC 100.00% 5228 100.00% 6637

RinottI 99.32% 5290 99.68% 6725
ETSSC 99.84% 1288 99.96% 1621
ETSSI 94.22% 1222 95.23% 1542

30 RinottC 100.00% 4985 100.00% 6287
RinottI 99.43% 5017 99.79% 6337
ETSSC 99.95% 1259 99.97% 1549
ETSSI 96.50% 1250 97.36% 1532

Table 2: Pre-Selection for Experiment 1

P∗ = 0.90 P∗ = 0.95
D n0 = 20 n0 = 30 n0 = 20 n0 = 30
1 9964/9970 9974/9977 9985/9969 9991/9984
2 9600/9718 9456/9606 9772/9731 9748/9654
3 8800/9116 8278/8663 9239/9102 8925/8671
4 7383/7992 6126/6744 8225/8034 7225/6821
5 5453/6324 3474/3267 6608/6309 4656/4334
6 3388/4373 1443/2067 4562/4322 2313/2081
7 1582/2413 373/642 2633/2502 781/699
8 686/1163 51/161 1176/1152 178/171
9 199/401 10/20 460/436 22/26
10 52/142 3/5 135/133 4/2

4.1 Experiment 1 Equal Variances

There are ten alternatives in the selection subset. Sup-
pose Xij ∼ N (i, 62), i = 1, 2, . . . , 10, where N (µ, σ 2)

denotes the normal distribution with mean µ and variance
σ 2. We want to select an alternative with the minimum
mean, i.e., alternative 1. The indifference amount d∗ is
set to 0.90 for all cases. We estimate the achieved P(C S)

of RinottI and RinottC procedures as well as ETSSI and
ETSSC procedures. To make these estimates we performed
10,000 independent experiments to compute P(C S) = the
proportion of experiments in which the best alternative (al-
ternative 1) was selected, as well as 
T the average over the
experiments of the total number of replications or batches
(T = ∑k

i=1 Ni ). We use two different initial replications,
n0 = 20 and 30.

The results of our experiment 1 are summarized in
Table 1. Note that the P(C S) are all larger than the
specified P∗ = 0.90 and 0.95. RinottC and ETSSC have
better coverage than RinottI and ETSSI procedures with
comparable total number of replications because CRNs are
used. Moreover, the actual coverages of the RinottC are
100%, because CRNs are completely synchronized when
variances are equal, thus, the probability P(µ̂i1 < µ̂il ) = 1,
412
Table 3: Pre-Selection for Experiment 1 using CRNs

P∗ = 0.90 P∗ = 0.95
D n0 = 20 n0 = 30 n0 = 20 n0 = 30
1 10K/10K 10K/10K 10K/10K 10K/10K
2 10K/1629 10K/636 10K/1676 10K/665
3 9999/539 9997/108 10K/555 10K/127
4 9874/70 9173/5 9970/78 9823/13
5 7903/0 2753/0 9287/0 5918/0
6 3315/0 124/0 5838/0 755/0
7 535/0 1/0 1969/0 27/0
8 37/0 0/0 294/0 2/0
9 1/0 0/0 22/0 0/0
10 0/0 0/0 1/0 0/0

for l = 2, 3, . . . , k in this settings. Moreover, ETSSC gains
more improvement in P(C S) than RinottC .

Table 2 lists the results of subset pre-selection from both
SSPSI and ETSSI procedures when samples are independent
across alternatives. The D column list the alternative designs.
The n0 columns list the frequencies of each alternative i
that are included in the subset for further simulation for
both ETSSI and SSPSI with P∗ = 0.90 and 0.95. For
example, the first cell under P∗ = 0.90 and n0 = 20
indicates that 9964 out of those 10,000 experiments (i.e.
99.64%) alternative 1 has Ni > n0 from ETSS and 9970
out of those 10,000 times (i.e. 99.70%) alternative 1 is
included in the subset for further simulations from SSPS.
The pre-selection performance of both procedures are about
the same. Moreover, both procedures perform better with
larger n0.

Table 3 lists the pre-selection results when CRNs are
used. The number 10K denotes 10,000. Both ETSSC and
SSPSC perform better with CRNs. We are not able to show
the validity of SSPSC (using CRNs with SSPS). However,
empirically SSPSC performs much better than SSPSI . In
all cases, the subset contains no more than 4 alternatives.
Equation (2) use correlated pairwise samples in different
alternative to compute the variance, therefore, the variance is
significantly reduced when CRNs are using. On the other
hand, ETSSC uses correlated sample means to calculate
Ni , consequently, the improvement is not as significant as
SSPSC .

4.2 Experiment 2 Increasing Variances

This is a variation of experiment 1. All settings are preserved
except that the variance of each alternative increases as the
mean increases: Xij ∼ N (i, (6 + i/2)2), i = 1, 2, . . . , 10.

The results are in Tables 4, 5 and 6. Because most
alternatives have larger variance than experiment 1, more
replications are needed since we are less confident of the best
selection. Furthermore, the inferior alternatives are excluded
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Table 4: P(CS) and Sample Sizes for Experiment 2

P∗ = 0.90 P∗ = 0.95
n0 Procedure P(C S) 
T P(C S) 
T
20 RinottC 100.00% 10182 100.00% 12935

RinottI 99.43% 10269 99.79% 13023
ETSSC 99.96% 1582 99.98% 2025
ETSSI 93.14% 1592 94.74% 2038

30 RinottC 100.00% 9708 100.00% 12239
RinottI 99.47% 9761 99.81% 12306
ETSSC 100.00% 1460 100.00% 1825
ETSSI 96.02% 1528 96.89% 1911

Table 5: Pre-Selection for Experiment 2

P∗ = 0.90 P∗ = 0.95
D n0 = 20 n0 = 30 n0 = 20 n0 = 30
1 9931/9958 9969/9973 9966/9953 9981/9972
2 9669/9773 9624/9682 9824/9802 9792/9691
3 9219/9345 8869/8975 9571/9355 9326/8988
4 8506/8631 7671/7808 9078/8614 8517/7874
5 7605/7699 6295/6358 8491/7728 7394/6407
6 6590/6588 4775/4700 7693/6706 5974/4675
7 5623/5533 3437/3286 6921/5633 4773/3362
8 4637/4457 2407/2242 5998/4442 3555/2218
9 3781/3580 1610/1413 5102/355 2584/1372
10 2970/2747 1021/814 4360/2750 1862/909

less often because the variances are larger. The RinottC
and ETSSC have better coverage than RinottI and ETSSI

procedures with comparable total simulation replications.
The observed coverages of the RinottC are 100%, even
though the number of replications for each alternative are
tremendously different. The pre-selection performance of
ETSSI and SSPSI is about the same. However, SSPSC

performs much better than ETSSC . Even though inferior
alternatives have larger variance, no more than 5 alternatives
are included in the subset.

4.3 Experiment 3 decreasing Variances

This is another variation of experiment 1. All settings
are preserved except that the variance of each alternative
decreases as the mean increases: Xij ∼ N (i, (6 − i/2)2),
i = 1, 2, . . . , 10.

The results are in Tables 7, 8 and 9. Because most
alternatives have smaller variances than experiment 1, the
total number of replications is smaller. The inferior alterna-
tives are almost always excluded from the subset for further
simulation because their variances are small. Once again,
using CRNs improves P(C S). The actual coverages of the
RinottC are 100%, even though the number of replications
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Table 6: Pre-Selection for Experiment 2 using CRNs

P∗ = 0.90 P∗ = 0.95
D n0 = 20 n0 = 30 n0 = 20 n0 = 30
1 10K/10K 10K/10K 10K/10K 10K/10K
2 10K/2305 10K/1223 10K/2506 10K/1383
3 9999/826 10K/409 10K/908 10K/501
4 9975/258 9911/84 9997/300 9990/109
5 9753/8 8859/1 9935/8 9695/2
6 9016/0 6011/0 9664/0 8259/0
7 7561/0 3078/0 8985/0 5784/0
8 5856/0 1316/0 7839/0 3427/0
9 4204/0 535/0 6533/0 1816/0
10 2897/0 204/0 5202/0 880/0

Table 7: P(CS) and Sample Sizes for Experiment 3

P∗ = 0.90 P∗ = 0.95
n0 Procedure P(C S) 
T P(C S) 
T
20 RinottC 100.00% 2370 100.00% 3009

RinottI 99.46% 2391 99.75% 3033
ETSSC 99.64% 1131 99.81% 1407
ETSSI 95.24% 1047 96.07% 1282

30 RinottC 100.00% 2255 100.00% 2839
RinottI 99.34% 2264 99.70% 2855
ETSSC 99.71% 1138 99.84% 1384
ETSSI 96.66% 1084 97.94% 1320

are different for each alternative. In this setting, the pre-
selection performance of ETSSI performs slightly better
than SSPSI . However, SSPSC has better performance than
ETSSC .

4.4 Experiment 4 Dependent Data Equal Variances

This is another variation of experiment 1 and is designed
to check the robustness of these procedures to violation of
the independence assumption. All settings are preserved
except that data within each alternative are correlated. The
input will be the first-order autoregressive (AR(1)) process,
generated by the recurrence relation

Xij = µi + ϕ(Xi, j−1 − µi ) + ε j , for j = 1, 2, . . . ,

where

E(ε j ) = 0, E(ε j εk) =
{

σ 2 if j = k ,

0 otherwise

0 < ϕ < 1,
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Table 8: Pre-Selection for Experiment 3

P∗ = 0.90 P∗ = 0.95
D n0 = 20 n0 = 30 n0 = 20 n0 = 30
1 9963/9965 9983/9972 9991/9976 9995/9977
2 9532/9701 9374/9559 9736/9708 9640/9592
3 8255/8940 7746/8238 8791/8848 8183/8247
4 5394/7088 3558/5250 6398/7049 4686/5377
5 1979/4305 657/1929 2807/4177 1104/1929
6 232/1583 19/291 468/1553 49/286
7 7/296 0/11 11/258 0/13
8 0/26 0/0 0/18 0/0
9 0/0 0/0 0/0 0/0
10 0/0 0/0 0/0 0/0

Table 9: Pre-Selection for Experiment 3 using CRNs

P∗ = 0.90 P∗ = 0.95
D n0 = 20 n0 = 30 n0 = 20 n0 = 30
1 10K/10K 10K/10K 10K/10K 10K/10K
2 10K/1246 10K/491 10K/1339 10K/476
3 9990/355 9943/54 9994/365 9997/48
4 7608/14 3179/0 8982/16 5876/0
5 1126/0 25/0 2552/0 139/0
6 23/0 0/0 103/0 0/0
7 0/0 0/0 1/0 0/0
8 0/0 0/0 0/0 0/0
9 0/0 0/0 0/0 0/0
10 0/0 0/0 0/0 0/0

and Xi0 is a draw from the steady-state distribution. The
AR(1) process shares many characteristics observed in sim-
ulation output processes, including first- and second-order
stationarity, and autocorrelations that decline exponentially
with increasing lag. If we make the additional assump-
tion that the ε j ’s are normally distributed, since we have
already assumed that they are uncorrelated, they will now
be independent as well, i.e., the ε j ’s are i.i.d. N (0, σ 2).

It can be shown that at Xij has a N (µi ,
σ 2

1−ϕ2 ) distribution

as j → ∞. If we set µi = i , ϕ = 0.5, and σ 2 = 52, then
Xij ∼ N (i, 100/3), i = 1, 2, . . . , 10.

The experimental results are in Tables 10, 11, and
12. All procedures allocate smaller sample sizes in this
experiment than experiment 1, due to a smaller variance
(100/3 < 62) of the Xij input sequence and perhaps de-
pendence within in alternatives. These procedures under-
estimated the variance when data are not independent, con-
sequently, the number of replications is not large enough
and P(C S) is not as good as in previous experiments. The
degradation of the performance is less significant in RinottI

than ETSSI when data are not i.i.d. normal. However, using
CRNs still improve P(C S)’s for both procedures. In fact,
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Table 10: P(CS) and Sample Sizes for Experiment 4

P∗ = 0.90 P∗ = 0.95
n0 Procedure P(C S) 
T P(C S) 
T
20 RinottC 99.86% 4377 99.97% 5555

RinottI 90.82% 4430 93.71% 5636
ETSSC 93.60% 1113 96.02% 1399
ETSSI 68.33% 981 71.13% 1229

30 RinottC 99.99% 4312 100.00% 5435
RinottI 91.71% 4347 93.65% 5485
ETSSC 94.90% 1130 96.48% 1385
ETSSI 74.88% 1054 77.28% 1274

Table 11: Pre-Selection for Experiment 4

P∗ = 0.90 P∗ = 0.95
D n0 = 20 n0 = 30 n0 = 20 n0 = 30
1 10K/10K 10K/9999 10K/9999 10K/10K
2 9938/9951 9913/9913 9961/9938 9979/9916
3 9512/9533 9217/9357 9771/9631 9586/9288
4 8170/8628 6593/7234 8975/8599 7914/7231
5 5666/6684 2861/3796 7149/6616 4388/3817
6 2874/4023 617/1242 4373/4040 1385/1234
7 1080/1940 76/234 1954/1942 217/221
8 229/679 4/23 636/691 23/21
9 71/189 0/0 147/198 2/0
10 2/41 0/0 37/58 0/0

the observed P(C S)’s from the RinottC and ETSSC are all
higher than the specified P∗ despite the autocorrelation in
the input data. The performance of subset pre-selection is
as good as experiment 1 because with CRNs the difference
of the sample means was not significantly distorted, which
preserve the performance of pre-selection even when data
are correlated. Both SSPSC and ETSSC procedures ob-
tain significant improvement of P(C S) with CRNs in this
settings.

5 CONCLUSIONS

Our experimental results show that the marginal effort re-
quired for using CRNs is minimal, yet the achieved efficiency
improvement is significant. We point out that when using
CRNs we can benefit from PC(E2) ≥ PI (E2) and maybe
PC(El |E2, E3, . . . , El−1) ≥ PI (El |E2, E3, . . . , El−1), for
l = 3, 4, . . . , k. Our experimental results also show that the
intrinsic subset pre-selection of the ETSSI procedure per-
forms as well as the SSPSI in normal cases, i.e., independent
sampling across alternatives. Moreover, the ETSS proce-
dure is easier to implement and requires less computation
than SSPS.
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Table 12: Pre-Selection for Experiment 4 using CRNS

P∗ = 0.90 P∗ = 0.95
D n0 = 20 n0 = 30 n0 = 20 n0 = 30
1 10K/10K 10K/10K 10K/10K 10K/10K
2 10K/982 10K/263 10K/1065 10K/261
3 9993/244 9986/24 9999/221 10K/18
4 9409/43 7742/3 9789/38 9267/3
5 6092/5 1829/1 7963/7 4134/0
6 2213/0 97/0 4214/1 610/0
7 427/0 2/0 1391/0 30/0
8 46/0 0/0 281/0 1/0
9 5/0 0/0 32/0 0/0
10 0/0 0/0 4/0 0/0

The average sample size allocated by the ETSSC is
generally larger than ETSSI in our experiments. This is
because using CRNs improve the performance of subset pre-
selection. The procedure correctly increases the number of
promising alternatives being selected in the subset. That
is while the reduction of variance reduce the sample size,
the increase in the precision of the difference of the sample
size increase the sample size. Thus, the final sample size
general increases with CRNs.
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Appendix A. Proof of Proposition I

Proof: Let FN (x) denote the cumulative density function of
the standard normal distribution. If x1 has a N (µ, σ 2

1 ) and
x2 has a N (µ, σ 2

2 ) distribution and σ1 > σ2, then for any
µ > 0 ≥ y, FN (

y−µ
σ1

) > FN (
y−µ
σ2

); because 0 >
y−µ
σ1

>
y−µ
σ2

and FN (x) is a monotonically increasing function.
Let a = µil −µi1 , then a > 0. Since Xij ’s are i.i.d. nor-

mal within each alternative, µ̂il − µ̂i1 = â also has a normal
distribution. Therefore, we will have a smaller probability
of â < 0, i.e., the probability of incorrect selection, with a
smaller variance of â. Let σC denote the variance of â when
common random numbers are used, and let σI denote the
variance of â with independent sampling. From equation
(7), we know that σI ≥ σC . Therefore, PC (C S) ≥ PI (C S)
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