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ABSTRACT

We review chessboard distributions for modeling partially
specified finite-dimensional random vectors. Chessboard
distributions can match a given set of marginals, a given
covariance structure, and various other constraints on the
distribution of a random vector. It is necessary to solve a
potentially large linear program to set up a chessboard dis-
tribution, but random vectors can then be rapidly generated.

1 INTRODUCTION

In the construction of stochastic models, it is often the case
that dependence among the primitive inputs is essential.
Ignoring this dependence and using independent inputs can
result in a model that might not be valid for the system
being modelled:

1. Hodgson et al. (2000) observe that correlations
between various factors play an important role in
determining the statistical properties of real job
shop scheduling problems, which are fundamen-
tally different in nature from those of problems
that are generated artificially.

2. Cost estimation for new projects are nowadays
often accompanied by an analysis of the risk of cost
overruns (Lurie and Goldberg 1998). The analysis
begins by assessing the uncertainty in the individual
elements and then these factors are aggregated into
a distribution of the total cost. Dependence among
the various elements can be very important to this
aggregation.

There is hence a growing realization of the need to
consider the dependence among input random variables
when generating samples for a simulation of a stochastic
model. This translates into the need for a method that can
efficiently generate samples of correlated random variables.
In our study we look at the case where the correlated
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primitive inputs of a model are finite in number and hence
can be characterized jointly as a random vector.

For the case of a finite-dimensional random vector,
its full joint distribution gives complete information about
the dependencies among its components. Hence the ideal
approach would be to try to model and generate from the
complete joint distribution of the random vector. Indeed
several such methods have been suggested, but almost all of
them suffer from some serious drawbacks. Some methods
need an enormous amount of information for modelling the
joint distribution and are hence efficiently implemented only
for random vectors of low dimensionality. These methods
are also usually very specific in nature and cannot be easily
adapted to handle any arbitrary joint distribution. Hence
these methods can become impractical for a model of even
moderate complexity.

A practical alternative is to specify just the marginal dis-
tributions of the components of the random vector along with
some reasonable measure of dependence, like the correlation
or covariance matrix, and require that a joint distribution
be constructed that satisfies the given criteria. This joint
distribution is not necessarily the unique joint distribution
that fully describes the situation, but might be a reasonable
(relative to the application at hand) approximation. The
covariance measure could be Spearman’s rank covariance,
Pearson’s product-moment covariance, Kendall’s τ , or any
other convenient covariance measure.

Hill and Reilly (1994, 2000) describe a method for
constructing joint distributions as probability mixtures or
convex compositions of extremal distributions and the inde-
pendent joint distribution. Extremal distributions are those
that induce the extreme possible correlations between its
components. Whitt (1976) gave the main analytical results
for the bivariate case. While this method is very effective
for random vectors of low dimensions (d <= 3 say), the
computational requirements quickly become expensive for
higher dimensional random vectors.

Meeuwissen and Bedford (1997) study minimally infor-
mative bivariate distributions with uniform marginals and
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a specified rank correlation. These are distributions that
have the maximum entropy, and hence the minimum in-
formation, possible with respect to the independent joint
distribution subject to the constraint of having the right rank
correlation. Minimally informative distributions are used
in constructing tree-dependent and vine-dependent random
vectors. Tree-dependent random vectors (Meeuwissen and
Cooke 1994) are constructed from an undirected acyclic
graph and a set of bivariate distributions for those pairs
of components which are connected in the graph. This
method can generate samples on the fly, and is very easily
implemented. But the input rank correlations this method
can match is limited in number to a maximum of d −1 for a
d-dimensional random vector (Cooke 1997). Cooke (1997)
introduces the vine-dependent random vectors as a gener-
alization of the tree-dependent random vectors to remedy
this limiting disadvantage while maintaining its advantage
of extremely fast generation.

Cario and Nelson (1997) described a method for generat-
ing random vectors with prescribed Pearson product-moment
covariance matrix, which they called the “NORmal To Any-
thing” (NORTA) method. Variations and specializations of
the NORTA method are developed in Mardia (1970), Li
and Hammond (1975) and Iman and Conover (1982). The
NORTA method first starts with a correlated joint normal
random vector and transforms each individual component
through an appropriate inversion function to a corresponding
random variable with the desired marginal distribution. The
correlation matrix of the random vector that results from
the transformation is different from the correlation matrix
of the joint normal vector due to the (generally nonlinear)
transformation. Hence, the correlation matrix for the joint
normal vector has to be chosen such that the correlations that
result from the transformations are exactly those desired.
Cario and Nelson (1997) outline a numerical method for
determining the right correlation matrix for the joint normal
random vector.

The NORTA method capitalizes on the fact that mul-
tivariate correlated normal vectors are easily generated. It
is one of the most efficient general purpose methods avail-
able in practice to generate random vectors. Some of its
attractive features include its generality and ease of im-
plementation. The NORTA procedure, when it works, is
often the method of choice for generating random vectors
with arbitrary marginals and any given feasible covariance
matrix.

One can, however, experience a difficulty while using
the approaches mentioned above. We say that a covariance
matrix is feasible for a given set of marginal distributions
if there exists a random vector (that is, a joint distribution)
with the prescribed marginals and covariance matrix.

A matrix must necessarily be positive semidefinite to
be a feasible covariance matrix, but this condition is not, in
general, sufficient. Consider a random vector that consists
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of an exponential random variable with mean 1 and a
uniform (0,1] random variable. The maximum (minimum)
correlation that can be induced between the two is strictly
less (greater) than +1 (-1). This is because if two random
variables have a correlation of ±1, then one is a linear
function of the other, which clearly cannot hold in this
case. This is also why two exponential random variables
cannot achieve a negative correlation of -1. In general,
the range of correlations that can be achieved between two
random variables is a strict subinterval of the interval [-1,1].
Hence determining the feasibility or not of a given matrix
for a specified set of marginals is not trivial.

Ghosh and Henderson (2001) developed a computa-
tional technique that was then used to show that there are
sets of marginals with feasible covariance matrix that cannot
be matched using either the extremal distributions technique
or the NORTA method. (It is not yet clear whether the vine-
dependent random vector technique can be used to model
all feasible covariance matrices.)

The computational technique involves solving a linear
program to try and construct a chessboard distribution, as
defined in Section 2, that matches the desired marginals
and covariance matrix. We review this technique and its
properties in the remainder of this paper.

Chessboard distributions are perhaps closest in nature
to the “piecewise-uniform copulae” that Mackenzie (1994)
develops. Mackenzie (1994) assumes that a covariance
matrix is feasible for uniform marginal distributions, and
then proceeds to try to identify one with maximum entropy.
In contrast, we do not assume feasibility but develop this
family of distributions as a tool to investigate the feasibility
or not of given covariance matrices.

The next section reviews the construction of a chess-
board distribution and Section 3 shows how to match a
given measure of dependence. Section 4 summarizes the
key theoretical results that we have been able to derive re-
garding the properties of these distributions. Section 5 deals
with an extension where we try to match other information
available regarding the distribution of the random vector.
A consequence of the computational matching procedure is
that when a random vector exists, the procedure returns an
explicit construction of a chessboard distribution for that
random vector, which, it turns out, can be rapidly generated
from. Section 6 deals with the issues involved in generating
from a constructed distribution. Section 7 details topics of
ongoing research.

2 CONSTRUCTING A CHESSBOARD
DISTRIBUTION

Suppose that we wish to generate a random vector with 3
components. The extension to the general d component case
with d ≥ 2 is straightforward. Let Fi denote the desired
marginal distribution function of the ith component, for
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i = 1, 2, 3. In this paper we assume that the distributions
Fi have densities fi (with respect to Lebesgue measure) for
all i. However, much of what follows can be generalized.

We construct a random vector X = (X1, X2, X3) where
the joint distribution of X has a special structure. We
divide �3 into a large grid of rectangular regions (cells)
with sides parallel to the coordinate axes. Within each cell,
the components of X are conditionally independent with
marginal distributions given by the Fis restricted to the cell.
Let n ≥ 1 denote a parameter that is used to determine the
cells. We divide each coordinate direction into n regions.

To be precise, for i = 1, 2, 3 let

−∞ ≤ yi0 < yi1 < ... < yin ≤ ∞

denote breakpoints on the ith axis such that for j =
1, 2, . . . , n

Fi(yij ) − Fi(yi,j−1) = 1/n.

Note that we explicitly allow yi0 = −∞ and yin = ∞ to
capture distributions with unbounded support. The break-
points divide the ith coordinate axis into n intervals of
equal probability with respect to the marginal distribution
function Fi for i = 1, 2, 3.

For 1 ≤ j1, j2, j3 ≤ n define the cell C(j1, j2, j3) to
be the (j1, j2, j3)th rectangular region

{x = (x1, x2, x3) : yi,ji−1 < xi ≤ yi,ji
i = 1, 2, 3} ∩ �3.

Define

q(j1, j2, j3) = P(X ∈ C(j1, j2, j3))

to be the probability that the constructed random vector
appears in the (j1, j2, j3)th cell. To be consistent with the
given marginals, the q(j1, j2, j3) values must satisfy the
constraints

n∑
j2=1

n∑
j3=1

q(j1, j2, j3) = 1/n j1 = 1, . . . , n

n∑
j1=1

n∑
j3=1

q(j1, j2, j3) = 1/n j2 = 1, . . . , n (1)

n∑
j1=1

n∑
j2=1

q(j1, j2, j3) = 1/n j3 = 1, . . . , n

q(j1, j2, j3) ≥ 0 1 ≤ j1, j2, j3 ≤ n.
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The density f (x) of X evaluated at x ∈ C(j1, j2, j3)

is then given by

q(j1, j2, j3)
f1(x1)

1/n

f2(x2)

1/n

f3(x3)

1/n
, (2)

so that conditional on X ∈ C(j1, j2, j3), the components of
X are independent, and are distributed according to the de-
sired marginals f1, f2, f3 restricted to the cell C(j1, j2, j3).
But does X then have the desired marginals?

Theorem 1. If q satisfies the constraints (1), and X is
constructed with density f as given in (2), then X has the
desired marginals.

A proof of this result may be found in Ghosh and
Henderson (2001). We repeat the proof because it is useful
in understanding the nature of chessboard distributions.

Proof: Clearly, f is nonnegative and integrates to 1. We
need only show that the marginals of f are as specified to
complete the proof. Let the marginal density function of
X1 be denoted by g1(·). Then we have to prove that g1 is
equal to f1. For any x ∈ (y1,j1−1, y1,j1), we have that

g1(x)dx

=
n∑

j2,j3=1

P(X1 ∈ [x, x + dx)|X ∈ C(j1, j2, j3)) ×

P(X ∈ C(j1, j2, j3))

=
n∑

j2,j3=1

P(X1 ∈ [x, x + dx)|X1 ∈ (y1,j1−1, y1,j1 ]) ×

q(j1, j2, j3)

=
n∑

j2,j3=1

f1(x) dx

1/n
q(j1, j2, j3)

= nf1(x) dx

n∑
j2,j3=1

q(j1, j2, j3) = f1(x) dx

The first equation follows by conditioning on the cell
in which the random vector lies, and the second by the
conditional independence of X1, X2 and X3 given that X

lies in C(j1, j2, j3). The final equation follows from (1).
A similar result holds for the marginals of X2 and X3, and
so the joint density f has the desired marginals. �

3 MATCHING COVARIANCE

There are several measures of correlation/covariance be-
tween random variables. Two of the most popular are
Pearson’s product moment covariance and Spearman’s rank
correlation. The Pearson product-moment covariance be-
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tween two random variables V and W is given by

cov(V , W) = E(V W) − EV EW

and is well-defined if E(V 2 + W 2) < ∞. The Spearman
rank covariance between V and W is given by

rcov(V , W) = cov(F (V ), G(W))

= E[F(V )G(W)] − E[F(V )]E[G(W)],

where F and G are the distribution functions of V and
W respectively. In contrast to product-moment covariance,
the rank covariance is always well-defined and finite since
F(V ) and G(W) are bounded random variables. Indeed,
if F is continuous, then F(V ) has a uniform distribution
on the interval (0, 1). Another attractive property of rank
covariance that is not shared by product-moment covariance
is that rank covariance is preserved under strictly increasing
transformations, i.e., if h is a strictly increasing function,
then rcov(h(V ), W) = rcov(V , W).

We give methods for matching both rank and product-
moment covariance. In both cases we restrict attention to
the case where the marginal distributions all have densities.
First we consider rank covariance.

3.1 RANK COVARIANCE

Let X be a random vector of the form introduced in the
previous section. Let �X denote the actual rank covariance
matrix of X, and let � denote the desired rank covariance
matrix of X. In order to match �X to �, it suffices to look at
the elements above the diagonal, since covariance matrices
are symmetric, and the diagonal elements of �X are 1/12
(recall that Fi(Xi) is uniformly distributed on (0, 1), since
F has a density and is therefore continuous). Our approach
is to construct a random vector as given in the previous
section that minimizes the distance r(�, �X) between �

and �X, where

r(�, �X) =
∑

1≤i<j≤3

|�(i, j) − �X(i, j)| .

In other words, we wish to

min r(�, �X), (3)

subject to the constraints (1).
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The rank covariance �X(1, 2) between X1 and X2 is
given by

E[F1(X1)F2(X2)] − E[F1(X1)]E[F2(X2)]
= E[F1(X1)F2(X2)] − 1

4
(4)

=
∑

j1,j2,j3

E[F1(X1)F2(X2)|X ∈ C(j1, j2, j3)] ×

q(j1, j2, j3) − 1

4

=
∑

j1,j2,j3

{ E[F1(X1)|X ∈ C(j1, j2, j3)] × (5)

E[F2(X2)|X ∈ C(j1, j2, j3)] }q(j1, j2, j3) − 1

4

=
∑

j1,j2,j3

(2j1 − 1)

2n

(2j2 − 1)

2n
q(j1, j2, j3) − 1

4
. (6)

Equation (4) follows since Fi(Xi) have uniform distribu-
tions on (0, 1) for all i. The equality (5) holds because
conditional on X lying in a specified cell, the components
of X are independent. The final equality (6) holds be-
cause conditional on X lying in cell C(j1, j2, j3), Fi(Xi)

is uniformly distributed on the interval

(
ji − 1

n
,
ji

n

)
,

for i = 1, 2, 3.
Equation (6) gives the rank covariance between X1

and X2 as a linear function of q(·, ·, ·). We can do the
same for X2 and X3, and X1 and X3. Using standard
linear programming techniques, we can then reexpress (3)
to remove the nonlinear absolute values. In particular, we
can use the linear program

min
∑

1≤i<j≤3 z+
ij + z−

ij

z+
ij − z−

ij = �(i, j) − �X(i, j) i < j

z+
ij , z

−
ij ≥ 0 i < j

together with the constraints (1) to identify the distribution
of X.

For a d-dimensional random vector, this linear program
has n3 +d(d −1) variables and d(d −1)/2+dn constraints.
In the 3-dimensional case, the variables are the q(j1, j2, j3)

(1 ≤ j1, j2, j3 ≤ n) which appear implicitly in the term
�X(i, j), and the z+

ij , z
−
ij (1 ≤ i < j ≤ 3).

We can tighten the feasible region of the linear program
through the addition of bounds on the z+

ij and z−
ij variables.

These bounds are obtained by first assuming the existence
of a random vector Z with the desired marginals and rank
covariance matrix �. We then convert Z into another random
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vector Z̃ that gives a feasible solution to the above LP. This
is done by setting q(j1, j2, j3) = P(Z ∈ C(j1, j2, j3)) for
all j1, j2, j3, and then creating the density of Z̃ from q(·, ·, ·)
as in the previous section. One can bound the change in
the rank covariance matrix when transforming from Z to Z̃

in this fashion, and these bounds translate into bounds on
the z+

ij and z−
ij variables. See Ghosh and Henderson (2001)

for details.

3.2 PRODUCT-MOMENT COVARIANCE

Now suppose that the marginals of X have finite second mo-
ments, and we want the actual product-moment covariance
matrix �X to match the desired product-moment covariance
matrix �. The diagonal elements of the covariance matrices
� and �X are determined by the marginal distributions,
and so our objective is again to

min r(�, �X),

subject to the constraints (1).
Using similar reasoning to that used for computing the

rank covariance, we find that for i �= k,

�X(i, k) =
∑

j1,j2,j3

γi(ji)γk(jk)q(j1, j2, j3) − EXiEXk,

(7)
where, for 1 ≤ i ≤ 3 and 1 ≤ m ≤ n,

γi(m) = E[Xi |Xi ∈ (yi,m−1, yim]]

is the conditional mean of Xi given that it lies in the mth
subinterval.

Thus, we have again expressed �X(i, k) as a linear
function of q. To match the desired covariance matrix �,
we solve the linear program

min
∑

1≤i<j≤3 z+
ij + z−

ij

z+
ij − z−

ij = �(i, j) − �X(i, j) i < j

z+
ij , z

−
ij ≥ 0 i < j

together with the constraints (1). Here, we use the expres-
sion (7) for �X in place of (6).

In the case where all of the marginal distributions have
bounded support, we can tighten the feasible region through
the addition of explicit bounds on the z+

ij and z−
ij variables

(Ghosh and Henderson 2001). These additional bounds are
important, because they enable one to provide a “feasibiliy
check” for a given covariance matrix; see Section 4. The
bounds in Ghosh and Henderson (2001) require that the
maximum side-length of a cell converges to 0 as n → ∞.
This may not be true with our existing cell layout if one
of the marginal distribution functions has a “flat patch”,

3

i.e., there is some i and x < y such that Fi(x) = Fi(y).
However, if we redesign the cell layout so that the maximum
side-length of a cell converges to 0 as n → ∞, which is
easily done, then we can add explicit bounds.

When some of the marginals have unbounded support,
we do not have explicit bounds on these variables.

4 PROPERTIES

We have now introduced linear programs for constructing
chessboard distributions with given marginals and covari-
ance matrix. But how effective are these methods? In this
section we summarize key results from Ghosh and Hen-
derson (2001) on this topic without proof. In giving these
results, we allow the random vector to have arbitrary, but
finite, dimension d > 1. We restrict attention to marginal
distributions with densities and bounded support, but we
believe that most of the results can be established under
weaker conditions.

Definition 1. We say that a product-moment covariance
matrix � is product-moment-feasible for a given set of
marginal distributions if a random vector can be constructed
with the given marginals and product-moment covariance
matrix.

We can similarly define rank-feasible covariance ma-
trices for a given set of marginals.

Theorem 2. Suppose that all of the marginal distributions
have densities and bounded support. Then a covariance
matrix is product-moment-infeasible (rank-infeasible) for
the marginals if, and only if, the chessboard LP constructed
earlier to match product-moment covariances (rank covari-
ances) is infeasible for some n ≥ 1.

This result establishes that if one of the LPs is infeasible
for any discretization level n, then the proposed covariance
matrix is infeasible. Furthermore, the theorem establishes
that if a covariance matrix is infeasible, then one will
eventually discover this by solving an LP with n sufficiently
large.

To our knowledge, this is the first example of a tight
characterization of infeasible covariance matrices for random
vectors of dimension d ≥ 3.

Of course, we are more interested in a positive result.
Given the sharp characterization in Theorem 2, it would
be nice if chessboard distributions could exactly match any
arbitrary feasible covariance matrix. Unfortunately, this is
not the case, as the following example shows.

Example 1. Suppose that Z1 = Z2 is uniformly distributed
on (0, 1), so that cov(Z1, Z2) = var(Z1) = 1/12. For
given n, the covariance between X1 and X2 is maximized
by concentrating all mass on the cells (i, i), and so q(i, i) =
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n−1 for 1 ≤ i ≤ n. In that case, we have that

cov(X1, X2) = 1

12
− 1

12n2

Therefore, cov(X1, X2) < 1/12 for all finite n.

This example shows that chessboard distributions can-
not exactly match all feasible covariance matrices. Notice
though, that the error in the covariance matrix can be made
arbitrarily small. In fact it is possible to show, for cer-
tain marginals, that chessboard distributions can arbitrarily
closely approximate any feasible covariance matrix.

Theorem 3. Suppose that the marginal distributions have
densities and bounded support, and that �pm (�r) is
product-moment (rank) feasible. Then for all ε > 0,
there exists a chessboard distribution with product-moment
(rank) covariance matrix �pm (�r) with the property that
r(�pm, �pm) < ε (r(�r, �r) < ε).

Not only can chessboard distributions closely approx-
imate any feasible covariance matrix, but they can exactly
match “almost all” feasible covariance matrices. To for-
mulate and state this result precisely, we need some more
terminology and a definition.

Suppose that the marginal distributions F1, . . . , Fd are
fixed. We can, with an abuse of notation, view a d × d

covariance matrix as an element of d(d − 1)/2 dimen-
sional space. This follows because there are d(d − 1)/2
elements above the diagonal, the matrix is symmetric, and
the diagonals are determined by the marginal distributions.
Let �pm (�r) denote the set of feasible product-moment
(rank) covariance matrices. We view these sets as subsets
of d(d − 1)/2 dimensional space. Ghosh and Henderson
(2001) prove the following two results.

Proposition 4. If the marginal distributions have densi-
ties and bounded support, then the sets �pm and �r are
nonempty, convex, closed and full-dimensional.

Let A◦ denote the interior of the set A.

Theorem 5. Suppose that the marginal distributions have
densities and bounded support. Then there is a chessboard
distribution with product-moment (rank) covariance matrix
�pm (�r) if, and only if, �pm ∈ �◦

pm (�r ∈ �◦
r ).

In summary then, under certain assumptions on the
marginal distributions, chessboard distributions

• can arbitrarily closely approximate any feasible
covariance matrix,

• can exactly match any feasible covariance matrix
in the interior of the set of feasible covariance
matrices, but
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• cannot exactly match any covariance matrix on the
boundary of the set of feasible covariance matrices.

We have stated all of these results under the assumption
that the marginal distributions have densities and bounded
support. We believe that the results apply more generally,
and are working on extending these results to more general
marginals.

5 OTHER CONSTRAINTS

In the previous sections we developed a method for con-
structing a partially specified random vector and stated
some of its theoretical properties. In particular, we looked
at random vectors with prescribed marginals and covariance
matrix. But one may have other forms of information about
the random vector. Clemen, Fischer and Winkler (2000)
surveyed and presented a variety of measures chosen pri-
marily for their potential use in eliciting information from
experts. Among those presented were correlations and the
measures presented below.

Those measures that, for chessboard distributions, can
be expressed as linear functions of the q(j1, j2, j3)s can
be incorporated as requirements into our LPs either as
constraints or as part of the objective function. Therefore,
for each measure, we consider whether it can be expressed
in linear form or not. For simplicity, we assume that all of
the marginals have densities.

1. (Joint probabilities.) For fixed i �= j, bi and bj ,
let

JPij (bi, bj ) = P(Xi ≤ bi, Xj ≤ bj )

be the joint probability that Xi is at most bi and Xj is
at most bj . Then JPij (bi, bj ) can be represented as
a linear function of the variables q(·, ·, ·) introduced
in Section 2. This is particularly straightforward if
bi and bj coincide with breakpoints between cells,
but also holds even if this is not the case. Let
i = 1 and j = 2. Then, for any x = (x1, x2, x3),
assuming that the points (b1, b2, ·) belong to the
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cells C(J1, J2, ·), we can write

JP12(b1, b2)

=
∫ b1

−∞

∫ b2

−∞

∫ +∞

−∞
f (x) dx

=
J1−1∑
j1=1

J2−1∑
j2=1

n∑
j3=1

q(j1, j2, j3)

+nA1(b1)

J2−1∑
j2=1

n∑
j3=1

q(J1, j2, j3)

+nA2(b2)

J1−1∑
j1=1

n∑
j3=1

q(j1, J2, j3)

+n2A1(b1)A2(b2)

n∑
j3=1

q(J1, J2, j3)

where, for i = 1, 2, 3,

Ai(bi) =
∫ bi

yi,Ji−1

fi(xi) dxi .

Clearly, this expression is linear in the variables
q(·, ·, ·).

2. (Conditional fractiles.) For fixed i �= j and 0 <

p < 1, let

CFij (p) = E[Fi|j (Xi)|Fj (Xj ) = p]

be the conditional expectation of a percentile of Xi

given that Fj (Xj ) = p. Let i = 1 and j = 2. Let
J2 be such that F−1

j (p) ∈ {y2,J2−1, y2,J2}. Then
it is possible to show that

CF12(p) = E[F1|2(X1)|F2(X2) = p]

= 1

2

n∑
j1=1

n∑
j3=1

q(j1, J2, j3) (2j1 − 1)

Thus, CF12(p) is also a linear function of the
variables q(·, ·, ·).

3. (Concordance probabilities). Let i �= j be fixed,
and let X and Y be independent, identically dis-
tributed random vectors. Let

CNCij = P(Xi > Yi |Xj > Yj ).

This performance measure can be expressed as a
quadratic function of the variables q(·, ·, ·), but
not as a linear function. Therefore, to incorpo-
rate this measure into the chessboard distribution
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calculation, one would have to solve a quadratic
program.

Extending the theoretical results of the previous section
to incorporate LPs with these additional constraints is the
subject of ongoing research.

6 GENERATION

How should one go about generating random vectors with a
chessboard distribution? Many methods are possible. The
methods vary in terms of their time and storage requirements
for setup, and for generating random vectors once the setup
is complete. In this section we sketch an approach that
requires a moderate amount of time and storage for setup,
but once the setup is complete requires very little time to
generate random vectors.

Let d denote the dimension of the random vector X

with marginal distribution functions F1, . . . , Fd . Suppose
that q(·, . . . , ·) is the solution to one of the linear programs
discussed earlier. We propose the following 2-step proce-
dure for generating chessboard random vectors with these
characteristics.

1. Generate the indices (j1, . . . , jd) of the cell con-
taining X from the probabilities q(·, . . . , ·).

2. Generate X from its conditional distribution given
that it lies in the cell C(j1, . . . , jd).

The first step can be performed efficiently using, for
example, the alias method. The alias method, developed by
Walker (1977) and discussed in detail in Law and Kelton
(2000), can generate the appropriate cell in constant time,
and requires O(m) storage and O(m) setup time, where
m is the number of positive q(j1, j2, . . . , jd) values. If
q(·, . . . , ·) is an extreme-point solution to one of the linear
programs developed earlier, then there are on the order of
nd strictly positive cell probabilities. This follows from a
standard result in linear programming that any extreme point
solution to a system of m linear equalities in nonnegative
variables has at most m strictly positive values. The exact
number of positive values depends on the number of equality
constraints in the LP and the degree to which the extreme-
point solution is degenerate. (A degenerate extreme-point
solution is one with less than m strictly positive values.)

The fact that m = O(nd) is relatively small can be
viewed as an advantage with respect to variate generation
since it reduces the setup time required to implement the alias
method. However, it can also be viewed as a disadvantage
in terms of modeling power. For a given dimension d and
discretization level n there are nd cells. Of these, O(nd)

receive strictly positive probabilities q(j1, . . . , jd). So as
the dimension d increases, the fraction of cells receiving
positive probabilities is vanishingly small. This means that
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the set of values that the random vector X can assume is
somewhat limited.

Mackenzie (1994) prevents this situation from aris-
ing by maximizing the entropy of the discrete distribution
q(·, . . . , ·). In this case, all of the cells receive positive prob-
ability. However, the problem of maximizing the entropy
of q subject to linear constraints is a convex optimization
problem that is more difficult to solve than the LPs discussed
in this paper. The degree to which this “sparsity” issue is,
indeed, an issue is the subject of current research, as are
methods to deal with it.

Let C(j1, . . . , jd) denote the cell chosen in Step 1
above. Conditional on X lying in this cell, the components
X1, . . . , Xd of X are conditionally independent. Thus, in
Step 2, we can independently generate each component
from its respective conditional (marginal) distribution. Any
standard univariate generation method can be specialized to
this problem, including inversion and acceptance-rejection.

7 FUTURE RESEARCH

In this paper we have described some of the key ideas
and results on chessboard distributions. Several questions
remain the subject of ongoing research.

1. To what degree can one relax the assumptions on
the marginal distributions and still prove results of
the form presented here?

2. Is it possible to extend the notion of a chessboard
distribution to enable the generation of “boundary”
covariance matrices?

3. What other aspects of joint distributions might be
specified by a user, and can chessboard distributions
be selected to capture this information?

4. The linear programs that we need to solve to con-
struct a chessboard distribution could be very large.
Can they be solved more efficiently than through
a general-purpose linear programming code?

5. Is the “sparsity” issue discussed in Section 6 a
problem, and if so, are there elegant and appropriate
methods for resolving it?
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