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ABSTRACT

We present a new method for obtaining confidence intervals
in steady-state simulation. In our replicated batch means
method, we do a small number of independent replications to
estimate the steady-state mean of the underlying stochastic
process. In order to obtain a variance estimator, we further
group the observations from these replications into non-
overlapping batches. We show that for large sample sizes,
the new variance estimator is less biased than the batch
means variance estimator, the variances of the two variance
estimators are approximately equal, and the new steady-state
mean estimator has a smaller variance than the batch means
estimator when there is positive serial correlation between
the observations. For small sample sizes, we compare our
replicated batch means method with the (standard) batch
means and multiple replications methods empirically, and
show that the best overall coverage of confidence intervals
is obtained by the replicated batch means method with a
small number of replications.

1 INTRODUCTION

The problem of constructing a confidence interval on the
steady-state mean µ of a stationary process {Xi }i≥1 often
arises in simulations. This requires a point estimator for
µ and also an estimator for the variance of that point
estimator. The usual point estimator for µ is the sample
mean, X̄n = ∑n

i=1 Xi/n, where n is the total number of
observations. The more challenging part of constructing a
confidence interval is estimating the variance of the sample
mean, or equivalently, σ 2

n = nV ar(X̄n). If the number of
observations n is large, then the experimenter can instead
estimate the variance parameter, σ 2 = limn→∞ σ 2

n .
There is a significant amount of research on the prob-

lem of obtaining a “good” estimator for σ 2 in the discrete-
event simulation literature (see, e.g., Alexopoulos and Seila,
1998). Two of the most popular methods for estimating
σ 2 are the method of batch means (BM) and the method
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of multiple independent replications (MR). With the BM
method, the observations obtained from one long run are
grouped into non-overlapping batches to estimate σ 2. With
the MR method, on the other hand, σ 2 is estimated based on
the replication means obtained from the independent repli-
cations (which usually start in the same initial conditions).
We provide a more detailed background on these methods
in Section 2.

The trade-off between making a single long run and
many independent replications is studied by many authors in
the simulation literature (see, e.g., Kelton and Law, 1984,
Whitt, 1991, and the references therein). Most of these
studies provide supporting evidence in favor of making one
long run (which is the case for the BM method). This
is in part due to the fact that the MR method has more
data that is contaminated by initialization bias than the BM
method (due to using initial conditions that do not represent
the long-run behavior of the underlying stochastic process).
The most familiar method for dealing with the initialization
bias is to truncate some of the initial observations from each
replication. This implies that the MR method wastes more
data than the BM method.

However, the MR method also has some benefits. One
advantage of the MR method is that the replication means
are independent. For the BM method, on the other hand,
the batch means are usually positively correlated. Another
advantage of using multiple replications is that there is a
chance to start the individual replications in different initial
states and observe various different sample paths of the
underlying stochastic process. This is especially useful for
stochastic processes such as nearly decomposable Markov
chains. In such situations, if the single run of the BM
method is not long enough, the experimenter may not detect
any abnormalities in the process. With several independent
replications, on the other hand, there is a chance that the
special structure of the Markov chain might be caught.

In this study, our objective is to introduce a new confi-
dence interval estimation method that combines the advan-
tages of the BM and MR methods. For this purpose, we
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suggest collecting a total of n observations in k > 1 inde-
pendent replications. We assume that k is small so that we
cannot simply use the replication means to obtain a variance
estimator. Therefore, after collecting the data in k indepen-
dent replications, we further partition the observations in
each replication (possibly after accounting for initialization
bias by truncating some of the initial observations) into
b > 1 batches, each consisting of m observations. Hence,
the total number of batches will be kb. We refer to this
method as the replicated batch means (RBM) method.

Since our RBM method involves doing more than one
replication, it has fewer correlated batches than the BM
method and has the potential to observe different sample
paths of the underlying stochastic process that start in dif-
ferent initial conditions. Moreover, since the RBM method
uses a smaller number of replications than the MR method,
its steady-state mean estimator is likely to be less biased
than the steady-state mean estimator obtained by the MR
method. Also, with the RBM method, less data will be
deleted (due to initialization bias) than with the MR method.

This paper is organized as follows. In Section 2, we
provide background material on the BM and MR methods.
In Section 3, we introduce the RBM method and present
our asymptotic results for the estimators for µ and σ 2. We
compare these results to the corresponding results for the
BM method in Section 4. In Section 5, we present numerical
results for the RBM, BM, and MR methods applied to a
single example. Finally, we give our concluding remarks
in Section 6.

2 BACKGROUND

2.1 Batch Means (BM)

In Sections 2, 3, and 4 of this paper, we assume that the
underlying stochastic process {Xi }i≥1 is stationary. The
original BM method makes a single long run and then
partitions the observations X1, . . . , Xn from this run into
kb > 1 non-overlapping batches, each consisting of m
observations (we assume that n = kbm). Then,

X̄ j = 1

m

m∑
i=1

X( j−1)m+i

is the j th batch mean, where j = 1, . . . , kb, X̄ B M =∑n
i=1 Xi/n is the point estimator for the steady-state mean

µ, and

V̂B M = m

kb − 1

kb∑
j=1

(
X̄ j − X̄ B M

)2

is the BM estimator for σ 2
n = nV ar(X̄ B M ). When the

number of batches kb is fixed and m is large, we can assume
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that the batch means are approximately i.i.d. (independent
and identically distributed) normal random variables (see,
e.g., Glynn and Iglehart 1990). Therefore, an approximate
100(1 − α)% confidence interval for µ is given by

µ ∈ X̄ B M ± tkb−1,α/2

√
V̂B M/n,

where td,α/2 is the 1 − α/2 quantile of the t distribution
with d degrees of freedom.

2.2 Multiple Replications (MR)

For the multiple independent replications method, kb inde-
pendent replications of the underlying stochastic process,
each of length m observations, are performed to estimate
µ and σ 2. We define X (r)

i to be the i th observation from
the r th replication for i = 1, . . . , m and r = 1, . . . , kb. We
also let

Ȳr = 1

m

m∑
i=1

X (r)
i

be the r th replication mean, where r = 1, . . . , kb. This
yields the point estimator X̄ M R = ∑kb

r=1 Ȳr/kb for µ.
A point estimator for σ 2 can be obtained by the sample
variance,

V̂M R = m

kb − 1

kb∑
r=1

(
Ȳr − X̄ M R

)2
.

Finally, note that when m is large, we can assume that
Ȳ1, . . . , Ȳkb are approximately i.i.d. normal random vari-
ables. Therefore, an approximate 100(1 − α)% confidence
interval for µ is given by

µ ∈ X̄ M R ± tkb−1,α/2

√
V̂M R/n.

3 REPLICATED BATCH MEANS (RBM)

As we mentioned earlier, the RBM method involves run-
ning a small number k of independent replications of the
underlying stochastic process and grouping the observations
in each replication into b non-overlapping batches of size
m. Let

X̄ (r)
j = 1

m

m∑
i=1

X (r)
( j−1)m+i

be the j th batch mean of the r th replication, where r =
1, . . . , k and j = 1, . . . , b, X̄ R B M = ∑k

r=1
∑bm

j=1 X (r)
j /n

be the point estimator for µ, and
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V̂R B M = m

kb − 1

k∑
r=1

b∑
j=1

(
X̄ (r)

j − X̄ R B M

)2

be the RBM estimator for σ 2. For stationary processes,
we can assume that the batch means obtained from each
replication are approximately i.i.d. normal random variables
(the batch means from different replications are always
independent). With this assumption, we obtain the following
approximate 100(1 − α)% confidence interval for µ,

µ ∈ X̄ R B M ± tkb−1,α/2

√
V̂R B M/n

(for a rigorous proof and explicit conditions, we refer the
reader to Andradóttir and Argon 2001).

Before we state our results on the asymptotic expec-
tation and variance of X̄ R B M and V̂R B M for a station-
ary process {Xi }i≥1, we define the covariance function
R j = Cov(X1, X1+ j ), j = 1, 2, . . ., and the relevant
quantity γ = −2

∑∞
j=1 j R j . We also use the notation

g(n) = O( f (n)) to express that |g(n)/ f (n)| ≤ C for some
constant C and all n ≥ 1, and g(n) = o( f (n)) to indicate
that g(n)/ f (n) → 0 as n → ∞.

We first study the properties of the point estimator,
X̄ R B M . Since the stochastic process under consideration is
assumed to be stationary, X̄ R B M is an unbiased estimator
for the steady-state mean (i.e., E[X̄ R B M ] = µ). Thus, the
mean squared error of the estimator, M SE(X̄ R B M ), equals
V ar(X̄ R B M). The next result gives an expression for the
variance of X̄ R B M .

Theorem 1. Under mild moment and mixing conditions
(see Andradóttir and Argon 2001), we have

V ar
(
X̄ R B M

) = σ 2

kbm
+ γ

kb2m2 + o

(
1

m2

)
.

We next present our results on the expected value,
variance, and mean squared error of the RBM variance
estimator, V̂R B M , for large m.

Theorem 2. Under the same conditions as in Theorem 1,
we have

E
[
V̂R B M

] = σ 2 +
(
kb2 − 1

)
γ

(kb − 1) bm
+ o

(
1

m

)
.

Theorem 2 shows that, as m → ∞, V̂R B M is an asymp-
totically unbiased estimator for σ 2, regardless of the choice
of k and b.
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Theorem 3. Under slightly more restrictive moment and
mixing conditions than the ones needed to prove Theorems
1 and 2 (see Andradóttir and Argon 2001), we have

kbV ar
(
V̂R B M

) = 2kb (kb + 1) σ 4

(kb − 1)2 + O

(
1

m1/4

)

+ O

(
1

kb

)
= 2σ 4 + o (1) , (1)

as m → ∞ and kb → ∞.

From Theorems 2 and 3, we have

M SE
(
V̂R B M

) = γ 2

m2
+ 2σ 4

kb
+ o

(
1

m2

)
+ o

(
1

kb

)
. (2)

Hence, for large m and kb, the estimator V̂R B M is consistent
in mean square.

4 BM vs. RBM

In this section, we compare our results obtained in Section
3 with the corresponding results for the BM method. First,
we note that by the stationarity of the underlying stochastic
process, both X̄ B M and X̄ R B M are unbiased estimators for
the steady-state mean (i.e., E[X̄ R B M ] = E[X̄ B M ] = µ).
Therefore, comparing the variances of X̄ B M and X̄ R B M is
equivalent to comparing their mean squared errors. From
Song and Schmeiser (1995) and Theorem 1 above, we get

V ar
(
X̄ B M

) − V ar
(
X̄ R B M

) = (1 − k)γ

k2b2m2
+ o

(
1

m2

)
.

Thus, if γ < 0 (e.g., if R j ≥ 0 for all j ∈ {1, 2, . . .},
corresponding to a stochastic process with positive serial
correlation), then the RBM method offers a point estimator
with a smaller variance than the point estimator obtained by
the BM method for large m. This is a notable result, since
positive correlation occurs frequently in simulations (for
example, the waiting time processes in various queueing
systems exhibit positive correlation).

We now turn our attention to the confidence intervals
for µ obtained by the BM and RBM methods. The half-
length of a generic 100(1 − α)% confidence interval is
defined by H = td,1−α/2(V̂ /n)1/2, where d is the number of
degrees of freedom, V̂ is the variance estimator, and n is the
total number of observations. Among confidence interval
estimation methods achieving coverage of approximately
1 − α/2, the one with the smallest E[H ] is preferred, and
then that with the smallest V ar(H ). For both the BM
and RBM methods, we have d = kb − 1 and n = kbm.
Hence, the only term that is different in the half-lengths
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of the confidence intervals obtained by the BM and RBM
methods is the variance estimator. Therefore, a comparison
of the variance estimators obtained by the two methods
for large m will also yield insights about the half-length
estimators in the resulting confidence intervals.

We conclude this section by comparing the BM and
RBM methods in terms of expected value, variance, and
mean squared error of the variance estimator for large m.
By Theorem 1 of Chien, Goldsman, and Melamed (1997)
and Theorem 2 above, we get∣∣Bias

(
V̂B M

)∣∣ − ∣∣Bias
(
V̂R B M

)∣∣
= |γ | (k − 1)

kbm(kb − 1)
+ o

(
1

m

)
,

which is positive for large m. Hence, the RBM method offers
an asymptotically less biased variance estimator than the BM
method. Consequently, the RBM method can be expected to
provide an asymptotically less biased half-length estimator
than the BM method. This is important, since a less biased
half-length helps in achieving the desired coverage of the
corresponding confidence interval. Finally, under the condi-
tions of Theorem 3, Chien, Goldsman, and Melamed (1997)
show that for large m and kb, V ar(V̂B M) and M SE(V̂B M )

are equal to the right-hand sides of equations (1) and (2),
respectively. Thus, we can conclude that for a stationary
process and large m and kb, the BM and RBM methods
will yield variance estimators with approximately the same
variance and mean squared error.

5 NUMERICAL RESULTS

In this section, we study the small-sample behavior of the
RBM, BM, and MR methods. For this purpose, we con-
sider the first-order autoregressive process with exponential
marginals, EAR(1). In particular, for all i ≥ 1, we have

Xi =
{

φXi−1 with probability φ,

φXi−1 + εi with probability 1 − φ,

where 0 ≤ φ < 1 and {εi }i≥1 are i.i.d. exponential random
variables with rate one (see Lewis, 1980). Our primary
criterion for comparing the RBM, BM, and MR methods
is the coverage P{µ ∈ X̄ ± H } of the resulting confidence
intervals, where X̄ is the point estimator for µ and H is the
half-length of the confidence interval (we say that a good
coverage is achieved when P{µ ∈ X̄ ± H } is very close to
1 − α, the desired confidence level).

We have simulated the EAR(1) process for φ ∈
{0.1, 0.5, 0.9} and examined the coverages and the expected
half-lengths of the confidence intervals under the BM, RBM,
and MR methods. For each method, we let m = 4 and
kb = 32. Consequently, the BM method has 32 batches,
the RBM method with k ∈ {2, 4, 8, 16} replications has
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32/k batches per replication, and the MR method has 32
replications with one batch per replication (we have not
truncated any initial observations).

In Tables 1, 2, and 3, we provide the estimated coverage
values when X0 is distributed uniformly between 0 and
a ∈ {0.00, 0.25, 0.50, . . . , 5.00}. Noting that the stationary
distribution is exponential with mean one, it is clear that we
have a relatively good choice of the initial distribution when
a is close to two, and that when a is close to zero or five,
then we have a poor choice of the initial distribution. All
the numerical results that are presented in this section are
based on 10,000 independent macro replications. For each
macro replication, we have used common random numbers
to generate observations from the EAR(1) process for the
three methods. In the last two rows of Tables 1, 2, and 3,
we also provide the averages and the standard deviations of
the coverages over all initial distributions for each method.

Table 1: Coverages of Confidence Intervals for the EAR(1)
Process with φ = 0.1 and 1 − α = 0.90

a BM RBM MR
k = 2 k = 4 k = 8 k = 16

0.00 0.8816 0.8817 0.8803 0.8825 0.8783 0.8652
0.25 0.8816 0.8817 0.8804 0.8822 0.8797 0.8760
0.50 0.8817 0.8815 0.8811 0.8823 0.8816 0.8806
0.75 0.8816 0.8814 0.8813 0.8825 0.8817 0.8834
1.00 0.8817 0.8816 0.8814 0.8824 0.8822 0.8867
1.25 0.8818 0.8817 0.8818 0.8824 0.8843 0.8918
1.50 0.8817 0.8818 0.8821 0.8827 0.8847 0.8957
1.75 0.8818 0.8820 0.8821 0.8837 0.8856 0.8997
2.00 0.8819 0.8821 0.8827 0.8846 0.8854 0.9010
2.25 0.8821 0.8821 0.8831 0.8854 0.8862 0.9034
2.50 0.8819 0.8822 0.8836 0.8854 0.8875 0.9055
2.75 0.8819 0.8822 0.8838 0.8856 0.8883 0.9060
3.00 0.8820 0.8825 0.8845 0.8862 0.8890 0.9045
3.25 0.8821 0.8828 0.8846 0.8865 0.8896 0.9038
3.50 0.8820 0.8829 0.8848 0.8872 0.8908 0.9033
3.75 0.8822 0.8830 0.8854 0.8873 0.8913 0.9013
4.00 0.8824 0.8831 0.8858 0.8874 0.8919 0.8991
4.25 0.8824 0.8837 0.8859 0.8879 0.8906 0.8957
4.50 0.8827 0.8838 0.8859 0.8883 0.8898 0.8929
4.75 0.8830 0.8841 0.8864 0.8881 0.8885 0.8909
5.00 0.8829 0.8842 0.8865 0.8878 0.8878 0.8869
avg. 0.8820 0.8825 0.8835 0.8852 0.8864 0.8940
std. 0.0004 0.0009 0.0021 0.0023 0.0040 0.0109

First, we note that for all values of φ that we have
considered in this study, the BM, RBM, and MR methods
all yield under-coverage (except for the MR method with a
good choice of the initial distribution and φ = 0.1), which
is partially due to the small sample size and the positive
correlation inherent in the EAR(1) process. For φ = 0.1,
the coverages of the BM, RBM, and MR methods for each
value of a are very similar, as can be seen from Table 1.
This is an expected result, since with a small value of φ,
the EAR(1) process behaves almost like an i.i.d. stochastic
process.

In Tables 2 and 3, for each choice of a, we have high-
lighted the coverages of the method with the best coverage.
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Table 2: Coverages of Confidence Intervals for the EAR(1)
Process with φ = 0.5 and 1 − α = 0.90

a BM RBM MR
k = 2 k = 4 k = 8 k = 16

0.00 0.8170 0.8142 0.8059 0.7786 0.6763 0.3969
0.25 0.8172 0.8165 0.8093 0.7893 0.7078 0.4679
0.50 0.8172 0.8176 0.8120 0.7989 0.7351 0.5479
0.75 0.8177 0.8191 0.8152 0.8087 0.7612 0.6303
1.00 0.8179 0.8200 0.8182 0.8148 0.7889 0.7049
1.25 0.8193 0.8214 0.8214 0.8244 0.8114 0.7730
1.50 0.8198 0.8234 0.8241 0.8286 0.8312 0.8288
1.75 0.8208 0.8222 0.8265 0.8350 0.8455 0.8664
2.00 0.8212 0.8231 0.8281 0.8413 0.8556 0.8926
2.25 0.8213 0.8236 0.8292 0.8430 0.8627 0.8987
2.50 0.8221 0.8244 0.8307 0.8438 0.8628 0.8846
2.75 0.8228 0.8262 0.8335 0.8446 0.8572 0.8496
3.00 0.8229 0.8279 0.8360 0.8441 0.8476 0.7959
3.25 0.8231 0.8288 0.8355 0.8419 0.8344 0.7228
3.50 0.8234 0.8303 0.8357 0.8389 0.8126 0.6362
3.75 0.8243 0.8317 0.8361 0.8343 0.7913 0.5388
4.00 0.8257 0.8317 0.8370 0.8309 0.7657 0.4439
4.25 0.8263 0.8311 0.8372 0.8280 0.7363 0.3498
4.50 0.8267 0.8323 0.8375 0.8207 0.7008 0.2683
4.75 0.8276 0.8328 0.8373 0.8128 0.6645 0.1958
5.00 0.8278 0.8334 0.8376 0.8045 0.6230 0.1402
avg. 0.8220 0.8253 0.8278 0.8241 0.7796 0.6111
std. 0.0035 0.0059 0.0103 0.0193 0.0731 0.2421

Table 3: Coverages of Confidence Intervals for the EAR(1)
Process with φ = 0.9 and 1 − α = 0.90

a BM RBM MR
k = 2 k = 4 k = 8 k = 16

0.00 0.4736 0.4644 0.3969 0.2074 0.0351 0.0009
0.25 0.4747 0.4689 0.4188 0.2542 0.0589 0.0033
0.50 0.4763 0.4745 0.4436 0.3083 0.1003 0.0093
0.75 0.4777 0.4798 0.4691 0.3690 0.1658 0.0296
1.00 0.4788 0.4844 0.4934 0.4321 0.2626 0.0811
1.25 0.4793 0.4918 0.5116 0.4997 0.3856 0.2004
1.50 0.4783 0.4973 0.5265 0.5623 0.5354 0.4216
1.75 0.4802 0.4999 0.5404 0.6165 0.6788 0.7057
2.00 0.4814 0.5034 0.5542 0.6485 0.7715 0.8847
2.25 0.4835 0.5066 0.5597 0.6563 0.7666 0.8367
2.50 0.4858 0.5085 0.5590 0.6383 0.6666 0.6222
2.75 0.4863 0.5103 0.5548 0.5862 0.5180 0.3583
3.00 0.4899 0.5139 0.5480 0.5205 0.3606 0.1686
3.25 0.4898 0.5116 0.5297 0.4489 0.2348 0.0668
3.50 0.4943 0.5109 0.5132 0.3774 0.1468 0.0262
3.75 0.4959 0.5090 0.4934 0.3090 0.0895 0.0099
4.00 0.4976 0.5098 0.4684 0.2511 0.0535 0.0030
4.25 0.5013 0.5057 0.4389 0.2014 0.0324 0.0008
4.50 0.5030 0.5061 0.4137 0.1579 0.0198 0.0002
4.75 0.5022 0.5037 0.3846 0.1243 0.0121 0.0001
5.00 0.5051 0.5023 0.3559 0.0994 0.0065 0.0000
avg. 0.4874 0.4982 0.4845 0.3937 0.2810 0.2109
std. 0.0103 0.0150 0.0638 0.1847 0.2705 0.3018

For φ = 0.5 and φ = 0.9, it can be observed that the RBM
method with a small number of replications k, is overall
the best in terms of the average coverage (recall that our
initial intention was to apply the RBM method with a small
number of replications). Moreover, the overall performance
of the BM method is better than that of the MR method.
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When we observe each row of Tables 2 and 3, we can see
that our RBM method performs better than both the BM and
MR methods for reasonably good choices of the initial dis-
tribution. This suggests that the RBM method is more than
an average of the BM and MR methods. More specifically,
the RBM method shows the best performance for φ = 0.5
when a ∈ {0.50, . . . , 1.50, 2.75, . . . , 5.00} and it is the best
for φ = 0.9 when a ∈ {0.75, . . . , 1.50, 2.50, . . . , 4.75}.
Moreover, the RBM method never performs worse than
both the BM and MR methods. As one might ex-
pect, the MR method performs better than the other
two methods when the initial distribution is quite good
(i.e., when a ∈ {1.75, 2.00, 2.25, 2.50} for φ = 0.5 and
a ∈ {1.75, 2.00, 2.25} for φ = 0.9). On the other hand,
in this example the BM method provides the best cov-
erage for very poor choices of initial distribution (i.e.,
when a ∈ {0.00, 0.25} for φ = 0.5 and when a ∈
{0.00, 0.25, 0.50, 5.00} for φ = 0.9).

From the last row of Tables 2 and 3, we can see that
the BM method and the RBM method with a small number
of replications provide smaller standard deviations of the
coverage than the other methods. This suggests that the
BM method and the RBM method with a small number of
replications are not very sensitive to the choice of the initial
distribution, whereas the MR method and the RBM method
with a large number of replications show performance that
depends heavily on the choice of the initial distribution. For
example, depending on the choice of the initial distribution,
the MR method yields both the best and the worst results
among all the methods.

We have also observed the performance of the BM,
RBM, and MR methods starting at various initial distribu-
tions in terms of the resulting half-lengths. Our conclusion
is that there is not much of a difference among the BM,
RBM, and MR methods in this respect. To illustrate this
point, we provide the average half-lengths of the confidence
intervals over all the initial distributions considered in Tables
1, 2, and 3 in Table 4.

Table 4: Average Half-lengths of Confidence Intervals for
the EAR(1) Process with 1 − α = 0.90

φ BM RBM MR
k = 2 k = 4 k = 8 k = 16

0.1 0.1591 0.1591 0.1591 0.1591 0.1592 0.1595
0.5 0.2107 0.2109 0.2112 0.2115 0.2114 0.2085
0.9 0.2486 0.2517 0.2543 0.2534 0.2468 0.2368

6 CONCLUSIONS

We have presented a new confidence interval estimation
method for steady-state simulation. In our replicated batch
means (RBM) method, we do a small number of indepen-
dent replications to estimate the steady-state mean and then
group the observations that are collected from these replica-
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tions into non-overlapping batches to estimate the variance
parameter.

We have shown that for a stationary process and large
batch sizes, the RBM method provides a less biased variance
estimator than the batch means (BM) method, regardless
of the choice of the number of batches and replications.
Moreover, we have shown that for a stationary process,
the variances of the two variance estimators become ap-
proximately equal as both the number of batches and batch
sizes grow. Finally, we have shown that when there is
positive serial correlation in the stationary process of inter-
est, then the point estimator obtained by the RBM method
has a smaller variance than the point estimator obtained by
the BM method for large batch sizes. This is important,
since most real-life queueing systems produce positively
correlated data.

We have also compared the performance of the BM,
RBM, and MR methods for small sample sizes, using a
non-stationary stochastic process. The numerical results
suggest that our RBM method with a small number of
replications provides better coverages than both the BM
and MR methods for reasonably good choices of the initial
distribution. The MR method performs the best only for
good choices of the initial distribution, and, in our example,
the BM method appears to have the best coverage for very
poor choices of the initial distribution, especially when the
observations have high positive autocorrelation.
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