
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

TOWARDS A FRAMEWORK FOR BLACK-BOX SIMULATION OPTIMIZATION

Sigurdur Ólafsson
Jumi Kim

Department of Industrial and Manufacturing Systems Engineering
Iowa State University

2019 Black Engineering
Ames, IA 50011, U.S.A.
ABSTRACT

Optimization using simulation has increased in popularity
in recent years as more and more simulation packages now
offer optimization features. At the same time, academic
research in this area has grown, but more work is needed to
bring results from the academic community to solve practical
problems. This paper describes an effort in this direction.
We present a framework that can be used to effectively solve
large combinatorial-type simulation optimization problems
in an automated or semi-automated manner.

1 INTRODUCTION

Simulation-based optimization has received considerable at-
tention in recent years, but significant gaps appear to exist
between theory and practice in the field. Although many
advances have been made in algorithm development and
analysis, they do not always seem to find their way readily
into practice, where the use of relatively simple heuris-
tic search methods prevails. Although such methods can
often find quite good solutions, they are typically not de-
signed specifically for simulation-based optimization and
may therefore not account appropriately for the random-
ness (Boesel, Nelson, and Ishii 1999). With respect to
methodological research, there have been many recent de-
velopment, and comprehensive reviews of simulation-based
optimization may be found in Jacobson and Schruben (1989),
Andradóttir (1998), and Swisher et al. (2000).

One of the current difficulties in implementing many
simulation optimization algorithms for practical problems
appears to be that they can be quite complicated and require
substantial knowledge on part of the user. Thus, as a
step in the direction of bridging this gap, we present a
framework for a black-box simulation-based optimization
package that is intended for use by simulation practitioners.
Accordingly, the required knowledge of optimization is
kept at minimum, and the output is designed to mirror the
output many simulation users are already familiar with when
300
performing comparisons between a few alternative systems.
On the other hand, the underlying algorithm remains globally
convergent (almost surely), and the simulation noise is
accounted for in every aspect of the framework. A prototype
of a system designed according to this framework is currently
in development. As the general problem of simulation-based
optimization is extremely hard, the framework combines
elements from a variety of methods that have been found
to be effective in this context, including random search,
adaptive sampling, and ranking-and-selection. To combine
these elements, and simultaneously be able to make rigorous
statements concerning the solution quality, the statistical
selection based nested partitions (NP) algorithm of Ólafsson
(1999) is employed.

The remainder of this paper is organized as follows.
In Section 2 we review the NP algorithm used in our
framework and point out the elements of this algorithm
that must be automated or semi-automated for a black-
box implementation. The key features of this algorithm
are partitioning, random sampling, and local search, and
automated implementations of these aspects are described
in Section 3 - Section 5, respectively. Finally, Section 6
contains some concluding remarks.

2 THE NP ALGORITHM

In mathematical notation, we want to solve the problem

min
θ∈�

f (θ), (1)

where � is a finite feasible region, and f : � → R is a
performance function that is subject to noise. In other words,
for any feasible point θ ∈ �, f (θ) cannot be evaluated
analytically. Often f (θ) is an expectation of some random
estimate of the performance of a complex stochastic system
given a parameter θ , that is, f (θ) = E [L(θ)]. Here L(θ) is
a random variable which depends on the parameter θ ∈ �.
We assume that L(θ) is a discrete event simulation estimate

Ólafsson and Kim
of the true performance, and refer to it as the sample
performance.

We also make the assumption that the feasible region
is n-dimensional, that is, � ⊂ Rn such that

� = {θ = (θ1, θ2, ..., θn) : θi ∈ �i } , (2)

where �i is some finite set. Also we let m(θi) = |�i | be
the number of values that the i -th dimensional variable can
take.

In a recent paper, Shi and Ólafsson (2000) introduced
an optimization method, the nested partitions (NP) method,
for global optimization when the objective function is de-
terministic. In this context, the method has been found to
be quite efficient for combinatorial optimization (Ólafsson
and Shi 2000). Furthermore, as was first suggested by Shi
and Ólafsson (1997), this method can also be applied to
stochastic problems, where no analytical expression exists
for the objective function and it must be evaluated us-
ing simulation. In Ólafsson (1999), this method is further
improved by drawing on ideas from statistical sampling
techniques that have proven useful in simulation in the past,
namely ranking-and-selection methods. Thus, the resulting
algorithm combines statistical sampling techniques tradi-
tionally used for comparing a few alternatives with a global
optimization framework aimed at large-scale optimization
problems.

The basic idea of the method is to systematically parti-
tion the feasible region into subsets and focus the computa-
tional effort in those subsets that are considered promising.
The main components of the method are:

• Partitioning: at each iteration the feasible region
is partitioned into subsets that cover the feasible
region but concentrate the search in what is believed
to be the most promising region.

• Random sampling: to evaluate each of the subsets,
a random sample of solutions are obtained from
each subset and used to estimate the performance
of the region as a whole.

• Local improvement: to improve the estimate of
each of the subset, the sample points can be used
as starting points for a local search procedure that
is constrained within the region.

This method can be understood as an optimization frame-
work that combines adaptive global sampling with local
heuristic search. It uses a flexible partitioning method to
divide the design space into regions that can be analyzed
individually and then aggregates the results from each re-
gion to determine how to continue the search, that is, to
concentrate the computational effort. Thus, the NP method
adaptively samples from the entire feasible region and con-
301
centrates the sampling effort by systematic partitioning of
the design space.

The key aspects of determining how to implement the
method is developing a partitioning method, deciding how
much sample effort to use in each region, and how much
local search effort to use in each iteration. These factors
are of course interconnected. A high quality partition will
lessen the need for sampling and local search, and in general
increased effort along one of these dimensions decreases
the need for the other two. Implementing the NP method
can therefore be quite problem dependent, and in particular,
partitioning schemes that have been devised in the past have
drawn heavily on specific structure related to the application
itself. This, however, requires substantial effort on part of
the practitioner using the method, and in this paper we
present a new framework for automating these decision,
namely an intelligent partitioning method, guided random
sampling, and guided local search.

In each iteration of the NP method it maintains what is
called the most promising region, that is, a sub-region that is
considered the most likely to contain the best solution. This
most promising region is partitioned into a given number
of sub-regions, these sub-regions and the surrounding re-
gion are sampled using random sampling, and the sampling
information used to determine which region should be the
most promising region in the next iteration.

As opposed to purely heuristic optimization methods,
the NP method guarantees that the optimum solution is
eventually found (Shi and Ólafsson 2000). Furthermore,
Ólafsson (1999) uses standard ranking and selection pro-
cedures to develop an algorithm that allows us to specify
a probability, say 90% or 95%, and terminate the algo-
rithm when the probability that the correct solution has
been selected exceeds this value. Here the correct solution
is defined as a solution that has a performance within cer-
tain distance, that is an indifference zone, of the optimal
performance. The key to this result is to guarantee in each
iteration of the algorithm that the correct move is made
with a minimum probability P∗, which can be calculated
numerically from the following equation:

� = (P∗)n

(1 − P∗)n + (P∗)n , (3)

where � is the probability of terminating correctly, that is,
within the indifference zone. This type of termination of the
algorithm when solution with an indifference zone has been
found with a certain probability should be appealing to many
practitioners, as this is widely known in the comparison of
two or more systems.

Ólafsson and Kim
3 INTELLIGENT PARTITIONING

The selected partition imposes a structure on the feasible
region. When it is done in such a way that good solution
as clustered together in the same subsets then those subsets
are selected by the algorithm with relatively little effort.
On the other end of the spectrum, if the optimal solution
is surrounded by solutions of poor quality it is unlikely
that the algorithm will move quickly towards those subsets.
This can be made more rigorous by looking at how the
minimum probability P∗ of moving in the right direction
can be guaranteed. We will see in Section 4 below that the
amount of computational effort is directly proportional to
the variance of the solution in each region. This implies we
should attempt to cluster together similar solutions, that is,
the diversity of the solutions, with respect to the simulation
estimates of the objective function values, should be as
small as possible.

Recall that a solution to the optimization problem can
be written as θ = (θ1, θ2, ..., θn). Our generic partitioning
scheme will be to fix one of these n values at a time. Thus,
for example, we can partition � into m(θi) subsets defined
by

σ j = {
θ ∈ � : θi = θi j

}
,

where θi j ∈ �i for j = 1, 2, ..., m(θi). The only decision
to be made is the order in which these variables should be
selected, that is, which variable should be fixed first, and
so forth. This order defines the structure imposed on the
feasible region by the search, and if it is done intelligently,
that is in a way that distinguishes good parts of the feasible
region from poor ones, the search is likely to proceed easily.
Our aim is an automated procedure for intelligently selecting
this order.

To develop a generic intelligent partitioning scheme,
we focus on the idea of diversity, which is well known
from information theory and its applications to areas such
as machine learning (Mitchell 1987). For this purpose we
need a way in which solutions can be classified as being the
same from the point of view of our simulation optimization.
A natural way to think about this is to say that two solutions
are the same if there is in no statistically significant difference
in their estimated performance. Thus, a subset of solutions
where there are many solutions with statistically different
performance is considered diverse, and vice versa. Using
this definition, diverse subsets are clearly undesirable as
it makes it difficult to determine which subset should be
selected.

To use traditional diversity measures we need to classify
each solution into one of several fixed categories. We do this
in such a way that solutions in each category are statistically
equivalent, and for any two categories there are at least
one solution in each such that those two have statistically
different estimated performance. The boundaries between
302
the categories are determined from the simulation error. Now
we cannot, of course, do this for every possible solution,
but we can do it for a representative sample of solution, that
is, we can use the following algorithm as a preprocessing
step before the main iteration of the NP algorithm starts.

3.1 Intelligent Partition

Step 1. Start by using random sampling to obtain a set
of M0 sample solutions.

Step 2. Simulate the performance L(θ) of each one of
these sample solutions, and record the average
standard error s̄2.

Step 3. Construct g(s̄2) intervals or categories for the
sample solutions such that each solution in the
same interval has statistically equivalent per-
formance, but for two different intervals there
are at least two solutions that make them dis-
tinguishable.

Step 4. Let i = 1.

Step 5. Fix θi = θi j , j = 1, 2, ..., m(θi).

Step 6. Drawing on the idea of entropy (Mitchell 1997),
calculate the following quantity for each dimen-
sion θi of the feasible region:

E(θi) =
m(θi)∑
j=1

M(θi j)

M0
·

g(s̄2)∑
l=1

−pl j log2 pl j , (4)

where pl j is the proportion of samples with
θi = θi j and fall in category l, and

M(θi j) = Number of samples for which

θi = θi j

=
∑

l

pl j .

Step 7. If i = n, continue to Step 8; otherwise let
i = i + 1 and go back to step 5.

Step 8. A high entropy value (4) indicates high diversity,
so it is desirable to partition by fixing the lowest
entropy dimensions first. Thus, we order the
dimensions according to their entropy values

E(θ[1]) ≤ E(θ[2]) ≤ ... ≤ E(θ[n]), (5)

and let this order determine the intelligent par-
tition.

This method of intelligent partitioning is quite generic. It
can be applied to any problem that has been formulated
according to equation (2) above, which is often easy to
satisfy in practice. Furthermore, it automates the process of

Ólafsson and Kim
determining what is a good partition. The only undefined
constants in the process is M0, the number of sample solution
used to build the partitioning. This can essentially be taken
as a measure of how much computational time should be
used to assure the quality of the partition. The higher this
value the more reliable the partition. Thus, the user can
simply indicate how much time is available and this will
be mapped directly into a M0 value.

From the discussion above it is clear that the NP method
samples from the entire feasible region in an adaptive fash-
ion, and concentrates the sampling effort by systematically
partitioning the feasible region. Thus, in each iteration it
selects a most promising region, that is, the subset that is
considered the most likely to contain the global optimum.
This selection can be considered a success if the region
selected contains the true global optimum, and it would
clearly be of practical interest if a minimum probability of
success could be guaranteed in each iteration. Intelligent
partitioning should intuitively increase the probability of
correct selection, but it does no assure it in a rigorous man-
ner. This, however, can be accomplished using the guided
random sampling described in the next section.

4 GUIDED RANDOM SAMPLING

Determining the amount of random sampling is a key issue
in NP and as its determination is difficult it is important to
automate this process. Also note that when applying the
NP method to a simulation optimization problem there are
two sources of randomness that complicate the selection
of the correct subset. First, there is a sampling error due
to a relatively small sample being used to estimate the
performance of an often large set. Secondly, the performance
of each sample points is estimated using simulation and is
hence noisy. It is important to observe that the former of
these elements implies that the variation within a subset
differs greatly from one region to the next. As an extreme
case consider a singleton region that is being compared to the
entire surrounding region. That is, a region containing only
one solution being compared to a region containing all of the
other solutions. Clearly the first source of randomness has
been completely eliminated in the singleton region, whereas
it probably accounts for almost all of the randomness in the
surrounding region. This implies that to make better use of
the sampling effort the number of sample points from each
region should be variable and dependent on the variation
within the region. The two-stage sampling procedure of
Ólafsson (1999) addresses this by incorporating ranking-
and-selection into the NP framework, and at the same time
automates the process of determining the sampling effort.
In particular, Ólafsson (1999) uses the classical Rinott’s
procedure for the statistical selection (Rinott, 1978). Here
we provide an alternative based on the procedure of Matejcik
303
and Nelson (1995), that our simulation experiments have
found to be more efficient.

To state this approach rigorously, we let Di j (k) be the i -
th set of points selected from the region σ j(k) using a uniform
random sampling procedure, i ≥ 1, j = 1, 2, ..., M + 1 in
the k-th iteration. We let N = |Di j (k)| denote the number
of sample points, which is assumed to be constant. We let
θ ∈ Di j (k) denote a point in this set and let L(θ) be a
simulation estimate of the performance of this point. Then
in the k-th iteration,

Xij (k) = min
θ∈Di j (k)

L(θ),

is an estimate of the performance of the region σ j , which
we can now also refer to as the i -th system performance
for the j -th system, i ≥ 1, j = 1, 2, ..., M + 1. The
two-stage ranking-and-selection procedure first obtains n0
such system estimates, and then uses that information to
determine the total number N j of system estimates needed
from the the j -th system, that is, subregion σ j (k). This
number is selected to be sufficiently large so that the correct
subregion is selected with probability at least P∗, subject
to an indifference zone of ε > 0.

More precisely, the procedure, which also takes advan-
tage of the intelligent partitioning scheme, can be defined
as follows:

4.1 Algorithm NP with Nelson-Matejcik
Statistical Selection

Step 0. Apply algorithm Intelligent Partition to obtain
a ranking:

E(θ[1]) ≤ E(θ[2]) ≤ ... ≤ E(θ[n]), (6)

Let k = 0 and σ(0) = �.

Step 1. Given the current most promising region σ(k),
partition σ(k) into

M = m(θ[d(σ (k))]) (7)

subregions σ1(k), ..., σM (k) by fixing θ[d(σ (k))],
that is,

σ j (k) = {
θ ∈ σ(k) : θ[d(σ (k))] = θi j

}
(8)

and aggregate the surrounding region

σM+1(k) = � \ σ(k) (9)

into one region (which can be empty).

Step 2. Let i = 1.

Ólafsson and Kim
Step 3. Use uniform sampling to obtain a set Di j (k)

of N sample points from region j = 1, 2, ...,

M + 1.

Step 4. Use discrete event simulation of the system to
obtain a sample performance L(θ) for every
θ ∈ Di j (k) and estimate the performance of
the region as

Xij (k) = min
θ∈Di j (k)

L(θ), (10)

j = 1, 2, ..., M + 1.

Step 5. If i = n0 continue to Step 6. Otherwise let
i = i + 1 and go back to Step 3.

Step 6. Estimate the first stage variance

S2(k) = K0

N∑
j=1

n0∑
i=1

(
Xij (k) − X̄i·(k)

−X̄ · j (k) + X̄ ··(k)
)2

, (11)

where

K0 = 2

(N − 1)(n0 − 1)
,

X̄i·(k) = 1

N

N∑
j=1

Xij (k),

X̄ · j (k) = 1

n0

n0∑
i=1

Xij (k),

X̄ ··(k) = 1

N · n0

N∑
j=1

n0∑
i=1

Xij (k).

Step 7. Compute the total sample size

N(k) = max

{
n0,

⌈
g2S2(k)

ε2

⌉}
, (12)

where ε is the indifference zone and g is a con-
stant that is determined by n0 and the minimum
probability P∗ of correct selection.

Step 8. Obtain N(k) − n0 more simulation estimates
of the system performance as in Step 2 - Step
5 above, that is (N(k) − n0) · N more sample
points.

Step 9. Let the over all sample mean be the promising
index for each region,

Î
(
σ j (k)

) = X̄ j (k) =
∑N(k)

i=1 Xij (k)

N(k)
, (13)
304
j = 1, 2, ..., M + 1.

Step 10. Select the index of the region with the best
promising index.

ĵk ∈ arg min
j=1,...,M+1

Î (σ j). (14)

If more than one region is equally promising,
the tie can be broken arbitrarily. If this index
corresponds to a region that is a subregion of
σ(k), then let this be the most promising region
in the next iteration. Otherwise, if the index
corresponds to the surrounding region, back-
track to a larger region containing the current
most promising region. That is, let

σ(k + 1) =
{

σîk
(k), if îk < M + 1,

s (σ (k)) , otherwise.
(15)

Step 11. If d(σ (k)) = n, that is, all the dimensions have
been fixed then stop; otherwise go back to Step
1.

An identical argument as the one in Ólafsson (1999) can be
used to show that when this algorithm is applied the proba-
bility of terminating correctly is bounded by the following
inequality:

� = P
[
σ̂ = σ ∗

opt

]

≥ (P∗)n

(1 − P∗)n + (P∗)n ,

where it is assumed that P∗ > 1
2 , the indifference zone is

selected sufficiently small, and that the sampling is from
a normal population. Note that since we can prescribe the
value of P∗ then we can calculate this probability a priori
for a given n, which is simply part of the simulation model.
Thus, the only quantities the user must specify for the guided
random sampling is some probability � and an indifference
zone ε that are such that we desire to have a solution with
ε of the optimal performance with probability at least � .
As this is very similar to the traditional indifference zone
approach to comparing a few alternatives using simulation,
these type of specifications are familiar to many simulation
users already.

5 GUIDED LOCAL SEARCH

The NP method can use local search to improve the estimates
of the best solution in each region. The search uses the
sample points as starting points and continues until some
predetermine criteria is satisfied. This will in general lower
the variance of the first stage samples, and thus reduce the

Ólafsson and Kim
total number of random sample (and computational effort)
needed in the second stage. However, determining how
long the random search should be run is a challenging task,
especially since the presence of randomness complicates
analysis of the output of common random search methods.
For example, in the deterministic context one might run a
simple local search algorithm until it terminates at a local
optimum, but for simulation-based optimization identifying
such a local optimum is problematic in its own right.

In general, any local search method can be incorporated
into the NP method, taking each of the points in the sample
point set D as a starting point. Past applications have had
good success with simple but highly specialized heuristics.
However, our objective here is a black-box framework that
can be applied without extensive knowledge of what spe-
cialized optimization algorithms might perform well for a
particular application. Furthermore, as the NP algorithm
already starts with a set of points, using a genetic algo-
rithm (GA) is a natural companion and we will do so in
our framework. In this context, the initial set of random
samples is the initial population of the genetic algorithm,
and the final population of the genetic algorithm is the set of
points used by the NP method to calculate the performance
measures for each region. Thus, in the algorithm above
(Section 4), a GA step would be inserted in between Step
3, which obtains the initial population, and Step 4, which
calculates the final performance measures.

A generic GA implementation is quite straightforward
for the problem as it is formulated in Section 2, namely
satisfying equation (2) above. We let θ = (θ1, θ2, ...θn)

be the string that the cross-over and mutation operations
modify, and feasibility is always assured as we assume that
any combination of values is acceptable. Cross-over and
mutation are not affected by the randomness or noise in the
performance measure, however, the selection of solutions
into the next population, that is, the survival, does depend
on the estimated objective function values. It may thus be
appropriate to control the simulation run lengths accordingly
as discussed in Boesel, Nelson, and Ishii (1999). Finally,
note that there clearly is an interaction between the amount
of local search, that is number of GA generations, and
the amount of random sampling. As the GA is allowed
to run longer, the variance (11) should be expected to
decrease, implying that less computational effort is dictated
by equation (12) for the second stage sampling. Thus,
although there will in general exist some optimal balance
that is problem dependent, insufficient GA run lengths will
be automatically compensated for by increased effort in the
second stage, and vice versa.

6 CONCLUSIONS

This paper proposes a simulation-based optimization frame-
work that can be adapted to a wide variety of practical prob-
305
lems, and is automated with capabilities of incorporating
special knowledge of the user when it exists. The main
components of the framework are:

• Intelligent partitioning;
• Guided random sampling; and
• Guided local search.

A prototype optimizer based on this framework is currently
being developed. Using this framework, a practitioner can
effectively utilize the NP method for simulation-based op-
timization and draw on the power of local search through
a genetic algorithm, while still maintaining a global con-
vergence property and the capability of making rigorous
statements about the quality of the solution obtained.

This framework is simple to implement effectively as
the user only needs to formulate the problem and set a few
constants, such as n0 and N for the intelligent partitioning
scheme. However, exact selection of such constants is not
critical to the success of the method, and work is underway
to determine how default values can be set in a robust
manner.

REFERENCES

Andradóttir, S. 1998. “A Review of Simulation Optimization
Techniques,” in D.J. Medeiros, E.F. Watson, J.S. Carson,
and M.S. Manivannan (eds.), Proceedings of the 1998
Winter Simulation Conference, 151-158.

Boesel, J., B.L. Nelson, and N. Ishii. 1999. “A Frame-
work for Simulation-Optimization Software,” Preprint,
Northwestern University.

Jacobson, S.H. and L.W. Schruben. 1989. “A Review of
Techniques for Simulation Optimization,” Operations
Research Letters, 8, 1-9.

Mitchell, T.M. 1987. Machine Learning, McGraw-Hill,
Boston, MA.

Matejcik, F.J. and B.L. Nelson. 1995. “Two-Stage Multiple
Comparisons with the Best for Computer Simulation,”
Operations Research, 43, 633-640.

Ólafsson, S. 1999. “Iterative Ranking-and-Selection for
Large-Scale Optimization,” in P.A. Farrington, H.B.
Nembhard, D.T. Sturrock, and G.W. Evans (eds.), Pro-
ceedings of the 1999 Winter Simulation Conference,
479-485.

Ólafsson, S. and L. Shi. 2000. “A Method for Scheduling
in Parallel Manufacturing Systems with Flexible Re-
sources,” IIE Transactions on Scheduling and Logistics,
32: 135-146.

Rinott, Y. 1978. “On Two-Stage Selection Procedures and
Related Probability-in-Equalities,” Communications in
Statistics, A7, 799-811.

Shi, L. and S. Ólafsson. 1997. “An Integrated Framework
for Deterministic and Stochastic Optimization,” in S.

Ólafsson and Kim
Andradóttir, K.J. Healy, D.H. Withers, and B.L. Nel-
son (eds.), Proceedings of the 1997 Winter Simulation
Conference, 358-365.

Shi, L. and S. Ólafsson. 2000. “Nested Partitions Method
for Global Optimization,” Operations Research, 48,
390-407.

Swisher, J.R., P.D. Hyden, S.H. Jacobson, and L.W.
Schruben. 2000. “A Survey of Simulation Optimization
Techniques and Procedures,” in J.A. Jones, R.R. Barton,
K. Kang, and P.A. Fishwick (eds.), Proceedings of the
2000 Winter Simulation Conference, 119-128.

AUTHOR BIOGRAPHIES

SIGURDUR ÓLAFSSON is an assistant professor in the
Department of Industrial and Manufacturing Systems En-
gineering at Iowa State University. He received a B.S. in
Mathematics from the University of Iceland in 1995, and an
M.S. and a Ph.D. in Industrial Engineering from the Univer-
sity of Wisconsin - Madison in 1996 and 1998, respectively.
His research interests include applied probability, stochastic
optimization, and simulation. He is a member of IIE and
INFORMS.

JUMI KIM is a Ph.D. candidate in the Department of
Industrial and Manufacturing Systems Engineering at Iowa
State University. She received a B.S. in Industrial Engineer-
ing from the Kangnung National University of Korea, and
a M.S. in Industrial Engineering from the Seoul National
University of Korea. Her research interests are in simulation
optimization.
306

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

