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ABSTRACT

The mixture of normal distributions provides a useful ex-
tension of the normal distribution for modeling of daily
changes in market variables with fatter-than-normal tails
and skewness. An efficient analytical Monte Carlo method
is proposed for generating daily changes using a multivariate
mixture of normal distributions with arbitrary covariance
matrix. The main purpose of this method is to transform
(linearly) a multivariate normal with an input covariance
matrix into the desired multivariate mixture of normal dis-
tributions. This input covariance matrix can be derived
analytically. Any linear combination of mixtures of nor-
mal distributions can be shown to be a mixture of normal
distributions.

1 INTRODUCTION

The normal distribution is the most commonly used model
of daily changes in market variables. Many studies (Wilson
[1993, 1998], Zangari [1996], Venkataraman [1997], Duffie
and Pan [1997] and Hull and White [1998]) show that the
distributions of daily changes, such as returns in equity,
foreign exchanges, and commodity markets, are frequently
asymmetric with fat tails. The assumption of normality is
far from perfect and often inappropriate. Mixture of normals
is a more general and flexible distribution for fitting the
market data of daily changes. It fully takes into account
the kurtosis and skewness in market variables. In addition,
the normal distribution is a special case of the mixture of
normal distributions.

Mixture of normal distributions has been successfully
applied in many fields including economics, marketing,
and finance (Clark [1973], Zangari [1996], Venkataraman
[1997], Duffie and Pan [1997], Hull and White [1998],
and Wang [2000]). Recently the mixture of normal dis-
tributions has become a popular model for the distribution
of daily changes in market variables with fat tails. An-
other widely used model of fat-tailed distributions is the
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multivariate t distribution (Zangari [1996], Wilson [1998],
and Glasserman, Heidelberger, and Shahabuddin [2000]).
Pointed out by Glasserman, Heidelberger, and Shahabuddin
[2000], a shortcoming of the multivariate t distribution is
that all daily changes in market variables have equally fat
tails (sharing the same degrees of freedom). They use a
copula to extend this model to allow multiple degrees of
freedom. However, non-linear inverse transformations are
needed for this extension.

The commonly used method for generating a multivari-
ate distribution with arbitrary marginal distributions and a co-
variance matrix is the three-step method (Schmeiser [1991],
Cario and Nelson [1997], and Hull and White [1998]). The
early work on this topic can be found in Mardia [1970], and
Li and Hammond [1975]. Step one is to generate a multi-
variate normal with an input covariance matrix. Step two
is to transform this multivariate normal into a multivariate
uniform distribution on (0,1). Step three is to transform this
multivariate uniform distribution on (0,1) into the desired
multivariate distribution via inverse functions. Both the
transformations in steps one and two are nonlinear. There
is no general, analytical way, to determine the input co-
variance matrix for step one. We have to solve nonlinear
equations to derive a numerical approximation of the input
covariance matrix. The most difficult part is to find the
inverse marginal distributions. It is often time consuming,
but sometimes there is no other alternative.

We propose an efficient Monte Carlo method for gener-
ating daily changes in market variables using a multivariate
mixture of normal distributions with an arbitrary covari-
ance matrix. It is different from the three-step method.
We transform (linearly) a multivariate normal with an input
covariance matrix into the desired multivariate mixture of
normal distributions. This input covariance matrix can be
derived analytically. The marginal distributions are mixtures
of normals and may have a different number of components.
In other words, daily changes may have different degrees
of fat tails and skewness.



Wang
In calculation portfolio value-at-risk (VaR), we provide
an efficient analytic computation method. We prove that a
linear combination of mixtures of normals is a mixture of
normals under our setting. Therefore under the assumption
of the multivariate mixture of normals, the total portfolio
return is a mixture of normals.

Our work is related to the work of calculating value-
at-risk by Zangari [1996], Venkataraman [1997], Hull and
White [1998], and Li [1999]. Zangari [1996] proposes a
RiskMetricsT M [1995] method that allows for a more re-
alistic model of the financial return tail distribution. The
current RiskMetricsT M assumption is that returns follow a
conditional normal distribution. They used a mixture of
two distributions to model fat tails. Gibbs sampler is the
tool of estimating this return distribution. Venkataraman
[1997] used the same model of mixture of two normals, but
the estimation technique was the quasi-Bayesian maximum
likelihood approach, which was first proposed by Hamil-
ton [1991]. Hull and White [1998] proposed a maximum
likelihood method to estimate parameters of the mixture
of two normal distributions. Market data was divided by
standard deviation into four categories, then they estimated
parameters by fitting the quantiles of the distribution. In
addition, they described a method of generating a multivari-
ate distributions with arbitrary marginal distributions and a
covariance matrix. Their idea is basically the same as the
three-step method. Li [1999] uses the theory of estimating
functions to construct an approximate confidence interval
for calculation of value at risk. Kurtosis and skewness are
explicitly used in his study.

Most of work in the literature are focused on estimating
the mixture of normal distributions. There is less work on
generating daily changes using a multivariate mixture of
normal distributions. The difficulty is in how to handle the
correlation matrix. The main contribution of this paper is
to provide an efficient Monte Carlo method for generating a
multivariate mixture of normal distributions with an arbitrary
covariance matrix. The correlation matrix can be handled
efficiently and analytically.

This paper proceeds as follows. Section 2 discusses
fat tails and skewness in daily change distributions. We
derive the general results of the kurtosis and skewness for
mixture of normal distributions. In an example, we compare
the normal distribution with the mixture of two normals.
Our figure shows the significant difference between the two
densities in the sense of kurtosis and skewness even though
they have the same mean and variance. Section 3 discusses
how to generate a multivariate mixture of normals with an
arbitrary covariance matrix. The marginal distribution of
each variables is a mixture of normals, but the number of
components in the mixture may be different for each variable.
In the univariate case, we introduce a method demonstrating
how to generate the univariate mixture of normals. In the
multivariate case, we derive an efficient method to generate
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a multivariate mixture of normals. A detailed ready-to-use
algorithm is given. Section 4 provides an efficient analytic
method for calculating portfolio VaR. Under the assumption
of the multivariate mixture of normals, calculating portfolio
VaR is just as simple as under the normality assumption.
Section 5 provides a summary and conclusions.

2 FAT TAILS AND SKEWNESS IN DAILY
CHANGE DISTRIBUTIONS

Many studies (Duffie and Pan [1997] and Hull and White
[1998]) show that daily changes in many variables, such
as S&P 500, NASDAQ, NYSE All Share, and particularly
exchange rates, exhibit significant amounts of positive kur-
tosis and negative skewness. Distributions of daily changes
in these variables have fat tails and are typically skewed to
the left. This implies that extremely large market moves
and particularly negative returns are more likely than a nor-
mal distribution would predict when taking into account
the kurtosis and skewness. In this section, first of all, we
describe the definition of kurtosis and skewness. Secondly,
we introduce mixture of normal distribution. Finally, we
provide an example of the mixture of two normal distri-
butions and compare this with a normal distribution. A
figure demonstrates the significant difference of kurtosis
and skewness between the two densities even though they
have the same mean and variance.

2.1 Kurtosis and Skewness

Kurtosis is a measure of how fat the tails of a distribution
are, which is found from the fourth central moment of daily
change. It is very sensitive to extremely large market moves.
Skewness is a measure of asymmetry, which is found from
the third central moment of daily change. It measures the
degree of difference between positive deviations from the
mean and negative deviation from the mean. In general, the
normalized skewness and kurtosis of a random variable X
are defined as follows, respectively (See Casella and Berger
[1990]):

α3 = E(X − µ)3

σ 3
and α4 = E(X − µ)4

σ 4
. (1)

where µ = E(X) and σ 2 = E(X − µ)2. The standardized
kurtosis is defined as

α′
4 = E(X − µ)4

σ 4
− 3,

which is a relative measure used for comparison with the
normal density. Any normally distributed random variable
has kurtosis of three and skewness of zero. As discussed
in Duffie and Pan [1997], for many markets, returns have
fatter than normal tails with negative skewness. The S&P
500 daily returns from 1986 to 1996, for example, have
an extremely high sample kurtosis of 111 and negative
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skewness of -4.81. Obviously, the normal distribution used
as a model to these market data is quite inappropriate.

2.2 Mixture of Normal Distributions

In this subsection, we describe the univariate mixture of
k normal distributions and derive its basic properties. The
mixture of two normal distributions, as a simple example, is
discussed. Comparing with the standard normal distribution,
it has the same mean and variance, but different kurtosis
and skewness. Figure 1 shows the significant difference
between the two densities.

In general, the cumulative distribution function (cdf)
of a mixture of k normal random variable X is defined by

F(x) =
k∑

j=1

p j�

(
x − µ j

σ j

)
, (2)

where � is the cdf of N(0, 1). Therefore its probability
density function (pdf) is

f (x) =
k∑

j=1

p jφ j (x; µ j , σ
2
j ), (3)

where, for j = 1, · · · , k,

φ j (x; µ j , σ
2
j ) = 1√

2π σ j
e
− (x−µ j )

2

2σ2
j ,

0 ≤ p j ≤ 1,

k∑
j=1

p j = 1.

After a direct calculation by using the definition of (1), we
derive the following basic properties.

Proposition 2.2.1. If X is a mixture of k normals with pdf
(3), then its mean, variance, skewness, and kurtosis are,

µ =
k∑

j=1

p j µ j ,

σ 2 =
k∑

j=1

p j (σ
2
j + µ2

j ) − µ2

α3 = 1

σ 3

k∑
j=1

p j (µ j − µ)[3σ 3
j + (µ j − µ)2] and

α4 = 1

σ 4

k∑
j=1

p j [3σ 4
j + 6(µ j − µ)2σ 2

j + (µ j − µ)4].
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In the following example, we show that the model of a
normal distribution is quite inappropriate for fitting market
data, since its density does not take into accounts the fat
tails and skewness.

Example 2.1. A Mixture of Two Normal Distributions.

We consider a mixture of two normal distributions (3)
with the following parameters

p = 0.5, µ1 = 0.5, µ2 = 0.5, σ1 = 0.5, and σ2 = 1.32.

We use Proposition 2.2.1 to compute its skewness and
kurtosis. The results, compared to the standard normal
distribution are summarized in Table 1. We compare the

Table 1: Standard Normal versus Mixture of Normals

Distribution Standard Mixture of
Normal Normals

Mean 0 0
Variance 1 1
Skewness 0 -0.75
Kurtosis 3 6.06

two densities in Figure 1. The density of the standard normal
is symmetric with skewness of 0 and kurtosis of 3 while
the density of the mixture of two normals is asymmetric
with skewness of -0.75 and kurtosis of 6.06, even though
they have the same mean and variance. This indicates that
the density of the mixture of normals is skewed to the left
with fat tails. Duffie and Pan [1997] show that the S&P
500 daily returns from 1986 to 1996 has an extremely high
sample kurtosis and negative skewness. Our Figure 1 is
similar to their Figure 3. Obviously, compared to the normal
distribution, the mixture of normals is a more general and
flexible model of fitting market data of daily changes. It,
of course, takes account the skewness and kurtosis.

3 GENERATING MIXTURES OF NORMAL
VARIATES

In this section, we propose a new method for generating a
multivariate mixture of normal distributions with arbitrary
covariance matrix, which is different from the general three-
step idea. Our method contains two steps. In step one,
we generate a multivariate normal with an input covariance
matrix. Later on we see how this covariance matrix will
be derived analytically. In step two, we transform this
multivariate normal into the desired multivariate mixture
of normals linearly with any given arbitrary covariance
matrix. Our discussion starts with the univariate case, then
the multivariate case, follows.
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Figure 1: Probability Density Functions of Standard Normal
and Mixture of Two Normals with the same mean and
variance, but different kurtosis and skewness.

3.1 The Univariate Case

We discuss how to generate a single daily change using a
mixture of k univariate normal distributions. The follow-
ing result provides a feasible procedure of implementation.
Detailed proof can be found in Wang [2001].

Proposition 3.1.1. If Y ∼ N(0, 1), U ∼ U(0, 1), and X
and U are independent each other, then

X =
k∑

j=1

(σ j Y + µ j )I{∑ j−1
l=1 pl≤U<

∑ j
l=1 pl

}

is a mixture of k normals with cdf of (2), where I{·} is the
indicate function, and

∑0
l=1 pl = 0.

As a direct application of Proposition 3.1.1, generating
a mixture of normals with cdf (2) can be easily accomplished
as follows:

Algorithm 3.1.

1. Generate Y from N(0, 1).
2. Generate U from U(0, 1).
3. Return

X =
k∑

j=1

(σ j Y + µ j )I{∑ j−1
l=1 pl≤U<

∑ j
l=1 pl

},

where
∑0

l=1 pl = 0.
286
3.2 The Multivariate Case

We assume that X = (X1, · · · , Xn)′ is a random vector of
daily changes in market variables. The marginal distribution
of each component Xi is a univariate mixture of ki normals
with pdf:

fXi (x) =
ki∑

h=1

pih
1√

2π σih

e
− (x−µih

)2

2σ2
ih , (4)

where

0 ≤ pih ≤ 1, h = 1, · · · , ki ,

ki∑
h=1

pih = 1, i = 1, · · · , n.

The covariance matrix of X is

�X = [σi j (X)], (5)

where σi j (X) = Cov(Xi , X j ), i, j = 1, · · · , n. Note
that our definition of the multivariate mixture of normal
distributions is different from Johnson [1987]. He mimics
the univariate case to yield the multivariate case (Johnson
[1987], page 56):

pNm(µ1,�1) + (1 − p)Nm(µ2,�2),

which is the cdf of a mixture of two multivariate normal
distributions. Following his definition, all the marginal dis-
tributions must have the same number of components. In
general, there are many multivariate distributions having
mixtures of normal distributions as their marginal distri-
butions. Our definition is one of them for a multivariate
mixture of normal distributions. Under our definition, each
marginal distribution may have a different number of com-
ponents.

In the univariate case, we know how to generate each
single component Xi from Proposition 3.1.1. In the mul-
tivariate case, the most difficult part is how to handle the
covariance matrix �X . The following result provides an
efficient and easy-to-implement procedure to handle the
covariance matrix. See Wang [2000] for the detailed proof.

Proposition 3.2.1. Let U = (U1, · · · , Un)′, where Ui s
are independent U(0, 1) random variables, and Y =
(Y1, · · · , Yn)′, where the Yi s are N(0, 1) random variables
with covariance matrix

�Y = [σi j (Y )],

where

σi j (Y ) = Cov(Yi , Y j ), i, j = 1, · · · , n.
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Define

Xi =
ki∑

h=1

(σih Yi + µih )I{∑h−1
l=1 pil ≤Ui<

∑h
l=1 pil

},

where

0∑
l=1

pil = 0, i = 1, · · · , n.

If U and Y are independent, then X = (X1, · · · , Xn)′ is a
multivariate mixture of normals with mean

µX = (µ1, · · · , µn)′,

where

µi =
ki∑

h=1

pih µih , i = 1, · · · , n,

and covariance matrix

�X = [σi j (X)],

where σi j (X) =



σi j (Y )
∑ki

h=1

∑k j
l=1 pih p jl σih σ jl

+ ∑ki
h=1

∑k j
l=1 pih p jl (µih − µi )(µ jl − µ j )],

f or i �= j, and i, j = 1, · · · , n,∑ki
h=1 pih (σ

2
ih

+ µ2
ih
) −

(∑ki
h=1 pih µih

)2
,

f or i = j, and i = 1, · · · , n.

(6)

Furthermore, for any given desired covariance matrix
�X , we can calculate the analytical input matrix �Y which is
required for generating the multivariate mixture of normals
X . As a direct result of Proposition 3.2.1, we have the
following main result.

Proposition 3.2.2. Under all assumptions of Proposition
3.2.1,

∑
Y can be derived in terms of

∑
X where σi j (Y ) =




σi j (X) − ∑ki
h=1

∑k j
l=1 pih p jl (µih − µi )(µ jl − µ j )∑ki

h=1

∑k j

l=1 pih p jl σih σ jl

,

f or i �= j, and i, j = 1, · · · , n
1, f or i = j, and i = 1, · · · , n.

Cholesky Decomposition is a commonly used method
for generating the multivariate normal with an arbitrary
covariance matrix (Johnson [1987], and Law and Kelton
[2000]). Algorithms of the Cholesky method can found in
Fishman [1973]. We consider the Cholesky method.
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Proposition 3.2.3. (Cholesky Decomposition) For any given
covariance matrix �Y = [σi j (Y )], if Z = (Z1, · · · , Zn)

′,
where the Zi s are independent N(0, 1) random variables,
there exists a unique lower triangular matrix C, such that

�Y = CC ′,

and CZ is a multivariate normal with covariance matrix
�Y . Furthermore, matrix C can be found from the following
recursive formula:

ci j (Y ) = σi j (Y ) − ∑ j−1
k=1 cik(Y )c jk(Y )√

σ j j (Y ) − ∑ j−1
k=1 c2

j k(Y )

where

0∑
k=1

cik(Y )c jk(Y ) = 0, 1 ≤ j ≤ i ≤ n.

Based on the results of Propositions 3.2.2 and 3.2.3, gen-
erating a multivariate mixture of normals with the marginal
pdfs of (4) and covariance matrix of �X = [σi j ] can be
accomplished as follows:

Algorithm 3.2.

1. Calculate
∑

Y , where σi j (Y ) =



σi j (X) − ∑ki
h=1

∑k j
l=1 pih p jl (µih − µi )(µ jl − µ j )∑k j
l=1 pih p jl σih σ jl

,

f or i �= j, and i, j = 1, · · · , n
1, f or i = j, and i = 1, · · · , n.

2. Calculate C, where

ci j (Y ) = σi j (Y ) − ∑ j−1
k=1 cik(Y )c jk(Y )√

σ j j (Y ) − ∑ j−1
k=1 c2

j k(Y )

and

0∑
k=1

cik(Y )c jk(Y ) = 0, 1 ≤ j ≤ i ≤ n.

3. Generate Z = (Z1, · · · , Zn)′, where the Zi s are
from N(0, 1).

4. Generate U = (U1, · · · , Un)′, where the Ui s are
from U(0, 1).

5. Calculate Y = (Y1, · · · , Yn)′, where
Yi = ∑i

k=1 cik(Y )Zi .
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6. Return X = (X1, · · · , Xn)′, where
Xi = ∑ki

h=1(σih Yi + µih )I{∑h−1
l=1 pil ≤Ui<

∑h
l=1 pil

},
and

∑0
l=1 pil = 0.

4 PORTFOLIO VaR

In recent years, VaR has become a new benchmark for
managing and controlling risk (RiskMetricsTM [1995], Jo-
rion [1997], and Dowd [1998]). The VaR measures the
worst expected loss over a given time interval under normal
market conditions at a given confidence level, and provides
users with a summary measure of market risk. Suppose
that X = (X1, · · · , Xn)′ is a random vector of portfolio
returns. For any portfolio w = (w1, · · · , wn)′ (where wi

is the weight on asset i ), the total return of portfolio w is
Rw = ∑n

i=1 wi Xi . Precisely qw, the VaR at the 100(1−α)%
confidence level of a portfolio w for a specific time period,
is the solution to

P (Rw ≤ −qw) = α. (7)

In this section, we derive an important property of the
mixture of normal distributions. Also, a portfolio VaR
can be calculated efficiently without using Monte Carlo
simulation.

Under our setting (4), if the marginal distributions
of portfolio returns Xi (i = 1, · · · , n) are the mixture
of normals, then the total return of a portfolio w Rw =∑n

i=1 wi Xi is a (univariate) mixture of normal distributions.
See Wang [2000] for the detailed proof.

Proposition 4.0.4. We assume that
X = (X1, · · · , Xn)

′ is a random vector of market daily
returns and the marginal distribution of each component
Xi is a univariate mixture of ki normals with pdf (4) and
covariance matrix

∑
X . Then, for any (linear) portfolio

w = (w1, · · · , wn)′, the portfolio return Rw = ∑n
i=1 wi Xi

is a univariate mixture of normal distributions. The cdf is
given by

P(Rw ≤ x) =
k1∑

h1=1

· · ·
kn∑

hn=1

p1h1
· · · pnhn

�

(
x − µh1···hn

σh1···hn

)
,

where � is the cdf of N(0, 1),

µh1···hn =
n∑

i=1

wiµihi
,

and

σh1···hn =
n∑

i=1

n∑
j=1

wiw j σihi
σ jh j

σi j (Y ).
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Proposition 4.0.4 provides an efficient way to calcu-
late portfolio VaR. The degree of difficulty for calculating
the portfolio VaR is equivalent to find the quantile of a
(univariate) mixture of normal distributions.

Proposition 4.0.5. Under all assumptions of Proposition
4.0.4, the VaR qw of a given portfolio w is the solution to:

k1∑
h1=1

· · ·
kn∑

hn=1

p1h1
· · · pnhn

�

(−qw − µh1···hn

σh1···hn

)
= α. (8)

The right hand side of equation (8) is a monotone
decreasing function in qw. Therefore the VaR qw can be
calculated numerically to any desired degree of accuracy.
The computation is just as easy as calculating a few quantiles
of normal distributions. There is no need of the Monte Carlo
simulation.

Note that there is no general, analytical way, to calculate
portfolio VaR when the profit-and-loss function is a non-
linear function of portfolio returns. Under the model of
the multivariate mixture of normal distributions, our Monte
Carlo method in Section 3 provides an efficient way to
calculate a portfolio VaR. Comparing this with the model
of a multivariate normal distribution, there is not much extra
work for the Monte Carlo simulation. The main part of
extra work is to generate the uniform (0,1) vector, which
is quite cheap and fast.

5 CONCLUSIONS

Many studies shown that frequently distributions of daily
changes have fat tails and skew to the left. The mixture
of normal distributions provides a useful extension of the
normal for the modeling of daily changes with fatter-than-
normal tails and skewness. The main result of this paper is
to provide an efficient analytical Monte Carlo method for
generating daily changes using a multivariate mixture of
normal distributions with arbitrary covariance matrix. An
easy-to-implement and ready-to-use algorithm is described.
In general, the most difficult part of generating multivari-
ate distributions is how to handle the covariance matrix.
We derive the input covariance matrix analytically without
using any numerical approximations or inverse transforma-
tions. In addition, the commonly used multivariate normal
model is a special case of the multivariate mixture of nor-
mals. We also provide an efficient analytical method for
calculating portfolio VaR without using Monte Carlo sim-
ulation. Under the assumption of multivariate mixture of
normals, calculating a portfolio VaR is just as simple as
under the normality assumption, since any linear combi-
nation of mixtures of normal distributions is a mixture of
normal distributions. Overall our method is more general,
appropriate, and efficient.
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