
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

CSIM19: A POWERFUL TOOL FOR BUILDING SYSTEM MODELS

Herb Schwetman

Mesquite Software, Inc.
PO Box 26306

Austin, TX 78755-0306, USA

ABSTRACT

CSIM19 is the latest version of the system modeling toolkit
from Mesquite Software. CSIM19 offers many features that
enable a modeler to develop robust and realistic models of
complex systems. These models represent the system as a
collection of processes and resources; in most cases the
processes mimic the behavior of the entities of the system as
they compete for use of the system’s resources. This paper
presents CSIM19 and the new features in CSIM19. These
features include new capabilities for managing processes at
facilities, enhanced handling of messages at mailboxes, and
performance improvements. Using the OptQuest optimiza-
tion package with CSIM19 is also discussed. The talk con-
cludes with an extended example.

1 INTRODUCTION

Many systems analysts find that they need to construct and
then use simulation models of the systems being analyzed.
The primary reason is that they need to understand and
predict the behavior of this system. Often, these systems
are very complex, both in terms of the number of compo-
nents in the system as well as in terms of the types of be-
havior of the active entities in the system.

CSIM19 is both a simulation engine and a set of
classes and methods, together with a process structure and
support functions and procedures. Programmers can write
C++ (or C) programs that use the underlying library and
header files to create realistic simulation models of com-
plex systems. Based on the prior version, CSIM18,
CSIM19 provides extensive capabilities for modeling sets
of resources with facilities being scheduled as a unit; an
example is a set of facilities in which customers are moved
between waiting lines so as to move to the facility with the
shortest queue, in a dynamic fashion.

This paper gives the CSIM approach to implementing
models of systems. It briefly describes the OptQuest opti-
mization package, which is an “add on” for CSIM19. It

250
concludes with an example that illustrates some of the ad-
vanced features found in CSIM19.

2 CSIM19 MODELS

In many cases, a simulation model mimics the behavior of
a real system. The usual technique is to represent the ac-
tive elements of the system with entities and the passive
elements of the system as resources. The resources are of-
ten implemented in the model as queues (consisting of one
or more servers and an internal queue for waiting entities).
CSIM19 is a toolkit for constructing simulation models of
complex systems. In a CSIM19 model, the active elements
of the system are represented by CSIM processes, and the
passive elements by resources such as facilities and stor-
ages. A CSIM19 model of a complex system is a C or C++
program in which CSIM19 processes mimic the behavior
of the active entities of the system as they compete for use
of resources of the system. The statistics collection fea-
tures of CSIM19 give insight into the performance of the
system as reflected in the response times and flow rates of
the processes and the utilization of and contention for the
resources.

Creating a model of a system requires specifying the
set of processes and resources which will be used to model
the important components of the system. An example will
assist in illustrating these concepts. There is a (fictitious)
new airport for a small (fictitious) city. One important is-
sue is determining the number of gates required for this
airport. As a first cut, a simple CSIM19 model is designed
to give a quick answer. In this model, each arriving air-
plane is represented by a CSIM process. The collection of
gates is represented by a single facility with multiple serv-
ers; each server represents a gate. An arrival generator
process generates arriving airplanes at the pre-specified
rate. The complete program is shown in the Appendix.

In this model, the facility is named gates. The two key
processes for this model are as shown in Figure 1.

Schwetman

facility_ms *gates;
. . .
void airplaneGenerator()
{
 create(“gen”);
 while(TRUE) {
 airplane();
 hold(exponential(airplaneInterarrivalTm));
 }
}

void airplane()
{
 create(“airplane”);
 gates->use(uniform(minGateTime, max-
GateTime));
}

Figure 1: Listings of Generator and Airplane Processes

In the generator process, the while loop invokes one
instance of the airplane process and then delays for a com-
puted amount of simulated time to pass (the hold state-
ment); this sequence of airplane arrivals and delays simu-
lates arrivals of airplanes at the airport. The computed
interarrival intervals are each derived from a negative ex-
ponential probability distribution with mean as specified.

Each instance of the airplane process “uses” a gate; the
gate holding times (also called service times) are each de-
rived from a uniform probability distribution with the
range of values as specified. The use method for the multi-
server facility causes the process (using the facility) to wait
until one of the eleven gates (servers) is free; it then as-
signs a free server to the process, causes the processor to
delay for a computed service interval and then releases the
server (makes it free again) and allows the process to con-
tinue. The output for this model is shown in Figure 2.

251
This output shows that, on average, an arriving air-
plane waits for about 12 minutes (the average response
time minus the average service time) and there are an aver-
age of about 1.8 airplanes waiting to acquire a gate (the av-
erage queue length minus the utilization). Clearly, the air-
port will need more than eleven gates.

The major features of a CSIM19 model as shown in
the example are as follows:

• a CSIM process is a procedure which executes the

create statement
• CSIM processes operate in an asynchronous

parallel manner, mimicking the behavior of
multiple entities which are active at the same time

• CSIM has a number of functions which use a ran-
dom number generator to return values which ap-
pear to be drawn from a specified probability dis-
tribution; in the example, the exponential and the
uniform distributions are used to model the distri-
butions of airplane interarrival intervals and gate
holding times respectively

• a multi-server facility has one or more servers and
a single queue for processes waiting to gain ac-
cess to one of the servers

• statistics on the usage of a facility are automati-
cally collected; these are presented as part of a re-
port

• the hold(t) statement causes simulated time to
pass in the life of the model; the amount of time is
specified by the value of t; hold(t) statements are
executed by processes
 Sat Jul 28 12:34:25 2001

 Ending simulation time: 1080.000
 Elapsed simulation time: 1080.000
 CPU time used (seconds): 0.001

FACILITY SUMMARY

facility service service through- queue response compl
name disc time util. put length time count
--
gates fcfs 58.73686 8.974 0.15278 10.80909 70.75044 165
 > server 0 53.04960 0.884 0.01667 18
 > server 1 62.74292 0.871 0.01389 15
 > server 2 62.90573 0.932 0.01481 16
 > server 3 58.01635 0.913 0.01574 17
 > server 4 59.24680 0.823 0.01389 15
 > server 5 58.47125 0.812 0.01389 15
 > server 6 56.29535 0.834 0.01481 16
 > server 7 56.86826 0.790 0.01389 15
 > server 8 62.10498 0.690 0.01111 12
 > server 9 58.56655 0.759 0.01296 14
 > server 10 59.83868 0.665 0.01111 12

Figure 2: Output from Example

Schwetman

3 FEATURES OF CSIM19

CSIM19 has several other features which are used in other
models, as required by the structure and operation of the
model; so this these other features include the following:

• storage: a pool of tokens and a queue for proc-

esses waiting to allocate some of the tokens
• event: a two-state variable and a queue for proc-

esses waiting for the event to “occur”
• mailbox: a list of unreceived messages and a

queue for processes waiting to receive a message;
other processes can send a message to the mailbox
at any point in time

• table: a structure used to hold data which will pre-
sented as part of a report; the data in a table is re-
corded

• a table can also be used in conjunction with the
automatic run length control feature [Schwetman,
1997] to guarantee that a model is presenting sta-
tistically valid results

All of the features, functions, procedures, constants and
objects in CSIM19 are described in the CSIM19 User’s
Guide [Mesquite, 2001]

So far, all of the features described were part of CSIM18,
the earlier version of this simulation package. Some of the
features which are new in CSIM19 are as follows:

1. Facilities, storages, events and mailboxes each

have a queue for waiting processes. In some cases,
it is desirable for a supervisory process to be able to
manipulate the processes waiting in a queue. Ex-
amples include jockeying (so a waiting process in
one queue can be moved to another queue) and
queue reordering (to age or adjust the priorities of
processes in the queue). CSIM19 has a set of func-
tions (or methods) which can allow these kinds of
behavior to be implemented in a model.

2. A mailbox has, in addition to a queue for waiting
processes, a queue for messages waiting to be re-
ceived. On occasions, it is desirable for a process
to be able to manipulate the messages in the mes-
sage queue. CSIM19 has functions and methods
to let programs do this.

3. In many models, it is convenient to have an array
or set of simulation objects. In CSIM18, there an
event_set structure. In addition to being an array
of individual events, a process can execute the
wait_any statement. With this statement, a wait-
ing process is resumed when one of the events in
the set is set by another process; furthermore, the
process receives the index of the event in the array
252
which was set. This concept of having a set of
objects and operations which deal with the entire
set has proven to be useful in many kinds of mod-
els. The following kinds of aggregated objects are
part of CSIM19:

a. facility_set – a facility set can have one of a

number of scheduling strategies, including
choose-the-facility-with the-shortest-queue
(with or without queue-jockeying), choose-the-
facility-with-the-lowest-utilization, and get-a-
server-at-all-of-the- facilities-at-one-time.

b. storage_set – a storage set can have one of a
number of scheduling strategies including
choose-the-storage-with-the-shortest-queue
(with or without queue jockeying) and choose-
the-strorage-with-the-lowest-utilization.

c. event_set – a process can wait for any of the
events in the set to be set and a process can
wait for all of the events in a set to be set.

d. mailbox_set – a process can wait to receive a
message which is sent to any mailbox in the
set of mailboxes.

4. In some cases, it is useful to collect queueing sta-

tistics at events and mailboxes; in CSIM19, col-
lecting queueing statistics can be specified for any
event or mailbox; in addition, collecting statistics
on delays experienced by messages in a mailbox
can also be specified.

 As can be seen, CSIM19 is a comprehensive modeling
tool, with a full range of capabilities for addressing a
multitude of analysis scenarios. In addition, the underlying
simulation engine [Schwetman 1996] is very efficient, al-
lowing models to execute at rapid rates.

4 CSIM19 AND OPTQUEST

CSIM19/OptQuest combines the powerful simulation pack-
age, CSIM19, with a state of the art optimization package,
OptQuest [Glover, 1999], to allow users to build models
which can automatically find the best system configuration
[Schwetman, 2000]. Briefly, a CSIM19 model can be de-
signed so that critical aspects of the configuration of the
model are provided as inputs to the model. In addition, the
model yields results as outputs from the model. Such a
model can be setup with components of the OptQuest pack-
age so that the OptQuest run supervisor can call the model
with a specific configuration and then assimilate the results
of a run to evaluate the configuration and try out additional
configurations, searching for the best configuration.

Schwetman

5 AN EXAMPLE

The example in an earlier section was extended to become
a more realistic model of an airport in operation. The two
changes are as follows:

• The arrival rate for airplanes was changed from a

single overall rate to a set of hourly arrival rates,
one per hour, to more accurately model the
fluxuations in arrival rates over the day, and

• The single airport facility with multiple indistin-
guishable gates was enlarged to become a set of fa-
cilities: gates, tugs and air conditioning units; an ar-
riving airplane needs one gate, one air conditioning
unit, both for the entire gate time, and one tug for 10
minutes after arrival and one tug for 10 minutes
prior to departure (to tow the airplane to the gate
and to push the airplane back from the gate).

The non-constant mean arrival rates were implemented

using a vector of mean arrival rates and by modifying the
airplaneGenerator process, as shown in Figure 3

const long arrivalsByHour[hoursPerDay] =
 { 2, 6, 10, 12, 8, 7, 10, 11, 6, 7, 9, 20,
21, 12, 10, 12, 7, 3};

void airplaneGenerator()
{
 long hour;
 double iarTime;

 create("gen");
 while(clock < dayTime) {
 numAct++;
 airplane();
 hour = (long)(clock/60.0);
 iarTime = 60.0/arrivalsByHour[hour];
 hold(exponential(iarTime));
 }
 if(numAct == 0)
 done->set();
}

Figure 3: Modeling Varying Arrival Rates

The extended set of facilities was modeled using a facil-

ity_setx. Each of the components of the airport (gates, tugs,
and airconditioners) are first modeled as a multi-server facil-
ity. Then, each of these are “added” to the facility_setx.
When an airplane arrives, it executes the reserve_all
method; this method delays the airplane process until it can
reserve one of each of the component facilities. The process
then does a hold for an interval corresponding for the tug
253
service time (10 minutes). It then releases the tug facility
and does a hold for the remainder of the gate time (minus the
push-back time). Prior to departure, the process acquires
another tug, delays for the tug service time (10 minutes) and
then executes the release_all method, freeing the gate, air-
conditioner and tug it had acquired. The listings of these
modifies routines are shown in Figure 4.

void initDay()
{
 facility_ms *f;

 airport = new facility_setx("airport", 3);
 f = new facility_ms("gates", numGates);
 airport->add_facility(f);
 f = new facility_ms("tugs", numTugs);
 airport->add_facility(f);
 f = new facility_ms("a/c", numGates);
 airport->add_facility(f);
 done = new event("done");
 numAct = 0;
}

void airplane()
{
 double gt;

 create("airplane");
 airport->reserve_all();
 hold(tugTime);
 airport->release(1);
 gt = uniform(minGateTime, maxGateTime) -
2*tugTime;
 gt = (gt < 0.0) ? 0.0 : gt;
 hold(gt);
 airport->reserve(1);
 hold(tugTime);
 airport->release_all();
 numAct--;
 if(clock >= dayTime && numAct == 0)
 done->set();
}

Figure 4: Listings Showing Extended Facility Set

In addition to the enhancements listed above, the model

was altered, so as to model many days of operation, as op-
posed to one day. The output was modified so that the num-
ber of arrivals for each day, the average airport utilization
(equivalent to the average number of gates in use), the aver-
age airport service time per airplane, the average response
time per airplane and the average number of planes at the
airport, all for each day, are collected and summarized in a
set of permanent_table structures. Each day of operation is
a separate instance of the model; the rerun() statement al-
lows successive instances of the model to be constructed and
executed. The output for this model with 15 gates, modeling
365 days of operation appears in the Figure 5.

Schwetman

Airport Model;

 Number of gates: 15
 Number of airconditioners: 15
 Number of tugs: 15
 Number of days: 365
 Hours per day: 18

 Average arrivals per day: 171.595
 Average service time: 60.125
 Average gate utilization: 9.124
 Average response time: 69.646
 Average number at airport: 10.615

Figure 5: Output from Enhanced Model of the Airport

This model could be extended to increase the degree
of realism and to obtain additional outputs, such as the dis-
tribution of the number of airplanes on the ground at the
airport. An obvious extension is to use OptQuest to find
the best combination of gates, air conditioners and tugs so
as to “optimize” operations at this airport. These and other
enhancements would enable the managers and designers of
the airport to develop a configuration of the airport, with
its many components, that would meet the operational and
performance goals, and to predict the behavior of the air-
port over time as the operational characteristics change.

6 SUMMARY

CSIM19 combines an efficient simulation engine and a
comprehensive set of tools that allow modelers to develop
realistic models of complex systems. The variety of ob-
jects and services provided means that these models can be
designed, implemented and tested in an economical man-
ner. Furthermore, the efficient underlying simulation en-
gine means that these models execute quickly. The addi-
tion of the OptQuest package extends the usefulness of the
package, by allowing the model to automatically search for
the best possible system configuration.

The new features in CSIM19 extend the kinds of sys-
tems which can be readily modeled. In many cases, users
of CSIM18 could have achieved similar results, but now,
the ease-of-use provided by the enriched feature set re-
duces the costs of implementing these models and im-
proves their reliability. CSIM19 will prove to be a valu-
able tool in the pursuit of better models.

ACKNOWLEDGMENTS

CSIM is copyrighted by Microelectronics and Computer
Technology Corporation (MCC). CSIM19 is supported
and marketed by Mesquite Software, Inc. under license
from MCC. Dr. Jeff Brumfield developed the data collec-
tion and presentations functions including the run-length
control algorithm in CSIM19. OptQuest is a product of
OptTek Systems, Inc. It is available for use with CSIM19
from Mesquite Software, Inc.
254
APPENDIX: LISTING OF THE MODEL OF AN
AIRPORT WITH MULTIPLE GATES

// model of airplanes arriving to use a gate
and an airport

#include "cpp.h"

const double simTime = 18*60.0;
const long numGates = 11;
const double interarrivalTime = 6.0;
const double minGateTime = 30.0;
const double maxGateTime = 90.0;

facility_ms *gates;

void init();
void airplaneGenerator();
void airplane();

extern "C" void sim()
{
 create("sim");
 init();
 airplaneGenerator();
 hold(simTime);
 report();
}

void airplaneGenerator()
{
 create("gen");
 while(clock < simTime) {
 airplane();
 hold(exponential(interarrivalTime));
 }
}

void airplane()
{
 create("airplane");
 gates->use(uniform(minGateTime, max-
GateTime));
}

void init()
{
 gates = new facility_ms("gates",
numGates);
}

REFERENCES

Glover, F., Kelly, J. and M. Laguna, 1999, New Advances
for Wedding Optimization and Simulation, Proceed-
ings of the 1999 Winter Simulation Conference, Ed. P
Farrington, H. Nembhard, D. Surrock and G. Evans,
255 – 259.

Mesquite Software, Inc. 2001, CSIM19 User’s Guide, Aus-
tin, TX.

Schwetman, H., 1996, CSIM18 – The Simulation Engine,
Proceedings of the 1996 Winter Simulation Confer-
ence, Ed. J. Charnes, D. Morrice, D. Brunner, and J.
Swain, 515 – 521, San Diego.

Schwetman

Schwetman, H. and J. Brumfield, 1997. Data Analysis and

Automatic Run-Length Control in CSIM18. Proceed-
ings of the 1997 Winter Simulation Conference. Ed. S
Andradottir, K. Healy, D. Withers, and B. Nelson, 687
- 692. Atlanta, GA.

Schwetman, H., 1999, “Model, Then Build”: A Modern
Approach to Systems Development Using CSIM18,
Proceedings of the 1999 Winter Simulation Confer-
ence, Ed. P Farrington, H. Nembhard, D. Surrock and
G. Evans, 249-254, Phoenix.

Schwetman, H., 2000, Optimizing Simulations with
CSIM18/OptQuest: Finding the Best Solution, In Pro-
ceedings of the 2000 Winter Simulation Conference
Ed. J. Joines, R. Barton, P. Fishwick, and K. Kang,
268 – 273, Orlando.

AUTHOR BIOGRAPHY

HERB SCHWETMAN is founder and Chairman of the
Board of Mesquite Software, Inc. Prior to founding Mes-
quite Software in 1994, he was a Senior Member of the
Technical Staff at MCC from 1984 until 1994. From 1972
until 1984, he was a Professor of Computer Sciences at
Purdue University. He received his Ph.D. in Computer
Science from The University of Texas at Austin in 1970.
He has been involved in research into system modeling and
simulation as applied to computer systems since 1968.
255

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

