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ABSTRACT 

This tutorial considers some very general procedures for 
analysing the results of a simulation experiment using boot-
strap resampling. Bootstrapping has come to be recognised 
in statistics as being far ranging and effective.  However it is 
not so well known in simulation despite being ideally suited 
for use in such a context. We discuss aspects ranging from 
the elementary to the advanced. We describe the rationale 
and the simple steps needed to implement bootstrapping in 
(i) estimation of the distributional properties of the output 
and its dependence on factors of interest; (ii) model fitting; 
(iii) model selection; (iv) model validation; (v) sensitivity 
analysis. 

1 INTRODUCTION 

This tutorial considers some very general procedures for 
analysing the results of a simulation experiment The pro-
cedures to be described and discussed make use of resam-
pling. Such methods have come to be recognised in statis-
tics as far ranging and effective. However they are not so 
well known in simulation despite being ideally suited for 
use in such a context. 
 Though the underlying methodology is essentially 
well-known it is possible to take advantage of particular 
features of simulation experiments to simplify or to im-
prove the accuracy or the efficiency of the analysis. 
 We discuss aspects ranging from the elementary to the 
advanced. We will discuss (i) estimation of the distribu-
tional properties of the output and its dependence on fac-
tors of interest; (ii) model fitting; (iii) model selection; (iv) 
model validation; (v) sensitivity analysis. 

Although it is not strictly necessary, it is convenient to 
conduct this discussion in a unified framework by adopting a 
metamodelling approach which uses a regression model 
comprising a deterministic regression function and a sto-
chastic error process to describe the behaviour of the output. 
All the aspects previously mentioned can be conveniently 
discussed within this framework. 
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 In Section 2 we describe the classical bootstrap and 
also a parametric version based on a metamodelling ap-
proach. Section 3 describes the simulation experimental 
layout. Section 4 describes calculation of distributional 
properties of the simulation output. Section 5 describes 
goodness-of-fit problems and model selection. Section 6 
describes model validation, Section 7 describes sensitivity 
analysis and Section 8 describes the assessment of sequen-
tial procedures ,such as subset selection. 

2 BOOTSTRAP METHOD 

2.1 The Basic Bootstrap 

Bootstrapping is an ideal method, well matched to simula-
tion methodology, for estimating accuracy of simulation 
output and for carrying out sensitivity analysis. It provides 
a computer-based solution to the fundamental question of 
all statistical methodology: 
 
 A statistic, T, is calculated from a random sample, 
 y = (y1, y2, ..., ym).  What is the distribution of T? 
 
 The basic process is illustrated in Figure 1 where a 
random sample y is drawn from a (null) distribution F(.), 
and a statistic of interest, T, is then calculated from this 
sample. 
 
 
 
 
 
    Null Distribution         Sample               Test Stat. 
 

Figure 1: Basic Process 
 
 If we could repeat the basic process a large number of 
times, B say, (typically B = 100 at least, see Chernick, 
1999) then we have a large sample {T(1), T(2),..., T(B)} of test 
statistics, and the (sampled) empirical distribution function 
(EDF) of these estimates the required distribution. This de-
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sired process is illustrated in Figure 2 and the resulting 
EDF formed from the (ordered) sample {T(1), T(2),..., T(B)} 
is depicted in Figure 3. This converges to the true distribu-
tion of T as B becomes indefinitely large. 
 
 
 
 
 
 
 
                                       •                                            • 
                                       •                                            • 
 
 
 

 

Figure 2: Desired Process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: EDF of the Sample of Test Statistics 
 

 Obtaining the samples y(1), y(2),..., y(B) is usually too 
expensive to do. The bootstrap resampling method replaces  
F(.) by the best estimate we have for it. This is simply the 
EDF formed from the original sample y. We denote this by 
Fm(.). 
 The bootstrap version of the desired process is illus-
trated in Figure 4. Here and in what follows we use an aster-
isk to denote a bootstrap value. Thus y*(i) denotes the ith 
bootstrap sample and T*(i) the test statistic calculated from 
this sample. The EDF formed from the (ordered) bootstrap 
sample {T*(1), T*(2),..., T*(B)} estimates the (true) CDF of T. 
This is illustrated in Figure 5. 
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Figure 4: Bootstrap Process 
 
 Also depicted in Figure 5 is the test statistic, T, calcu-
lated from the original sample. Its p-value 
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can readily be read off from the bootstrap EDF, as indi-
cated in the Figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 5: EDF of the Sample of Bootstrap Test Statistics 

 There is a huge literature both theoretical and practical 
showing how well the method works. Chernick (1999) gives 
some 1600 references. Hjorth (1994) gives a good introduc-
tion. See also Davison and Hinkley (1997). Expressed infor-
mally, for the method to work, we require two things. Firstly 
we require that Fm(.) converges to F(.). When y is a random 
sample this is guaranteed by the Glivenko-Cantelli theorem 
that ensures that Fm(.)→F(.) uniformly with probability one 
(See Chernick 1999 for details). Secondly if we regard the sta-
tistic T as estimating some characteristic property of the dis-
tribution (technically this property is a functional of the popu-
lation distributions) then this characteristic must satisfy certain 
smoothness properties. Most characteristics such as moments 
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and percentiles are smooth and so their estimators have distri-
butions that can be estimated by bootstrap resampling. Boot-
strap resampling most often fails when T is a statistic estimat-
ing a functional that is not smooth. Thus for example maxima 
or minima of a sample have distributions that cannot usually 
be estimated by bootstrap resampling. 

2.2 The Parametric Bootstrap 

A variation of the Basic Process is depicted in Figure 6.  
The only difference is that the statistical quantity of inter-
est depends on a vector of parameters θ0 that has to be es-
timated from the sample y.  
 
 
 
 
 
    Null                 Sample       Estimate       Test Stat. 
Distribution                             of  θ0 
 

Figure 6: Basic Parametric Process 
 

 The sample is assumed to have a joint distribution 
with probability increment DF(y, θ) depending on θ. If the 
sample is a random sample then the probability increment 
becomes a product of univariate increments: DF(y, θ) = 

∏ =

m

j jyDF
1

),( θ , but in general we do not necessarily have 

to assume this. 
 A good way of obtaining θ̂  is to use maximum likeli-
hood (ml) estimation (see for example Efron and Tibshi-
rani, 1993). The likelihood is simply the joint distribution 
probability element evaluated at the observed values, and 
then treated as a function of θ. It is usually easier to work 
with its logarithm (loglikelihood): 

 ∑
=

=
m

i
iyDFL

1

),(log)( θθ . (1) 

The ml estimate, θ̂ , is the value of θ which maximizes 
this loglikelihood. When the loglikelihood is maximized at 
an interior point of the parameter space then θ̂  satisfies the 
likelihood equation L’(θ)= 0. The observed and expected 
information are defined as 22 /)()( θθθI ∂−∂= L  and i(θ) = 
E[I(θ)]. 
 Under general regularity conditions the ml estimate has 
the important property that its distribution is asymptotically 
normal as the sample size tends to infinity: 

    ))(,( ~ ˆ 1
00

−θiθθ N . (2) 

F(.,θ0) y T( θ̂ ) θ̂
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In practice, as θ0 is unknown, use is made of one of the as-
ymptotically equivalent versions:  

   ))ˆ( ,ˆ( ~ ˆ 1−θiθθ N  or ))ˆ( ,ˆ( ~ ˆ 1−θIθθ N . (3) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Parametric Bootstrap Process, First Version 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Parametric Bootstrap Process, Second Version 

Bootstrapping can be done in two ways. The ‘non-
parametric’ method is simply to consider the estimation of 
θ as part of the process of calculating T.  Bootstrapping 
can be done in two ways. The ‘non-parametric’  
 Bootstrapping can be done in two ways. The ‘non-
parametric’ method is simply to consider the estimation of 
θ as part of the process of calculating T. Bootstrapping 
then proceeds precisely as before by resampling of y. This 
method is depicted in Figure 7. 
 However an alternative is possible if a method like ml 
is used to estimate θ. This is illustrated in Figure 8. In this 
alternative method we bypass the sampling of y, and in-
stead resample values of θ̂  using (3) directly. 

3 THE SIMULATION MODEL 

We assume that y, the output of interest from the simulation 
run, depends on a stream of uniform random variates u = (u1, 
u2, ...), on a vector θ = (θ1, θ2,..., θp) of p parameters and on 
a vector x = (x1, x2, ... xq) of q design factors, i.e. 

y=y(u, θ, x). 
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The design factor values are assumed known, but the pa-
rameters may not all be known. Typically the uniforms are 
transformed into random variates that involve some of the 
parameter values. Thus actual random variates used might 
take the form wi = ϕi(ui, θ) where ui denotes some subset 
of the uniforms used. In what follows we do not need to 
consider the wi’s explicitly. We regard the objective as be-
ing to estimate the expected value of y, and note that this is 
a function of θ and x only: 

   ∫== uxθuxθxθ d),,() ,,() ,( yyEη . (4) 

 The above formulation requires one further refine-
ment. We need to distinguish between two types of pa-
rameter. In the above formulation θ denotes those parame-
ters that depend purely on processes that are exogenous to 
the simulation model. Examples of such parameters are ar-
rival rates depending on arrival processes external to the 
simulation under consideration. Such parameters are part 
of the description of how the process behaves, and their 
values will have to be fixed before a simulation can be car-
ried out. For this reason we call the components of θ input 
parameters and θ itself the input parameter vector. 
 However there is another way that parameters can en-
ter the simulation. We let β denote those parameters which 
are added subsequent to the simulation experiment and 
which have been introduced to describe the distributional 
properties of the output y. Typically β as part of a regres-
sion metamodel. In fitting such a model, β will need to be 
estimated from the output y values obtained from the 
simulations. We shall call the vector β the output 
parameter vector, and its components, output parameters. 
 We consider two cases, depending on whether θ is 
known or not. In either case β is unlikely to be known, so 
we shall only consider the case where it is unknown. 
 Case A: Here θ is regarded as fixed and known. 

We consider the overall simulation experiment as be-
ing made up of runs made at n design points with mi runs 
made at xi the ith design point. The responses or outputs 
from these runs will be written as: 

yij=y(uij, θ0, β, xi) = η( θ0, β, xi) + e(uij, θ0, β, xi), 

                  i = 1, 2, ..., n, j = 1, 2, ..., mi, (5) 

where θ0 is the given value of θ. The ‘error’ variable e is 
the random difference between the simulation run output 
and η(θ0, x, β). We shall assume E(e) = 0. We have 

E[yij] = η(θ0, β, xi) 
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and the mean of the outputs ∑
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/  is an unbiased 

estimator of η(θ0, β, xi). 
 To fully identify the distributional properties of the yij 
the unknown β will have to be estimated. We can regard 
the estimation of β as part of the simulation process with 
the estimate β̂  forming part of the output of the simula-

tion. In status β̂  is like the output y itself. 
 Case B: Here θ is not known but has to be estimated. 
As already remarked θ denotes those parameters that de-
pend purely on processes that are exogenous to the simula-
tion model. We suppose therefore that there exist empirical 
data: z = (z1, z2, ...zl) drawn from a distribution G(.,θ0) 
where θ0 is the unknown true parameter value. This value 
will thus have to be estimated from this data. 
 Again we assume that mi runs are made at xi, the ith 
design point. The responses or outputs from these runs will 
be written as: 

yij=y(uij, θ̂, β, xi) = η( θ̂ , β, xi) + e(uij, θ̂ , β, xi), 

                         i=1,2,...,n, j = 1,2,...,mi. (6) 

Here the unknown θ has been replaced by an estimate θ̂ .
 We have included the vector β in (5) and (6), but it is 
best regarded as part of the output process. It can only be 
estimated after the simulations and this will need to be 
done in order to completely determine the distribution of y. 

 The mean of the outputs ∑
=

=
im

j
iiji myy

1

/  is still an 

unbiased estimator of η(θ, β, xi). 
 For notational simplicity, when the y are assumed to 
have the form (5) or (6), we write the distribution of y as 
F(.,θ, β, x). 
 We now consider each of the problems listed in the 
introduction. 

4 DISTRIBUTIONS AT A FIXED DESIGN POINT 

The situation here is as given in (5) or (6) depending on 
whether θ is known or not. If all simulation runs are con-
ducted at the same design point then n = 1, and the sample 
is y1 = (y11, y12, ..., y1m). As there is just one sample we 
suppress the first subscript and write it simply as y = y1 = 
(y1, y2, ..., ym). We also write x0 = x1. Of likely interest is 
the estimation of typical properties of the distribution of y 
such as  its mean, variance and selected percentiles. We 
illustrate with the case of the mean. Here T = y . 
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 Consider first Case A, where θ is known. Let θ = θ0. 
In this case there are two possible ways of estimating the 
distribution of T. 
 The first is the ‘non-metamodelling’ approach where 
we ignore the structure assumed in the right-hand side of 
equation (5) or (6) and deal with the yj directly. We there-
fore estimate the distribution of T by the bootstrap process 
of Figure 4. 
 The other is where we adopt the structure assumed in 
the right-hand side of (5) or (6). We write the distribution 
of y as F(.,θ0, β̂ , x0), where β̂  has been estimated from 
the sample y, by ml, say. The distribution of T can thus still 
be estimated by the bootstrap process of Figure 4 except 
that the bootstrap samples y*(i) are each drawn from F(.,θ0, 
β̂ , x0). The only point of note is that the calculation of 
each bootstrap T*(i) requires calculation of a corresponding 
estimate, β̂ *(i), of β. 

Consider now Case B, where θ is not known. In this 
case the simulation runs must use an estimate, θ̂, of θ. The 
non-metamodelling approach cannot be used as the origi-
nal sample y does not include the variation arising from 
this estimation process. 

We can however use the metamodelling approach. To 
incorporate the added uncertainty arising from the estima-
tion of θ, each bootstrap sample y*(i) is now drawn from a 
separate distribution, namely F(., θ̂*(i), β̂ , x0), in which 

θ̂*(i) has been sampled by the bootstrap process of Figure 7 
or 8 (except that in Figure 7 y needs to be replaced by z, 
and Fm by Gl) so that it varies from sample to sample. 

5 GOODNESS-OF-FIT AND MODEL SELECTION 

5.1 Goodness-of-Fit 

The discussion of Section 4 extends naturally to the study 
of how well the simulation output is represented by some 
given parametric model. We consider again the situation 
where n = 1 with the sample written as y = y1 = (y1, y2, ..., 
ym). and where we write x0 = x1. The situation is precisely 
that of equation (5) or (6), with n = 1, but where we are 
uncertain whether we have the correct form for η(θ, β, x0) 
or for e(u, θ, β, x0). This is a question of goodness-of-fit of 
the model and is a problem that can be difficult to handle 
using traditional techniques. Resampling methods offer a 
particularly good solution to goodness-of-fit problems (See 
Cheng et al. 1996). 
 The situation is basically that of Figure 6 but where 
we are uncertain if the null distribution of y is F(.,θ0, β̂ , 

x0) when we have Case A or is F(., θ̂ , β̂ , x0) when we 
have Case B. In either case we simply take T to be a good-
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ness of fit statistic. A good choice is the Anderson - Dar-
ling statistic (Anderson and Darling, 1952) 
 

∑
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j
jmj zzjmmA
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1

12 )}1ln()){ln(12(  

 
where zj = F(y(j), θ, β̂ , x0), and y(j) denotes the jth observa-
tion of the ordered y sample. We shall use T = A2 in this 
case. 
 The method now precisely follows that of Section 4, 
but using the metamodelling approach. The bootstrap proc-
ess of Figure 7 (except that Fm(., θ̂ ) in the Figure is re-
placed by F(.,θ0, β̂ , x0) in Case A and by F(., θ̂ *(i), β̂ , x0) 
in Case B) is applied to obtain an estimate of the distribu-
tion of the test statistic T under the assumption that the fit-
ted model is the correct one. Thus, in calculating A*(i)2, the 
bootstrap value of A2 obtained from the ith bootstrap sam-
ple, we use zj*(i) = F(y(j)*(i), θ0, β̂ , x0) in Case A and zj*(i) 

= F(y(j)*(i), θ̂ *(i), β̂ , x0) in Case B. 
 We then examine the p-value - as measured by this es-
timated distribution - of the T statistic calculated from the 
original sample y, i.e. 
 

B
TTf
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If this p-value is too small the model is rejected as being a 
poor fit. 
 The method above is described for just one design 
point but extends in an obvious way if we wish to consider 
the goodness-of-fit of the model as a whole, including all 
design points. All that is needed is some appropriate port-
manteau goodness-of-fit test statistic covering all design 
points simultaneously. 

5.2 Model Selection 

 Model selection is easily handled if we regard it sim-
ply as an extension of goodness-of-fit to the situation 
where we may be unsure as to which of a number of alter-
native models may be the best representation of the output. 
 Assume that we have a number, k say, of contending 
models, each like (5) or (6). We write these models as: 

 
Fj(.,θ, β, x),  j = 1, 2, ..., k 

 
We calculate the p-value of the goodness-of-fit statistic for 
each of these contending models in exactly the way de-
scribed in the above goodness-of-fit procedure. Models 
with p-values that are too small can be ruled out as being 
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not good fits. If just one model has to be chosen, then that 
corresponding to the largest p-value is the natural choice. 

6 MODEL VALIDATION 

We consider only the basic situation where the simulation 
output is being compared with existing output from some 
real or previously validated model. The situation is similar 
to that of model selection when just two models are being 
compared so that essentially the same techniques can be 
applied here. 

We consider the case where y0 = (y01, y02, ... y0m) is the 
observed output from a real system and we wish to com-
pare this with y1 = (y11, y12, ... y1m) the observed output 
from a set of simulation runs. We use a method proposed 
by Kleijnen et al. (2001). 

We consider a statistic T=T(y0, y1) that measures the 
difference between the two samples in some way. This 
might simply be T = 01 yy −  or a quantity such as T = 

∫ − mmm dFFF 0
2

10 )(  that measures the average squared dif-

ference between the EDF’s of the two samples. Here F0m(.) 
and F1m(.) denote the EDF’s of the two samples y0 and y1 
respectively. 

We now make a second set of simulation runs, y2, un-
der the same conditions used for obtaining y1. Thus if we 
used θ = θ0 in Case A or θ = θ̂ in Case B when obtaining 
y1 then we use the same value for θ in the simulations that 
yield y2. The key point is that T(y0, y1) and T(y2, y1) will be 
identically distributed if all three samples are drawn from 
the same distribution. The distribution of T(y0, y1) or of 
T(y2, y1) can be obtained by bootstrapping. 

The distribution of T(y2, y1) is possibly the easier to use 
as it can be estimated by bootstrapping using either the non-
metamodelling or the metamodelling approach. 

In the non-metamodelling approach we can obtain 
bootstrap versions of y1, y2 by resampling with replace-
ment to yield: y1*(i), y2*(i), for i = 1, 2, ..., m; and from 
these pairs we can calculate bootstrap T*(i) = T( y1*(i), 
y2*(i)), for i = 1, 2, ..., m. The p-value of T( y0, y1), as given 
by the EDF formed from the T*(i), is a measure of the simi-
larity between the output of the real system and that of the 
simulation, with a small value of p indicating dissimilarity. 

In the metamodelling approach we can obtain boot-
strap versions of y1, y2 by sampling from the fitted meta-
model, this being F(.,θ0, β̂ , x0) in Case A and F(., θ̂ , β̂ , 
x0) in Case B. The procedure is then exactly as for the non-
metamodelling case. 

7 SENSITIVITY ANALYSIS 

We consider Case B only. The study of the distribution of 
parameter estimates, and the way they affect estimates of 
the simulation output, can be regarded as a problem of sen-
184
sitivity analysis. The effect of randomness (i.e. that due to 
u) built into the model may also be regarded as a sensitiv-
ity issue. In fact using the regression metamodel approach, 
with the output regarded as being of the form assumed in 
equation (6), these two problems can be considered as two 
parts of the same problem. More explicitly, we are inter-
ested in how overall variability depends respectively on θ̂ 
and on the uij. A number of authors have discussed this is-
sue, see for example Helton (1993, 1994). 
 Cheng and Holland (1995, 1997) show that, to first or-
der, Var(y) is made up of two separate contributions, one 
depending purely on the variation arising from θ̂ being 
random, the other due to variation in uij. We call these two 
components the parameter and simulation uncertainties 
respectively. 
 Assessing the parameter uncertainty using classical 
statistical techniques requires estimation of the sensitivity 
coefficients: 
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i ,...,2,1  ,
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This can be expensive when p is large. 
 We can overcome the problem using bootstrapping. We 
consider the case n = 1 and write y = y1 as before. 
 Consider first the non-metamodelling approach. We 
begin by assessing the simulation uncertainty on its own 
(i.e. that due just to the uj). This is done by making the ba-
sic set of simulation runs using θ = θ̂  in all runs. The sam-
ple variance 
 

   ∑
=

− −−=
m

j
j yyms

1

212 )()1(  (7) 

 
calculated from the m runs estimates the simulation uncer-
tainty (at the given design point) only. 
 We then make a second set of simulation runs but now 
with θ resampled separately in each run using the sam-
pling scheme of either Figure 7 or 8 (Except that y needs to 
be replaced by z, and Fm by Gl in Figure 7). The variance 
estimated from these runs, using exactly the same formula 
of equation (7), and which we denote by vi

2, measures the 
parameter and simulation uncertainties combined. The dif-
ference 
 

ti
2 = vi

2 −si
2 

 
now estimates the parameter uncertainty at the ith design 
point. 
 A metamodelling approach is also possible and fol-
lows along the same lines as discussed for other problems. 
Details are left as an exercise. 
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 If the variability of some quantity other than the mean 
is of interest then the entire set of subruns at the design 
point may be needed to calculate it. For example if the y’s 
are not normal and an estimate of a percentage point is re-
quired, then this can be calculated from the EDF of the y 
values observed at the design point. In this case no separate 
estimate of the variability of this estimate is available as 
there was for the mean y . The variance of such an esti-
mate will have to be carried out by bootstrapping of the en-
tire set of runs B times and calculating the estimate of in-
terest from each bootstrap set of runs. 

8 SEQUENTIAL PROCEDURES 

8.1 Selection of the Best System Out of  n 

Suppose that the output (6) arises from a comparison of n 
different systems where the objective is to choose the best 
system according to a given performance index, assumed 
to be y. Thus the n ‘design points’ are actually distinct sys-
tems being compared. 
 Even if the runs have arisen from a sequential proce-
dure, then, providing there are a reasonable number of runs 
mi for each system, we can assess the robustness of the 
process that has produced a given best selection. Suppose 
for example that the sequential procedure has resulted in 
selection of the first system as being the best. We can test 
the reliability of this selection simply by repeating the se-
lection process, only using bootstrap resampling each time, 
rather than actual simulations to generate the sequence of 
y’s used. Thus, whenever a new y value from the ith design 
point is required by the selection procedure, we simply 
sample this from the set of yi values initially obtained. 
Sampling is done with replacement of course, with values 
sampled each time from the full sample yi. 

The entire sequential process is repeated B times. The 
proportion of times that the originally selected best system 
comes out on top provides an estimate of the confidence 
that this system is actually the best. 

The above might be regarded as being the ‘non-
metamodelling’ approach because resampling is from the 
original observations. 

An alternative resampling strategy can be employed 
that makes explicit use of the fitted metamodel. This would 
be especially advantageous in situations where some of the 
mi are too small for resampling to be done with confidence. 
In this case each bootstrap experiment is still a repeat of 
the entire sequential procedure, the only difference being 
that, when we are called to sample from the distribution of 
the ith model, we simply sample from the fitted distribu-
tion: F(., θ̂ , β̂ , xi), i = 1, 2, ..., n. 
185
8.2 Important Factors 

The methodology of Section 8.1 applies to any other 
sequential procedures. For example suppose the regression 
function η(θ, β, x) incorporates the effects of a number 
different factors and we use a sequential procedure to se-
lect those that are considered to be important. 

We can use bootstrapping to assess how stable is the 
choice of those factors deemed to be important. We simply 
bootstrap the entire sequential procedure B times. In each 
bootstrap, the y’s that are used can again be generated in ei-
ther of the two ways indicated in Section 8.1. 

In the first way resampling is simply carried out using 
the y samples obtained from the original simulations. The 
resampling is done with replacement. 

In the second way we resample from the fitted distri-
butions F(., θ̂ , β̂ , xi), i = 1, 2, ..., n. 

9 SUMMARY 

The above discussion indicates the flexibility of the boot-
strap procedure and how it can be readily applied to many 
problems of practical interest in simulation modelling and 
experimentation. For reasons of space the discussion has 
focused on describing the procedures in sufficient detail to 
enable each to be easily and unambiguously implemented 
by the interested reader. It is hoped to illustrate these pro-
cedures with numerical examples in the Conference pres-
entation. 
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