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ABSTRACT

This tutorial discusses some statistical procedures for select-
ing the best of a number of competing systems. The term
“best” may refer to that simulated system having, say, the
largest expected value or the greatest likelihood of yielding
a large observation. We describe six procedures for finding
the best, three of which assume that the underlying observa-
tions arise from competing normal distributions, and three
of which are essentially nonparametric in nature. In each
case, we comment on how to apply the above procedures
for use in simulations.

1 INTRODUCTION

Experiments are often performed to compare two or more
system designs in order to determine which scenario is the
best. The statistical methods of screening, selection, and
multiple comparisons are applicable when we are interested
in making comparisons among a finite, possible large, num-
ber of scenarios. The particular method that is appropriate
depends on the type of comparison desired and properties
of the data under study. For instance, are we interested
in comparing means or quantiles? Are the available data
independent or correlated within and/or among systems?

In this review, the term “best” may refer to that simulated
system having, say, the largest expected value or the greatest
likelihood of yielding a large observation. We will typically,
but not always, regard the best population as the one having
the largest expected value.

We describe six procedures for finding the best, three
of which assume that the underlying observations arise
from competing normal distributions, and three of which
are essentially nonparametric in nature. In each case, we
comment on how to apply the above procedures for use in
simulations.

Of the normal procedures, the first is a screen-and-
select procedure for finding the population with the largest
expected value; in this procedure, inferior competitors are
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screened out after an initial stage of sampling. The second
is a sequential procedure that can eliminate inferior choices
at any stage and uses the common random numbers vari-
ance reduction technique in which we intentionally induce
positive correlation between scenarios. The third is an ef-
ficient two-stage procedure that also uses common random
numbers.

Of the “nonparametric” procedures, the first is a single-
stage procedure for finding the most probable multinomial
cell, the second is sequential, and the third is a clever
augmentation that makes more efficient use of the underlying
observations.

The remainder of this article is organized as follows. In
the next section, we will give some additional background on
screening, selection, and multiple comparisons procedures.
Section 3 establishes relevant notation and ground rules.
Section 4 discusses the three normal means procedures for
selecting the best (or nearly the best) scenario, while Section
5 deals with the three nonparametric procedures. We give
conclusions in Section 6.

2 BACKGROUND

We will usually assume that the observations coming from
a particular scenario are independent and identically dis-
tributed (i.i.d.). Since this is never the case when dealing
with simulation output (which is, for instance, almost always
serially correlated), we will make appropriate comments to
show how to apply the above procedures for use in simu-
lations.

What are screening, selection, and multiple comparisons
procedures? Screening and selection procedures (SSPs) are
statistical methods designed to find the “best” (or “nearly the
best”) system from among a collection of competing alter-
natives. For example, such procedures could be efficacious
in any of the following practical situations:

• Find the normal population with the largest mean:
A manufacturer would like to know which of three
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potential plant layouts will maximize expected rev-
enues.

• Find the most probable multinomial cell: A polling
service wishes to determine the most popular can-
didate before a certain election.

• Find the Bernoulli population having the largest
success parameter: A medical research team con-
ducts a clinical study comparing the success rates
of five different drug regimens for a particular
disease.

Informally speaking, SSPs are used to

• screen the competitors in order to find a small subset
of those systems that contains the best system (or
at least a “good” one).

• select outright the best system.

In practice, we could invoke a screening procedure to pare
down a large number of alternatives into a palatable num-
ber; at that point, we might use a selection procedure to
make the more fine-tuned choice of the best. Provided
that certain assumptions are met, SSPs usually guarantee a
user-specified probability of advertised performance—i.e.,
with high probability, a screening procedure will choose
a subset containing the best (or a good) alternative, and a
selection procedure will pick the best.

Multiple-comparison procedures (MCPs) treat the com-
parison problem as an inference problem on the performance
parameters of interest. MCPs account for the error that arises
when making simultaneous inferences about differences in
performance among the systems. Usually, MCPs report
to the user simultaneous confidence intervals for the dif-
ferences. Recent research has shown that MCPs can be
combined with SSPs for a variety of problems—including
the manufacturing, medical, and polling examples outlined
above. In fact, the field has progressed steadily since our
most recent tutorials, Goldsman and Nelson (1994, 1998ab).

What is particularly nice about SSPs and MCPs is that
they are relevant, easily adaptable, and statistically valid in
the context of computer simulation because the assumptions
behind the procedures can frequently be satisfied: For ex-
ample, these procedures sometimes require normality of the
observations, an assumption that can often be secured by
batching large numbers of (cheaply generated) outputs. In-
dependence can be obtained by controlling random-number
assignments. And multiple-stage sampling—which is re-
quired by some methods—is feasible in computer simulation
because a subsequent stage can be initialized simply by re-
taining the final random-number seeds from the preceding
stage. As a bonus, it is possible to enhance (in a theoretically
rigorous way) the performance of some of the procedures
through the use of common random numbers, a popular
variance reduction technique sometimes used in simulation.
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3 SOME NOTATION

To facilitate what follows we define some notation: Let Yij

represent the j th simulation output from system design i,
for i = 1, 2, . . . , k alternatives and j = 1, 2, . . . . For fixed
i, we will always assume that the outputs from system i,
Yi1, Yi2, . . ., are i.i.d. These assumptions are plausible if
Yi1, Yi2, . . . are outputs across independent replications, or
if they are appropriately defined batch means from a single
replication after accounting for initialization effects. Let
µi = E[Yij ] denote the expected value of an output from
the ith system, and let σ 2

i = Var[Yij ] denote its variance.
Further, let

pi = Pr

{
Yij > max

��=i
Y�j

}

be the probability that Yij is the largest of the j th out-
puts across all systems when Y1j , Y2j , . . . , Ykj are mutually
independent.

The methods we describe make comparisons based on
either µi or pi . Although not a restriction on either SSPs
or MCPs, we will only consider situations in which there
is no known functional relationship among the µi or pi

(other than
∑k

i=1 pi = 1). Therefore, there is no potential
information to be gained about one system from simulating
the others—such as might occur if the µi were a function
of some explanatory variables—and no potential efficiency
to be gained from fractional-factorial experiment designs,
group screening designs, etc.

4 NORMAL MEANS PROCEDURES

In this section, we begin with a motivational example, then
go over the approaches that are relevant to the goal of
selecting the best, and then outline three basic procedures
for finding the best.

Example 1 Simulation models of 25 different in-
ventory policies have been developed for potential imple-
mentation at a large distribution/warehouse center. The
single measure of system performance is the expected profit
achieved while a particular policy is in effect. Differences
between different policies’expected profits of less than about
$10,000 are considered practically equivalent.

4.1 Three Approaches

We discuss briefly the three approaches employed here—
subset selection (screening), indifference-zone selection
(choosing the single best), and multiple comparisons (in-
ference).
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4.1.1 Subset Selection

The subset selection approach is a screening device that
attempts to select a (random-size) subset of the k = 25
competing designs of Example 1 that contains the design with
the greatest expected profit. Gupta (1956, 1965) proposed
a single-stage procedure for this problem that is applicable
in cases when the data from the competing designs are
balanced (i.e., having the same number of observations from
each contender) and are normal with common (unknown)
variance σ 2. Nelson, et al. (2001) handle more general
cases—in particular, that in which the unknown variances
σ 2

i , i = 1, 2, . . . , k, are not necessarily equal.

4.1.2 Indifference-Zone Selection

If expected profit is taken as the performance measure of
interest, then the goal in this example is to select the system
with the largest expected profit. In a stochastic simulation
such a “correct selection” can never be guaranteed with cer-
tainty. A compromise solution offered by indifference-zone
selection is to guarantee to select the best system with high
probability whenever it is at least a user-specified amount
better than the others; this “practically significant” differ-
ence is called the indifference parameter. In the example
the indifference parameter is δ = $10000. Law and Kelton
(2000) describe a number of indifference-zone procedures
that have proven useful in simulation, while Bechhofer, Sant-
ner, and Goldsman (BSG) (1995) provide a comprehensive
review of SSPs.

4.1.3 Multiple Comparisons

MCPs approach the problem of determining the best system
by forming simultaneous confidence intervals on the param-
eters µi −maxj �=i µj for i = 1, 2, . . . , k, where µi denotes
the expected profit for the ith inventory policy. These con-
fidence intervals are known as multiple comparisons with
the best (MCB), and they bound the difference between
the expected performance of each system and the best of
the others. The first MCB procedures were developed by
Hsu (1984); a thorough review is found in Hochberg and
Tamhane (1987).

Matejcik and Nelson (1995) and Nelson and Matej-
cik (1995) established a fundamental connection between
indifference-zone selection and MCB by showing that most
indifference-zone procedures can simultaneously provide
MCB confidence intervals with the width of the intervals
corresponding to the indifference zone. The procedure
we display below in Section 4.2.1 is a combined subset,
indifference-zone selection, and MCB procedure. The ad-
vantage of a combined procedure is that we not only select
a system as best, we also gain information about how close
each of the inferior systems is to being the best. This infor-
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mation is useful if secondary criteria that are not reflected
in the performance measure (such as ease of installation,
cost to maintain, etc.) may tempt us to choose an inferior
system if it is not deficient by much.

4.2 Putting It All Together

We now present three procedures for finding the best (largest
mean) normal distribution. The first is a combined screen-
select-infer procedure for finding the population with the
largest expected value; in this procedure, which uses all
three of the approaches outlined in Sections 4.1.1–4.1.3,
inferior competitors are screened out after an initial stage
of sampling. The second is a sequential procedure that can
eliminate inferior choices at any stage and uses the common
random numbers variance reduction technique in order to
make more precise (and therefore efficient) comparisons
among the competing populations. The third is an effi-
cient two-stage procedure that also uses common random
numbers.

4.2.1 Subset + Rinott + MCB Procedure

The combined procedure that follows uses a sampling strat-
egy in which the normal observations between scenarios are
independent, i.e., Yij is independent of Yi′,j for all i �= i′ and
all j . Nelson, et al. (2001) show how to combine a simple
subset (screening) procedure with a two-stage indifference-
zone selection procedure due to Rinott (1978). After the fact,
MCB confidence intervals are then provided for free. The
procedure simultaneously guarantees a probability of correct
selection and confidence-interval coverage probability of at
least 1 − α under the stated assumptions. This combined
procedure is of great utility when the experimenter is initially
faced with a large number of alternatives—the idea is for
the subset procedure to pare out non-contending systems,
after which Rinott selects the best from the survivors.

Procedure Subset + Rinott + MCB

1. Specify the overall desired probability of correct
selection 1 − α, the indifference-zone parameter
δ, a common initial sample size from each sce-
nario n0 ≥ 2, and the initial number of competing
systems k.
Further, set

t = t
1−(1−α/2)

1
k−1 ,n0−1

,

where tγ,ν is the upper-γ quantile of a t-distribution
with ν degrees of freedom, and let h solve the
following integral.
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1 − α

2

=
∫ ∞

0


∫ ∞

0
�


 h√

ν( 1
x + 1

y )


 fν(x) dx




k−1

fν(y) dy,

where �(·) is the standard normal c.d.f. and fν(·)
is the p.d.f. of the χ2-distribution with ν = n0 −
1 degrees of freedom. The FORTRAN program
rinott in BSG (1995) calculates values of h, or
one can use the tables in Wilcox (1984) or BSG
(1995).

2. Take an i.i.d. sample Yi1, Yi2, . . . , Yin0 from each of
the k normal populations, obtained independently.

3. Calculate the first-stage sample means Ȳ
(1)
i =∑n0

j=1 Yij /n0, and marginal sample variances

S2
i =

∑n0
j=1(Yij − Ȳ

(1)
i )2

n0 − 1
,

for i = 1, 2, . . . , k.
4. Calculate the quantity

Wij = t

(
S2

i + S2
j

n0

)1/2

for all i �= j . Form the screening subset I , con-
taining every alternative i such that 1 ≤ i ≤ k

and

Ȳ
(1)
i ≥ Ȳ

(1)
j − (Wij − δ)+ for all j �= i.

5. If I contains a single index, then stop and return
that system as the best. Otherwise, for all i ∈ I ,
compute the second-stage sample sizes

Ni = max
{
n0,

⌈
(hSi/δ)

2
⌉}

,

where �·� is the ceiling (integer round-up) function.
6. Take Ni − n0 additional i.i.d. observations from

all systems i ∈ I , independently of the first-stage
sample and the other systems.

7. Compute the overall sample means ¯̄Yi =∑Ni

j=1 Yij /Ni for i ∈ I .

8. Select the system with the largest ¯̄Yi as best.
9. With probability at least 1 −α, we can claim that

* For all i ∈ I c, we have µi < maxj �=i µj (i.e.,
the systems excluded by the screening are not the
best), and
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* If we define Ji = {j : j ∈ I and j �= i}, then for
all i ∈ I ,

µi − max
j∈Ji

µj ∈

[
−
(

¯̄Yi − max
j∈Ji

¯̄Yj − δ

)−
,

(
¯̄Yi − max

j∈Ji

¯̄Yj + δ

)+]
.

(Thus, these confidence intervals bound the differ-
ence between each alternative and the best of the
others in I .)

4.2.2 Common Random Numbers

A fundamental assumption of the Subset+Rinott+MCB pro-
cedure is that the k systems are simulated independently
(see Step 2 in that procedure). In practice this means that
different streams of pseudo-random numbers are assigned to
the simulation of each system. However, under fairly gen-
eral conditions, assigning common random numbers (CRN)
to the simulation of each system decreases the variances of
estimates of the pairwise differences in performance. Un-
fortunately, CRN also complicates the statistical analysis
when k > 2 systems are involved. The following procedures
from Kim and Nelson (2001a) and Nelson and Matejcik
(1995) provide (almost) the same guarantees as procedure
Subset+Rinott+MCB under a more complex set of condi-
tions, but have been shown to be quite robust to departures
from those conditions. And unlike Subset+Rinott+MCB,
they are designed to exploit the use of CRN to reduce the
total number of observations required to make a correct
selection.

4.2.3 Procedures that Allow Common Random Numbers

We next examine a sequential procedure due to Kim and
Nelson (2001a) that can eliminate inferior choices at any
stage. This procedure uses a sampling strategy in which
the normal observations may be dependent due to the use
of common random numbers.

The KN procedure is a bit more complicated to im-
plement than the vanilla Rinott (1978) procedure, but it
has several distinct advantages. First, once an initial set
of n0 observations is collected from each treatment, KN
is parsimonious in taking additional observations in that
they are added one-at-a-time and the data are examined
to determine if sufficient information has been collected
to stop. In contrast, Rinott and its enhancements take po-
tentially large groups of observations. Second, KN allows
treatments to be discarded before the final decision; those
treatments that appear inferior can legitimately be dropped
from further consideration. See Kim and Nelson (2001ab)
and Goldsman, et al. (2001) for more details.
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Procedure KN

1. Specify the overall desired probability of correct
selection 1 − α, the indifference-zone parameter
δ, a common initial sample size from each sce-
nario n0 ≥ 2, and the initial number of competing
systems k. Calculate the constant

η = 1

2

[(
2α

k − 1

)−2/(n0−1)

− 1

]
.

Further, set I = {1, 2, . . . , k} and let h2 = 2η(n0−
1).

2. Take a random sample of n0 observations Yij (1 ≤
j ≤ n0) from population i (1 ≤ i ≤ k). For
treatment i compute the sample mean based on the
n0 observations, Ȳi (n0) = ∑n0

j=1 Yij /n0 (1 ≤ i ≤
k). For all i �= �, compute the sample variance of
the difference between treatments i and �,

S2
i� = 1

n0 − 1

n0∑
j=1

(
Yij − Y�j − [Ȳi (n0) − Ȳ�(n0)]

)2

and set

Ni� =
⌊
h2S2

i�/δ
2
⌋

,

where 	·
 is the floor (integer round-down) function.
Finally, for all i set

Ni = max
��=i

Ni�.

If n0 > maxi Ni , then stop and select the population
with the largest sample mean Ȳi (n0) as one having
the largest mean. Otherwise, set the sequential
counter r = n0 and go to the Screening phase of
the procedure.

3. Screening: Set I old = I and re-set

I = {i : i ∈ I old and Ȳi (r) ≥ Ȳ�(r) − Wi�(r),

for all � ∈ I old, � �= i},

where

Wi�(r) = max

{
0,

δ

2r

(
h2S2

i�

δ2 − r

)}
.

4. Stopping Rule: If |I | = 1, then stop and select the
treatment with index in I as having the largest mean.
If |I | > 1, take one additional observation Yi,r+1
from each treatment i ∈ I . Increment r = r + 1
and go to the screening stage if r < maxi Ni +1. If
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r = maxi Ni +1, then stop and select the treatment
associated with the largest Ȳi (r) having index i ∈ I .

The following procedure due to Nelson and Matejcik
(1995) is a two-stage procedure, like Subset+Rinott+MCB,
but different in that it exploits the use of common random
numbers.

Procedure NM + MCB

1. Specify the constants δ, α, and n0 ≥ 2. Let
g = T

(α)
k−1,(k−1)(n0−1),0.5, an equicoordinate critical

point of the equicorrelated multivariate central t-
distribution; this constant can be found in Hochberg
and Tamhane (1987), Appendix 3, Table 4; BSG
(1995); or by using the FORTRAN programAS251
of Dunnett (1989).

2. Take an i.i.d. sample Yi1, Yi2, . . . , Yin0 from each
of the k systems using CRN across systems.

3. Compute the approximate sample variance of the
difference of the sample means

S2 = 2
∑k

i=1
∑n0

j=1

(
Yij − Ȳi· − Ȳ·j + Ȳ··

)2

(k − 1)(n0 − 1)
,

where Ȳi· = ∑n0
j=1 Yij /n0, Ȳ·j = ∑k

i=1 Yij /k, and

Ȳ·· = ∑k
i=1

∑n0
j=1 Yij /kn0.

4. Compute the final sample size

N = max
{
n0,

⌈
(gS/δ)2

⌉}
.

5. Take N − n0 additional i.i.d. observations from
each system, using CRN across systems.

6. Compute the overall sample means ¯̄Yi =∑N
j=1 Yij /N for i = 1, 2, . . . , k.

7. Select the system with the largest ¯̄Yi as best.
8. Simultaneously form the MCB confidence intervals

µi − max
j �=i

µj ∈

[
−
(

¯̄Yi − max
j �=i

¯̄Yj − δ

)−
,

(
¯̄Yi − max

j �=i

¯̄Yj + δ

)+]

for i = 1, 2, . . . , k.

4.3 Simulation Considerations

As we have already mentioned, the methods described in
this section all rely on our ability to generate i.i.d. normal
observations within each scenario. (We may or may not
want the observations to be independent between systems,
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especially if we are thinking of using common random num-
bers.) Of course, data from a simulation are rarely i.i.d.
normal—but we can achieve approximate notmality by tak-
ing sample averages of contiguous observations (batching);
and we can achieve independence by running independent
replications. Moderate departures from normality do not
really pose a problem, since all of the procedures appear
to be robust in that sense (see BSG 1995 or Goldsman, et
al. 2001). But one really ought to make sure that the Yij ’s
are indeed independent within each scenario, for procedure
performance seriously deteriorates when that assumption
fails.

5 MULTINOMIAL PROCEDURES

This section begins with a version of the motivational ex-
ample from Section 4, but with a slightly different criterion
for describing the best alternative. We then describe three
procedures to achieve the new goal of finding the best.

Example 2 Simulation models of 25 different inven-
tory policies have been developed for potential implemen-
tation at a large distribution/warehouse center. The goal
now is to select the system that is most likely to have the
largest actual profit (instead of the largest expected profit).

5.1 Setup

We define pi as the probability that design i will pro-
duce the largest profit from a given vector-observation
Y j = (Y1j , Y2j , . . . , Ykj ). The goal now is to select the
design associated with the largest pi-value. This goal is
equivalent to that of finding the multinomial category having
the largest probability of occurrence; and there is a rich
body of literature concerning such problems. In fact, we
make almost no assumptions on the underlying distributions
of the competing populations—thus, the procedures to be
discussed below are, in a sense, nonparametric.

More specifically, suppose that we want to select the
correct category with probability 1 − α whenever the ratio
of the largest to second largest pi is greater than some user-
specified constant, say θ > 1. The indifference constant θ

can be regarded as the smallest ratio “worth detecting.”

5.2 The Procedures

This subsection describes three “nonparametric” procedures.
The first is a single-stage procedure for finding the most
probable multinomial cell, the second is a sequential proce-
dure, and the third is a clever augmentation of the first that
makes more efficient use of the underlying observations.
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5.2.1 Single-Stage Procedure

The following single-stage procedure was proposed by Bech-
hofer, Elmaghraby, and Morse (BEM) (1959) to guarantee
the above probability requirement.

Procedure BEM

1. For the given k, and (α, θ) specified prior to the
start of sampling, find n from the tables in BEM
(1959), Gibbons, Olkin, and Sobel (1977) or BSG
(1995).

2. Take a random sample of n observations
Yi1, Yi2, . . . , Yin from each alternative i, i =
1, 2, . . . , k. Turn these into n independent multi-
nomial observations, Xj = (X1j , X2j , . . . , Xkj ),
j = 1, 2, . . . , n, by setting

Xij =
{

1, if Yij > max��=i{Y�j }
0, otherwise,

where we assume (for notational convenience) that
there are never ties for the maximum observation
within a particular vector Y j .

3. Let Wi = ∑n
j=1 Xij for i = 1, 2, . . . , k. Select

the design that yielded the largest Wi as the one
associated with the largest pi (randomize in the
case of ties).

5.2.2 Sequential Procedure

A more efficient procedure, due to Bechhofer and Golds-
man (1986), uses closed, sequential sampling; that is, the
procedure stops when one design is “sufficiently ahead” of
the others.

Procedure BG

1. For the given k, and (α, θ) specified prior to the start
of sampling, find the truncation number (i.e., an
upper bound on the number of vector-observations)
n0 from the tables in Bechhofer and Goldsman
(1986) or BSG (1995).

2. At the mth stage of experimentation (m ≥ 1),
take the random multinomial observation Xm =
(X1m, X2m, . . . , Xkm) (defined above) and calcu-
late the ordered category totals W[1]m ≤ W[2]m ≤
· · · ≤ W[k]m; also calculate

Zm =
k−1∑
i=1

(1/θ)(W[k]m−W[i]m).
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3. Stop sampling at the first stage when either

Zm ≤ α/(1 − α) or m = n0

or W[k]m − W[k−1]m ≥ n0 − m,

whichever occurs first.
4. Let N (a random variable) denote the stage at

which the procedure terminates. Select the design
that yielded the largest WiN as the one associated
with the largest pi (randomize in the case of ties).

5.2.3 Augmentation of BEM

Miller, Nelson, and Reilly (1998) present a remarkably ef-
ficient procedure that directly uses the original Yij observa-
tions (instead of the 0-1 Xij , which lose information). Their
procedure AVC, based on all possible vector comparisons
of the observations, always results in an increased proba-
bility of correct selection when compared to the analogous
implementation of the BEM procedure.

Procedure AVC

1. For the given k, and (α, θ) specified prior to the
start of sampling, use the same n as in BEM.

2. Take a random sample of n observations
Yi1, Yi2, . . . , Yin from each alternative i, i =
1, 2, . . . , k. Consider all nk vectors of the form
Y

′
j = (Y

′
1j , Y

′
2j , . . . , Y

′
kj ), j = 1, 2, . . . , nk , where

Y
′
ij is one of the n observations from alternative

i. Turn these into nk (non-independent) multi-
nomial observations, X

′
j = (X

′
1j , X

′
2j , . . . , X

′
kj ),

j = 1, 2, . . . , nk , by setting

X
′
ij =

{
1, if Y

′
ij > max��=i{Y ′

�j }
0, otherwise,

where we again assume that there are never ties
for the maximum observation within a particular
vector Y

′
j .

3. Let W
′
i = ∑nk

j=1 X
′
ij for i = 1, 2, . . . , k. Select

the design that yielded the largest W
′
i as the one

associated with the largest pi (randomize in the
case of ties).

6 FINAL THOUGHTS

Space limitations preclude detailed discussion, but we also
mention the interesting technical results to be found in
Damerdji, et al. (1997ab), Damerdji and Nakayama (1996),
and Nakayama (1997), in which the authors rigorously
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show that certain selection-of-the-best procedures satisfy
probability requirements similar to those in Section 4. Chen,
et al. (1997) propose a completely different approach in
their discussion on optimal budget strategies. Chick (1997)
takes a decision-theoretic view on the selection-of-the best
problem. And Boesel and Nelson (1998) use the techniques
discussed in the current paper to present a methodology for
optimization of stochastic systems.

ACKNOWLEDGMENTS

Portions of this article were published previously in Golds-
man and Nelson (1994, 1998a). Our work was supported
by National Science Foundation Grants DMI-9622065 and
DMI-9622269.

REFERENCES

Bechhofer, R. E., S. Elmaghraby, and N. Morse. 1959. A
single-sample multiple decision procedure for selecting
the multinomial event which has the highest probability.
Ann. Math. Stat. 30:102–119.

Bechhofer, R. E., and D. M. Goldsman. 1986. Truncation
of the Bechhofer-Kiefer-Sobel sequential procedure for
selecting the multinomial event which has the largest
probability (II): Extended tables and an improved proce-
dure. Comm. Stat.—Simul. and Comp. B15:829–851.

Bechhofer, R. E., T. J. Santner, and D. Goldsman. 1995.
Design and Analysis of Experiments for Statistical Se-
lection, Screening and Multiple Comparisons. New
York: John Wiley and Sons.

Boesel, J., and B. L. Nelson. 1998. Accounting for random-
ness in heuristic simulation optimization. IIE Transac-
tions, forthcoming.

Chen, H.-C., C.-H. Chen, L. Dai, and E. Yücesan. 1997.
New development of optimal computing budget alloca-
tion for discrete event simulation. In Proc. 1997 Winter
Simulation Conference, ed. S. Andradóttir, K. J. Healy,
D. H. Withers, and B. L. Nelson, 334–341. Piscataway,
New Jersey: IEEE.

Chick, S. E. 1997. Selecting the best system: A decision-
theoretic approach. In Proc. 1997 Winter Simulation
Conference, ed. S. Andradóttir, K. J. Healy, D. H.
Withers, and B. L. Nelson, 326–333. Piscataway, New
Jersey: IEEE.

Damerdji, H., P. W. Glynn, M. K. Nakayama, and J. R. Wil-
son. 1997a. Selection of the best system in steady-state
simulations. Technical Report 97–5, Dept. of Indus-
trial Engineering, North Carolina State Univ., Raleigh,
North Carolina.

Damerdji, H., P. W. Glynn, M. K. Nakayama, and J. R.
Wilson. 1997b. Selection of the best system in transient
simulations. Technical Report 97–6, Dept. of Industrial



Goldsman and Nelson
Engineering, North Carolina State Univ., Raleigh, North
Carolina.

Damerdji, H. and M. K. Nakayama. 1996. Two-stage
multiple-comparison procedures for steady-state sim-
ulations. Technical Report, Dept. of Industrial Engi-
neering, North Carolina State Univ., Raleigh, North
Carolina.

Dunnett, C. W. 1989. Multivariate normal probability
integrals with product correlation structure. Applied
Statistics 38:564–579. Correction: 42:709.

Gibbons, J. D., I. Olkin, and M. Sobel. 1977. Selecting and
Ordering Populations: A New Statistical Methodology.
New York: John Wiley and Sons.

Goldsman, D., S.-H. Kim, W. S. Marshall, and B. L. Nelson.
2001. Ranking and selection for steady-state simula-
tion: Procedures and perspectives. Working Paper,
Department of Industrial Engineering & Management
Sciences, Northwestern University, Evanston, Illinois.

Goldsman, D., and B. L. Nelson. 1994. Ranking, selection,
and multiple comparisons in computer simulation. In
Proceedings of the 1994 Winter Simulation Conference,
ed. J. Tew, M. S. Manivannan, D. A. Sadowski, and
A. F. Seila, 192–199. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers.

Goldsman, D., and B. L. Nelson. 1998a. Statistical screen-
ing, selection, and multiple comparison procedures in
computer simulation. In Proceedings of the 1998 Win-
ter Simulation Conference, ed. D. J. Medeiros, E. F.
Watson, M. Manivannan, and J. S. Carson, 159–166.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Goldsman, D., and B. L. Nelson. 1998b. Comparing
systems via simulation. Handbook of Simulation, ed.
J. Banks, Chapter 8. New York: John Wiley and Sons.

Gupta, S. S. 1956. On a Decision Rule for a Problem in
Ranking Means. Ph.D. Dissertation (Mimeo. Ser. No.
150). Inst. of Statist., Univ. of North Carolina, Chapel
Hill, North Carolina.

Gupta, S. S. 1965. On some multiple decision (selection
and ranking) rules. Technometrics 7:225–245.

Hochberg, Y., and A. C. Tamhane. 1987. Multiple Com-
parison Procedures. New York: John Wiley and Sons.

Hsu, J. C. 1984. Constrained simultaneous confidence
intervals for multiple comparisons with the best. Annals
of Statistics 12:1136–1144.

Kim, S-H. and B. L. Nelson. 2001a. A fully sequential
procedure for indifference-zone selection in simulation.
ACM TOMACS, in press.

Kim, S-H. and B. L. Nelson. 2001b. On the asymptotic
validity of fully sequential selection procedures for
steady-state simulation. Working Paper, Department of
Industrial Engineering & Management Sciences, North-
western University, Evanston, Illinois.
146
Law, A. M., and W. D. Kelton. 2000. Simulation Modeling
& Analysis. 3rd ed. New York: McGraw-Hill, Inc.

Matejcik, F. J., and B. L. Nelson. 1995. Two-stage multiple
comparisons with the best for computer simulation.
Operations Research 43:633–640.

Miller, J. O., B. L. Nelson, and C. H. Reilly. Efficient multi-
nomial selection in simulation. 1998. Naval Research
Logistics 45:459–482.

Nakayama, M. K. 1997. Multiple-comparison proce-
dures for steady-state simulations. Annals of Statistics
25:2433–2450.

Nelson, B. L., and F. J. Matejcik. 1995. Using com-
mon random numbers for indifference-zone selection
and multiple comparisons in simulation. Management
Science 41:1935–1945.

Nelson, B. L., J. Swann, D. Goldsman, and W.-M. Song.
2001. Simple procedures for selecting the best system
when the number of alternatives is large. To appear in
Operations Research.

Rinott, Y. 1978. On two-stage selection procedures and re-
lated probability-inequalities. Comm. Stat.—Thy. and
Meth. A7:799–811.

Wilcox, R. R. 1984. A table for Rinott’s selection procedure.
J. Quality Technology 16:97–100.

AUTHOR BIOGRAPHIES

DAVID GOLDSMAN is a Professor in the School of In-
dustrial and Systems Engineering at the Georgia Institute
of Technology. His research interests include simulation
output analysis and ranking and selection. He is the Sim-
ulation Department Editor for IIE Transactions, and an
Associate Editor for Operations Research Letters. He is
an active participant in the Winter Simulation Conference,
having been Program Chair in 1995. His e-mail address
is <sman@isye.gatech.edu>, and his web page is
<www.isye.gatech.edu/˜sman>.

BARRY L. NELSON is a Professor in the Department of
Industrial Engineering and Management Sciences at North-
western University, and is Director of the Master of En-
gineering Management program there. He is interested
in the design and analysis of computer simulation experi-
ments, particularly statistical efficiency, multivariate output
analysis, and input modeling. He was Program Chair of
the 1997 Winter Simulation Conference, and is currently a
member of the Board of Directors. His e-mail address is
<nelsonb@northwestern.edu>, and his web page
is <www.iems.northwestern.edu/˜nelsonb/>


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

