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ABSTRACT 

In this paper we discuss verification and validation of 
simulation models.  The different approaches to deciding 
model validity are described, two different paradigms that 
relate verification and validation to the model development 
process are presented, the use of graphical data statistical 
references for operational validity is discussed, and a rec-
ommended procedure for model validation is given.  

1 INTRODUCTION 

Simulation models are increasingly being used in problem 
solving and in decision making.  The developers and users 
of these models, the decision makers using information de-
rived from the results of these models, and people affected 
by decisions based on such models are all rightly concerned 
with whether a model and its results are “correct”.  This 
concern is addressed through model verification and valida-
tion. Model verification is often defined as “ensuring that the 
computer program of the computerized model and its im-
plementation are correct” and is the definition adopted here.  
Model validation is usually defined to mean “substantiation 
that a computerized model within its domain of applicability 
possesses a satisfactory range of accuracy consistent with 
the intended application of the model” (Schlesinger et al. 
1979) and is the definition used here. A model sometimes 
becomes accredited through model accreditation.  Model ac-
creditation determines if a model satisfies specified model 
accreditation criteria according to a specified process.  A re-
lated topic is model credibility. Model credibility is con-
cerned with developing in (potential) users the confidence 
they require in order to use a model and in the information 
derived from that model. 
 A model should be developed for a specific purpose (or 
application) and its validity determined with respect to that 
purpose.  If the purpose of a model is to answer a variety of 
questions, the validity of the model needs to be determined 
with respect to each question.  Numerous sets of experimental 
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conditions are usually required to define the domain of a 
model’s intended applicability.  A model may be valid for one 
set of experimental conditions and invalid in another. A model 
is considered valid for a set of experimental conditions if its 
accuracy is within its acceptable range, which is the amount of 
accuracy required for the model’s intended purpose. This gen-
erally requires that the model’s output variables of interest 
(i.e., the model variables used in answering the questions that 
the model is being developed to answer) be identified and that 
their required amount of accuracy be specified. The amount of 
accuracy required should be specified prior to starting the de-
velopment of the model or very early in the model develop-
ment process. If the variables of interest are random variables, 
then properties and functions of the random variables such as 
means and variances are usually what is of primary interest 
and are what is used in determining model validity. Several 
versions of a model are often developed prior to obtaining a 
satisfactory valid model. The substantiation that a model is 
valid, i.e., performing model verification and validation, is 
generally considered to be a process and is usually part of the 
model development process.  
 It is often too costly and time consuming to determine 
that a model is absolutely valid over the complete domain 
of its intended applicability.  Instead, tests and evaluations 
are conducted until sufficient confidence is obtained that a 
model can be considered valid for its intended application 
(Sargent 1982, 1984 and Shannon 1975). If a test deter-
mines that a model does not have sufficient accuracy for a 
set of experimental conditions, then the model is invalid.  
However, determining that a model has sufficient accuracy 
for numerous experimental conditions does not guarantee 
that a model is valid everywhere in its applicable domain. 

The primary purpose of this paper is to discuss the dif-
ferent basic approaches to verification and validation, to pre-
sent two paradigms for relating verification and validation to 
the simulation model development process, and to describe 
the use of graphical data statistical references for compari-
son of model and system data in operational validation. See 
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Sargent (2000) for a general introduction to verification, 
validation, and accreditation of simulation models. 

The remainder of this paper is organized as follows: 
Section 2 presents the basic approaches used in deciding 
model validity, Section 3 contains two different para-
digms used in verification and validation of simulation 
models, Section 4 discusses operational validation, Sec-
tion 5 gives a recommended validation procedure, and 
Section 6 has the summary. 

2 BASIC APPROACHES 

There are four basic approaches for deciding whether a 
simulation model is valid or invalid.  Each of the ap-
proaches requires the model development team to conduct 
verification and validation as part of the model develop-
ment process, which is discussed below.  One approach, 
and a frequently used one, is for the model development 
team itself to make the decision as to whether a simulation 
model is valid.  A subjective decision is made based on the 
results of the various tests and evaluations conducted as 
part of the model development process. However, it is usu-
ally better to use one of the next two approaches, depend-
ing on which situation applies. 

If the size of the simulation team developing the 
model is not large, a better approach than the one above is 
to have the user(s) of the model heavily involved with the 
model development team in determining the validity of the 
simulation model. In this approach the focus of who de-
termines the validity of the simulation model should move 
from the model developers to the model users.  Also, this 
approach aids in model credibility. 
 Another approach, usually called “independent verifica-
tion and validation” (IV&V), uses a third (independent) 
party to decide whether the simulation model is valid.  The 
third party is independent of both the simulation develop-
ment team(s) and the model sponsor/user(s). This approach 
should normally be used when developing large-scale simu-
lation models, which usually have one large or several teams 
involved in developing the simulation model. Also, this ap-
proach is often used when a large cost is associated with the 
problem the simulation model is being developed for and/or 
to help in model credibility. In this approach the third party 
needs to have a thorough understanding of what the intended 
purpose of the simulation model is for. There are two com-
mon ways that IV&V is conducted by the third party. One 
way is to conduct IV&V concurrently with the development 
of the simulation model. The other way is to conduct IV&V 
after the simulation model has been developed. 

In the concurrent way of conducting IV&V, the model 
development team(s) receives input from the IV&V team 
regarding verification and validation as the model is being 
developed. Thus, the development of a simulation model 
should not progress beyond each stage of development if 
the model is not satisfying the verification and validation 
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requirements. It is the author’s opinion that this is the bet-
ter of the two ways.  If the IV&V is conducted after the 
model has been completely developed, the evaluation per-
formed can range from simply evaluating the verification 
and validation conducted by the model development team 
to performing a complete verification and validation effort. 
Wood (1986) describes experiences over this range of 
evaluation by a third party on energy models.  One conclu-
sion that Wood makes is that performing a complete IV&V 
effort is extremely costly and time consuming for what is 
obtained.  This author’s view is that if IV&V is going to be 
conducted on a completed simulation model then it is usu-
ally best to only evaluate the verification and validation 
that has already been performed. 

The last approach for determining whether a model is 
valid is to use a scoring model (see, e.g., Balci (1989), Gass 
(1993), and Gass and Joel (1987)).  Scores (or weights) are 
determined subjectively when conducting various aspects of 
the validation process and then combined to determine cate-
gory scores and an overall score for the simulation model.  A 
simulation model is considered valid if its overall and cate-
gory scores are greater than some passing score(s).  This ap-
proach is seldom used in practice. 

This author does not believe in the use of scoring models 
for determining validity because (1) a model may receive a 
passing score and yet have a defect that needs to be corrected, 
(2) the subjectiveness of this approach tends to be hidden and 
thus this approach appears to be objective, (3) the passing 
scores must be decided in some (usually) subjective way, and 
(4) the score(s) may cause over confidence in a model or be 
used to argue that one model is better than another.  

3 PARADIGMS 

In this section we present and discuss paradigms that relate 
verification and validation to the model development proc-
ess. There are two common ways to view this relationship.  
One way uses a simple view and the other uses a complex 
view. Banks et al. (1988) reviewed work using both of 
these ways and concluded that the simple way more clearly 
illuminates model verification and validation. We present a 
paradigm of each way that this author has developed. The 
paradigm of the simple way is presented first and this 
paradigm is the author’s preferred one. 
 Consider the simplified version of the model develop-
ment process shown in Figure 1.  The problem entity is the 
system (real or proposed), idea, situation, policy, or phe-
nomena to be modeled; the conceptual model is the mathe-
matical/logical/verbal  representation (mimic) of  the prob-
lem entity developed for a particular study; and the 
computerized model  is  the conceptual model implemented 
on a computer. The conceptual model is developed through 
an analysis and modeling phase, the computerized model is 
developed through a computer programming and implemen-
tation phase, and inferences about the problem entity 
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Figure 1: Simplified Version of the Modeling Process 
 
are obtained by conducting computer experiments on the 
computerized model in the experimentation phase.  
 We now relate model validation and verification to 
this simplified version of the modeling process  (see Figure 
1).  Conceptual model validation is defined as determining 
that the theories and assumptions underlying the concep-
tual model are correct and that the model representation of 
the problem entity is “reasonable” for the intended purpose 
of the model.  Computerized model verification is defined 
as assuring that the computer programming and implemen-
tation of the conceptual model is correct.  Operational 
validation is defined as determining that the model’s out-
put behavior has sufficient accuracy for the model’s in-
tended purpose over the domain of the model’s intended 
applicability.  Data validity is defined as ensuring that the 
data necessary for model building, model evaluation and 
testing, and conducting the model experiments to solve the 
problem are adequate and correct. 

In using this paradigm to develop a valid simulation 
model, several versions of a model are usually developed 
during the modeling process prior to obtaining a satisfac-
tory valid model.  During each model iteration, model veri-
fication and validation are performed (Sargent 1984). A 
variety of (validation) techniques are used. (See, e.g., Sar-
gent (2000) for a set of validation techniques that are 
commonly used.) No algorithm or procedure exists to se-
lect which techniques to use.  Some attributes that affect 
which techniques to use are discussed in Sargent (1984). 
 A detailed way of relating verification and validation to 
developing simulation models and system theories is shown 
in Figure 2.  This paradigm was recently developed by this 
author at the suggestion of Dr. Dale K. Pace of The John 
Hopkins University Applied Physics Laboratory who be-
lieved there was a need for a such a paradigm. (Dr. Pace does 
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considerable work in verification and validation for the U.S. 
Department of Defense. See Pace (2001a and 2001b) where 
he uses this paradigm.) This paradigm shows the processes of 
developing system theories and simulation models and re-
lates verification and validation to both of these processes. 

This paradigm shows a Real World and a Simulation 
World (See Figure 2.). We first discuss the Real World. There 
exist some system or problem entity in the real world of which 
an understanding of is desired.  System theories describe the 
characteristics of the system (or problem entity) and possibil-
ity its behavior (including data). System data and results are 
obtained from conducting experiments (experimenting) on the 
system. System theories are developed by abstracting what 
has been observed from the system and by hypothesizing from 
the system data and results.  If a simulation model exists of 
this system, then hypothesizing of system theories can also be 
done from simulation data and results. System theories are 
validated by performing theory validation. Theory validation 
involves the comparison of system theories against system 
data and results over the domain the theory is applicable for to 
determine that there is agreement.  This process requires nu-
merous experiments to be conducted on the real system. 
  We now discuss the Simulation World, which shows a 
(slightly) more complicated model development process than 
the other paradigm.  A simulation model should only be de-
veloped for a set of well-defined objectives.  The conceptual 
model is the mathematical/logical/verbal representation 
(mimic) of the system developed for the objectives of a par-
ticular study. The simulation model specification is a written 
detailed description of the software design and specification 
for programming and implementing the conceptual model on 
a particular computer system. The simulation model is the 
conceptual model running on a computer system such that ex-
periments can be conducted on the model. The simulation 
model data and results are the data and results from experi-
ments conducted (experimenting) on the simulation model. 
The conceptual model is developed by modeling the system, 
where the understanding of the system is contained in the sys-
tem theories, for the objectives of the simulation study. The 
simulation model is obtained by implementing the model on 
the specified computer system, which includes programming 
the conceptual model whose specifications are contained in 
the simulation model specification.  Inferences  about  the sys-
tem  are obtained  by  conducting   computer   experiments 
(experimenting) on the simulation model. Conceptual model 
validation is defined as determining that the theories and as-
sumptions underlying the conceptual model are consistent 
with those in the system theories and that the model represen-
tation of the system is “reasonable” for the intended purpose 
of the simulation model.  Specification verification is defined 
as assuring that the software design and the specification for 
programming and  implementing the conceptual model on the 
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Figure 2: Real World and Simulation World Relationships with Verification and Validation 
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specified computer system is satisfactory. Implementation 
verification is defined as assuring that the simulation model 
has been implemented according to the simulation model 
specification. Operational validation is defined as determin-
ing that the model’s output behavior has sufficient accuracy 
for the model’s intended purpose over the domain of the 
model’s intended applicability. 

This paradigm shows processes for both developing 
valid system theories and valid simulation models.  Both 
are accomplished through iterative processes. To develop 
valid system theories, which are usually for a specific pur-
pose, the system is first observed and then abstraction is 
preformed from what has been observed to develop pro-
posed system theories. These theories are tested for cor-
rectness by conducting experiments on the system to obtain 
data and results to compare against the proposed system 
theories. New proposed system theories may be hypothe-
109
sized from the data and comparisons made, and also possi-
bly from abstraction performed on additional system ob-
servation, and these new proposed theories will require 
new experiments to be conducted on the system to obtain 
data to evaluate the correctness of these proposed system 
theories.  This process repeats itself until a satisfactory set 
of validated system theories has been obtained. To develop 
a valid simulation model, several versions of a model are 
usually developed prior to obtaining a satisfactory valid 
simulation model. During every model iteration, model 
verification and validation are performed.  This process is 
similar to the one for the other paradigm except there is 
(slightly) more detail given in this paradigm.  
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4 OPERATIONAL VALIDATION 

Operational validation is determining whether the simula-
tion model’s output behavior has the accuracy required for 
the model’s intended purpose over the domain of the 
model’s intended applicability.  This is where much of the 
validation testing and evaluation take place. Since the 
simulation model is used in operational validation, any de-
ficiencies found may be caused by what was developed in 
any of the steps that are involved in developing the simula-
tion model including developing the systems theories or 
having invalid data.  There are numerous validation tech-
niques that are used in operational validation.  See, e.g., 
Sargent (2000) for a discussion on these techniques. 
 The major attribute affecting operational validation is 
whether the system (or problem entity) is observable, 
where observable means it is possible to collect data on the 
operational behavior of the system. When a system is ob-
servable, it then is possible to compare the output behav-
iors of the system and simulation model to determine 
whether the simulation model has sufficient accuracy.  If it 
is not possible to make these comparisons for several ex-
perimental conditions in the simulation model’s domain of 
applicability, then it is not possible to obtain high confi-
dence in the validity of a simulation model. 
 There are three basic approaches used in making these 
comparisons: (1) using graphs of the system and simulation 
model data to make a subjective decision, (2) using confi-
dence intervals and (3) using formal hypothesis tests. It is 
preferable to use confidence intervals or hypothesis tests 
for the comparisons because these allow for objective deci-
sions. However, it is frequently not possible in practice to 
use either of these approaches because (a) the statistical as-
sumptions required cannot be satisfied or only with great 
difficulty (assumptions usually necessary are data inde-
pendence and normality) and/or (b) there is insufficient 
quantity of system data available that causes the statistical 
results not to be “meaningful” (e.g., the length of a confi-
dence interval developed in the comparison of the system 
and model means is to large for any practical usefulness).  
As a result, the use of graphs is the most commonly used 
approach for operational validity and a specific way of do-
ing this is presented next. (For a general discussion and 
references on these three approaches, see Sargent (2000).) 
 We are going to discuss the use of graphical displays 
of simulation data as statistical references for operational 
validation.  The idea of using graphical displays of data for 
operational validation was discussed in Sargent (1996).  
This idea of using simulation data as graphical data statis-
tical references was further developed in Sargent (2001).  
We are going to discuss the use of three graphical displays 
of data as data statistical references: histograms, box (and 
whisker) plots, and scatter plots (scattergram or scatter 
diagram).  (See, e.g., Johnson (1994) or Walpole and 
Myers (1993) for a discussion of histograms, box plots, 
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and scatter plots.) The data for these graphical statistical 
references come from simulation models. We then com-
pare the system data against these graphical data statistical 
references in performing operational validation. 

4.1 Histograms and Box Plots 

The data used in histograms and box plots need only to be 
identically distributed.  The data does not need to be inde-
pendent or have a specific statistical distribution.  The data 
used may be the observations themselves or some function 
of subsets of the collected observations (e.g., the sample 
means from subsets of the collected observations).   Usu-
ally a large number of data points are needed in histograms 
used as graphical data statistical references.  The more 
variable the data and the higher the correlation among the 
data, the more data needed for the histogram. If the refer-
ence is a distribution of a variable, then the number of data 
points should usually be in the thousands, especially if the 
data have high correlation and extremely variability.  If the 
reference is of sample means, then the number of data 
points should usually be in the hundreds. Box plots used as 
graphical data statistical references generally require less 
data points than histograms. 
 We present two histograms and two box plots devel-
oped from observations collected from a simulation model 
of a single server queueing model having an infinite allow-
able queue and a queue discipline of first-come first-
served.  The distribution of interarrival times is exponential 
with mean five and the service time is exponentially distri-
bution with mean four. Figure 3 is a histogram of the times 
it took two thousand consecutive customers to go through 
the queueing model in steady state.  These observations are 
highly correlated and quite variable.  We know from 
queueing theory that the steady state distribution of these 
times is an exponential distribution with a mean of twenty.  
One can readily see that the histogram does not give a nice 
smooth curve. This indicates that more data points should 
probably be used depending on the accuracy needed for the 
graphical data statistical reference.  
  In Figure 4 we present a histogram containing one 
hundred steady state sample means.  Each of these data 
points (sample means) are independent and identically dis-
tributed.  They  were  obtained  from  one hundred separate 
independent simulation runs (or replications). The observa-
tions used  for each sample  mean  were  the  times  it  took 
twenty consecutive customers to go through the queueing 
model in steady state. Recall that these times are exponen-
tially distributed and highly correlated and thus each sam-
ple mean contains twenty correlated exponentially distrib-
uted observations.  One can readily see from this histogram 
that the resulting sampling distribution is not a t (or nor-
mal) distribution. If a more accurate statistical reference is 
desired, then additional data points (sample means) should 
be added to the histogram. 
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Figure 3: Histogram of Time in Model 
 

Figure 4: Histogram of Sample Means 

 Figure 5 contains box plots of the data contained in the 
histograms contained in Figures 3 and 4. Some software 
packages that create box plots show outliers as small cir-
cles and the software used here does that. One can readily 
see the skewness of each set of data by looking at the box, 
whiskers, and outliers in each box plot. 
 

Figure 5: Box Plots of Queueing Model Data 
 
 As an example of the use of histograms and box plots 
in operational validation, we consider a simulation project 
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by Lowery (1996).  A simulation model was developed to 
predict the mean (average) number of beds used daily 
(census) in specific hospital units. Operational validation 
was   performed   to   determine   whether   the   simulation   
model’s mean census (usage) of beds was within the re-
quired accuracy of four beds for large hospital units (i.e., 
units having a large number of beds). The data entries to be 
compared  were determined.  There was a day of week ef-
fect.  Various histograms and box plots were used to vali-
date this model. We will discuss one of the histograms and 
one of the box plots that were used. Figure 6 contains a 
histogram of sample means for census on Mondays of one 
of the hospital units.  There were 24 system observations 
(weeks) available on this unit for Monday census and these 
observations are correlated.  Thus, we use a 24-week aver-
age Monday census for our sample means.  Observations 
were generated from the simulation model to obtain fifty 
independent 24-week average Monday census to be used as 
the data for a graphical data statistical reference, which is 
given in Figure 6. (This histogram is a sampling distribu-
tion of the 24-week average Monday census. Note that it is 
not shaped like a t distribution.) One can readily see that 
the system data point lies within the reference distribution. 
 

 

Figure 6: Histogram of Hospital Data 
 

Figure 7 contains box plots of Sunday census observa-
tions for the same hospital unit discussed above.  The 
model   box   plot,  which  is  the  graphical  data  statistical   

 

Figure 7: Box Plots of Sunday Census Data 
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reference, is developed from 100 observations (Sunday cen-
sus) generated by the simulation model. The system box plot 
is developed from 24 observations (Sunday census) col-
lected on the hospital unit. In comparing the two box plots, it 
appears that the model has more variability in its Sunday 
census than the hospital unit.  It is this author’s opinion that 
this pair of box plots has insufficient evidence to determine 
whether the model’s mean census on Sunday is or is not 
within the four beds of the hospital’s mean census desired. 
(Only two of the graphical comparisons used in performing 
operational validation on this model were presented here.  It 
was concluded that this simulation model was valid based on 
the numerous comparisons made.)  

4.2 Behavior Graphs 

In operational validation, comparisons should be made be-
tween different behavior relationships occurring in the 
simulation model and those occurring in the system. These 
comparisons can be made by using behavior graphs (see 
Sargent (2000)). Behavior graphs use scatter plots to show 
the relationships between two entities such as parameters, 
variables, and functions of random variables by plotting 
paired data on the two entities. The data points plotted can 
be the observations themselves, which may be relatively 
few in number, or may be functions of subsets of the ob-
servations, which may be based on a large number of ob-
servations.  There are no specific statistical assumptions 
required of the data used in behavior graphs. The data can 
be correlated, have any statistical distribution, and be non-
stationary. Behavior graphs used as graphical data statisti-
cal references should have a sufficient number of data 
points in them to enable them to be well defined.  
 We suggest that behavior graphs be developed from 
simulation model observations to be used as graphical data 
statistical references. Then behavior graphs be developed 
from system observations for the same relationships and be 
compared against the graphical data statistical references to 
aid in making a subjective decision whether the simulation 
model has the accuracy needed for validity. It is important 
that appropriate measures and relationships be selected for 
the behavior graphs to ensure the simulation model isfor its 
intended purpose. Some different measures that can be used 
are means, variances, maximums, and time series of random 
variables.  Relationships that can used are different measures 
on the same variable, the same measure on two different 
variables, or different measures on two different variables. 
 To illustrate the use of behavior graphs in model valida-
tion, we consider a simulation model of an interactive com-
puter system in Anderson and Sargent (1974) where behav-
ior graphs were used to validate the simulation model. Three 
of the behavior graphs that were used are presented in  
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Figure 8: Reaction Time 
 

 
 

Figure 9: Response Time versus Queue Length  
 

Figures 8, 9, and 10. The relationship between the mean and 
standard deviation of reaction time is shown in Figure 8.  On 
can readily observe that the same linear relationship occurs 
in both the simulation model and the computer system. 
Figure 9 contains the relationship of average response time 
versus average background queue length.  On can readily 
observe that these model and system relationships are simi-
lar except for two system points, which is important  to  
determine  why.  Figure 10 contains relationships for both 
the average and maximum observed values of reaction time 
versus the total number of disk accesses. Each data point is 
from or represents five minutes of computer system time.  
We observe that these model and system relationships are 
similar with the exception that the system has more vari-
ability than the model. (For additional behavior graphs and 
details of the validation of this simulation model, see 
Anderson (1974) and Anderson and Sargent (1974).) 
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Figure 10: Reaction Time versus Disk Accesses 

5 RECOMMENDED PROCEDURE 

This author recommends that, as a minimum, the following 
steps be performed in model validation: 

 
1. Have an agreement made prior to developing the 

model between (a) the model development team 
and (b) the model sponsors and (if possible) the 
users that specifies the basic validation approach 
and a minimum set of specific validation tech-
niques to be used in the validation process. 

2. Specify the amount of accuracy required of the 
model’s output variables of interest for the 
model’s intended application prior to starting the 
development of the model or very early in the 
model development process. 

3. Test, wherever possible, the assumptions and 
theories underlying the model.  

4. In each model iteration, perform at least face 
validity on the conceptual model. 

5. In each model iteration, at least explore the 
model’s behavior using the computerized model. 
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6. In at least the last model iteration, make compari-
sons, if possible, between the model and system 
behavior (output) data for at least two sets of ex-
perimental conditions. 

7. Develop validation documentation for inclusion in 
the model documentation. 

8. If the model is to be used over a period of time, 
develop a schedule for periodic review of the 
model’s validity. 

 
Some models are developed for repeated use. A pro-

cedure for reviewing the validity of these models over their 
life cycles needs to be developed, as specified in Step 8. 
No general procedure can be given, as each situation is dif-
ferent. For example, if no data were available on the sys-
tem when a model was initially developed and validated, 
then revalidation of the model should take place prior to 
each usage of the model if new data or system understand-
ing has occurred since the last validation.  

6 SUMMARY 

After giving an introduction to verification and validation of 
simulation models, we presented and discussed the four ba-
sic approaches used in deciding whether a simulation model 
is valid.  Next we presented two paradigms, one simple and 
one detailed, that relate verification and validation to the 
model development process. Then we described in fair detail 
three types of graphical data statistical references and how to 
use them in operational validation. Lastly, we presented a 
recommend procedure to follow when conducting verifica-
tion and validation of simulation models. 
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