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ABSTRACT

I survey several mathematical techniques and results that are
useful in the context of stochastic simulation. The concepts
are introduced through the study of a simple model of
ambulance operation to ensure clarity, concreteness and
cohesion.

1 INTRODUCTION

The incredibly rich set of mathematical tools and techniques
that underlie stochastic simulation is the subject of this paper.
Of course, the field is far too large to be covered in a single
paper, and so I choose to focus the discussion somewhat.
For example, there is no discussion in this paper on the vast
array of techniques that may be used for input analysis,
uniform and nonuniform random variate generation, and
sensitivity analysis. For excellent overviews of these and
other topics, see Bratley, Fox and Schrage (1987), Law and
Kelton (2000), and the tutorials and advanced tutorials in
recent proceedings of the Winter Simulation Conference.

Instead, what I attempt to do is to describe a set of
mathematical tools and techniques that can be used to explore
density estimation of performance measures in both the
terminating and steady-state simulation context. It would be
very easy to provide a smorgasbord of such results, but such
a paper would read like an encyclopedia. Therefore, many
of the results are applied to a simple model of ambulance
operation that serves to unify the discussion.

This paper is an updated version of Henderson (2000),
in which there were 2 main topics. First, in the terminating
simulation context, performance measures were rigorously
defined through the strong law of large numbers for i.i.d.
random variables. The performance of estimators of these
performance measures was studied via the central limit
theorem. Variants of these results were used to study per-
formance measures that, instead of being expectations of
random variables, were functions of expectations of random
variables. Second, in the steady-state context, performance
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measures were rigorously defined and analyzed by appeal-
ing to asymptotic results for general state-space Markov
chains. Lyapunov conditions were used to establish that the
asymptotic results held.

All of the performance measures described in Henderson
(2000) take the form of an expectation of a random variable,
or a differentiable function of a finite number of expectations.
Such performance measures are particularly useful when the
goal is to compare many different stochastic systems, as
they provide a concrete basis for the comparison. However,
if the goal is to enhance one’s understanding of a single
stochastic system, then it is often more useful to analyze the
distribution of certain random variables, perhaps through
density estimation techniques.

In this paper we switch the focus to estimating the den-
sities of random variables related to these performance mea-
sures. The goal remains the same as in Henderson (2000),
namely to demonstrate mathematical tools and techniques
that are useful in simulation analysis.

In Section 2 I review some approaches to density esti-
mation in a particularly transparent context, namely that of
estimating the density of the completion time of a stochastic
activity network. The analysis in this section requires the
use of the strong law of large numbers (SLLN) and central
limit theorem (CLT). Any treatment of mathematics for sim-
ulation would be incomplete without these 2 fundamental
results.

Section 2 then sets the stage for the remainder of the
paper in which we analyze a simple model of ambulance
operation in several ways. The model of ambulance oper-
ations is introduced in Section 3. Then, in Section 4 we
specialize the model to the terminating simulation context.
Even the definition of certain performance measures leads
to the use of some interesting tools and techniques.

By imposing different assumptions on the model, one
obtains a steady-state simulation, where the performance
measures are all long-run averages. To rigorously define
these performance measures, it is necessary to define an
appropriate stochastic process with which to work. A great



Henderson
deal is known about the class of Markov processes evolving
on general (not necessarily countable) state spaces. In
Section 5 a general state space Markov chain is defined. To
ensure that long-run averages exist, it is necessary to show
that this chain is, in a certain sense, positive recurrent.

A very practical approach to establishing that a Markov
chain is positive recurrent is to use Lyapunov functions, and
this approach is the central mathematical tool illustrated in
Section 5. We use Lyapunov theory to show that certain
Markov chains are positive recurrent, that our performance
measures are well-defined, that certain density estimators
are consistent and satisfy central limit theorems, and that
confidence intervals obtained through the method of batch
means are asymptotically valid. An important consideration
in the steady-state context is that of initialization bias. We
also use Lyapunov theory to characterize the magnitude of
such bias.

The underlying theme of Section 5 is then that Lya-
punov functions provide an enormously powerful, and easily
applied (at least relative to many other methods) approach
to establishing results that underlie steady-state simulation
methodology.

Throughout this paper, results are rigorously quoted, and
references given for the proofs. To simplify the exposition,
it is often the case that results are quoted using stronger
hypotheses than are strictly necessary, but tighter hypotheses
can be found in the references provided. Notation is reused
from section to section, but is consistently applied within
each section.

2 DENSITY ESTIMATION

Our running example in this section will be that of a stochas-
tic activity network (SAN).

A SAN is a directed graph that represents some
set of activities that, taken together, represent some
project/undertaking. Each arc in the graph represents a
task that needs to be completed, and the (random) length
of the arc represents the time required to complete the task.
Nodes are used to indicate the precedence relationships
between tasks. The time required to complete the project
is indicated by the longest path between the designated
“source” and “sink” nodes.

Example 1. The simple stochastic activity network in Figure
1 is adapted from Avramidis and Wilson (1996). Nodes 1 and
9 are the source and sink nodes respectively. The labels on
the arcs give the mean task durations (the distributions will
be specified shortly), and task durations are independent.

Let L be the (random) network completion time. When
does L have a density?

Before answering this question, we first need to under-
stand what we mean when we say that a random variable
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Figure 1: A Stochastic Activity Network with Mean Task
Durations.

has a given density. The standard definition is based on
the Radon-Nikodym theorem; see Theorem 31.7 on p. 434,
and Theorem 32.2 on p. 443 of Billingsley (1986).

Definition 1. We say that a real-valued random variable X
has a density if P(X ∈ A) = 0 for all Lebesgue measurable
sets A with Lebesgue measure 0. This is equivalent to
saying that there exists a nonnegative function f (the density
function) with the property that for all x ∈ IR,

F(x) =
∫ x

−∞
f (y) dy,

where F is the distribution function of X.

The first part of this definition may not be familiar
to those who have not had a measure-theoretic course in
probability. Heuristically speaking, X has a density if the
probability that X takes on values in “insignificant” sets
is 0. The second part of the definition is perhaps more
familiar. We will use the 2 definitions interchangeably in
what follows.

Proposition 1. Consider a SAN with a finite number of
arcs/tasks, where the individual task durations are indepen-
dent. Suppose that every path from the source to the sink
contains an arc for which the corresponding task duration
has a density. Then the time to complete the project has a
density.

Proof: Let P be a path from the source to the sink. The
time T required to traverse P is a sum of the times required
to traverse each arc in the path. One of these times has
a density, and since the task durations are independent,
it follows that T has a density. Let b < ∞ denote the
number of such paths from the source to the sink, and let
T1, . . . , Tb denote the times required to traverse each path.
Then L = max{T1, . . . , Tb}.

Now, the maximum of 2 random variables, X and Y
say, that have densities, also has a density. To see why, let
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A denote an arbitrary (measurable) subset of the real line,
and let Z = max{X, Y }. Then

P(Z ∈ A) ≤ P({X ∈ A} ∪ {Y ∈ A})
≤ P(X ∈ A) + P(Y ∈ A)

where the first inequality follows since Z ∈ A implies that at
least one of X and Y must be in A, and the second is Boole’s
inequality. Now, we know that X and Y have densities, so
if the Lebesgue measure of A is 0, then P(X ∈ A) = 0
and P(Y ∈ A) = 0. Hence P(Z ∈ A) = 0, and so, by
Definiton 1, Z has a density.

We can now apply this result inductively to L =
max{T1, . . . , Tb} to conclude that L has a density. �

Applying this result to Example 1, we see that the
network completion time L will have a density if tasks (6,
9) and (8, 9) have densities. But then, how can we estimate
this density?

The look-ahead density estimators developed by Hen-
derson and Glynn (2001) are easily analyzed, and have
excellent statistical properties. In fact, Example 1 is one
of the examples given in that paper. Let us see how to
construct a look-ahead density estimator for the completion
time L in Example 1.

Let L6 and L8 be the lengths of the longest paths from
the source node to nodes 6 and 8 respectively, and let G be
their joint distribution function, so that G(l6, l8) = P(L6 ≤
l6, L8 ≤ l8). Let T69, T89 denote the task durations for
tasks (6, 9) and (8, 9), let F69, F89 be the corresponding
distribution functions, and f69, f89 be the corresponding
densities. Then

P(L ≤ t)

= E P(L ≤ t|L6, L8)

= E P(T69 ≤ t − L6, T89 ≤ t − L8|L6, L8)

= E[P(T69 ≤ t − L6|L6)P(T89 ≤ t − L8|L8)]
= E[F69(t − L6)F89(t − L8)]
=

∫∫
F69(t − u)F89(t − v)dG(u, v)

=
∫∫ ∫ t

−∞
d

dx
[F69(x − u)F89(x − v)]dx dG(u, v)

=
∫∫ ∫ t

−∞
[F69(x − u) f89(x − v)

+ f69(x − u)F89(x − v)]dx dG(u, v)

=
∫ t

−∞

∫∫
[F69(x − u) f89(x − v)

+ f69(x − u)F89(x − v)]dG(u, v) dx

=
∫ t

−∞
E[F69(x − L6) f89(x − L8)

+ f69(x − L6)F89(x − L8)]dx .
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Thus, we can conclude that L has a density f say, where
f (x) is given by

E[F69(x − L6) f89(x − L8)+ f69(x − L6)F89(x − L8)]. (1)

(See Section 4.1 of Avramidis and Wilson (1996) for a
related discussion.)

The expression (1) has an intuitive interpretation. The
first term in (1) is related to the probability that the longest
path from the source to the sink through node 6 has length
at most x and at the same time, the longest path from the
source to the sink through node 8 is exactly of length x .
The second term can be interpreted similarly.

The expression (1) immediately suggests a density es-
timator for f . We generate i.i.d. replicates L6(i), L8(i) for
i = 1, . . . , n, and estimate f (x) by

fn(x) = 1

n

n∑
i=1

L(i ; x),

where

L(i ; x) = F69(x − L6(i)) f89(x − L8(i))

+ f69(x − L6(i))F89(x − L8(i)).

The consistency of fn(x) follows from the strong law
of large numbers (SLLN).

Theorem 2 (SLLN). If X1, X2, . . . is an i.i.d. sequence of
random variables with E |X1| < ∞, then

∑n
i=1 Xi

n
→ E X1 a.s.

as n → ∞.

For a proof, see p. 290 of Billingsley (1986).
Applying this result to our context, we note that

fn(x) → f (x) a.s., for all x for which (1) is finite. The
set of values x for which this does not hold has Lebesgue
measure 0, and so the convergence of fn to f occurs for
almost all x . This is the best that can be hoped for, because
densities are only defined up to a set of Lebesgue measure
0.

An estimate of the accuracy of this estimator can be
obtained through the central limit theorem (CLT).

Theorem 3 (CLT). If X1, X2, . . . is an i.i.d. sequence of
random variables with E X2

1 < ∞, then

√
n

(
1

n

n∑
i=1

Xi − E X1

)
⇒ σ N(0, 1)
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as n → ∞, where σ 2 = var X1, ⇒ denotes weak con-
vergence, and N(0, 1) denotes a standard normal random
variable.

For a proof, see p. 367 of Billingsley (1986).
We can apply the CLT to estimate the error in fn(x) if

E[L(1; x)2] < ∞, which is implied by the simpler condition
that

E[ f 2
69(x − L6) + f 2

89(x − L8)] < ∞. (2)

If (2) holds, then the CLT basically establishes that
the error in the estimator fn(x) is asymptotically nor-
mally distributed with mean 0 and variance s2(x)/n where
s2(x) = var L(1; x), and this is the basis for obtaining con-
fidence intervals for f (x). In particular, an approximate
95% confidence interval for f (x) is given by

fn(x) ± 1.96

√
s2(x)

n
. (3)

Of course, s2(x) must invariably be estimated. The
usual estimator is the sample variance

s2
n (x) = 1

n − 1

n∑
i=1

(L(i ; x) − fn(x))2.

The confidence interval that is reported is the same as (3)
with s2(x) replaced with its sample counterpart s2

n (x). But
is the modified confidence interval then valid?

If (2) holds, then the SLLN implies that s2
n (x) → s2(x)

a.s. as n → ∞. Hence, by Exercise 29.4 of Billingsley
(1986), we have that

(
n1/2( fn(x) − f (x))

s2
n (x)

)
⇒

(
s(x)N(0, 1)

s2(x)

)
. (4)

The natural tool to apply at this point is the continuous
mapping theorem. For a real-valued function h in IRd , let
Dh denote its set of discontinuities (in IRd ).

Theorem 4 (Continuous Mapping Theorem). Let (Xn :
n ≥ 1) be a sequence of IRd valued random variables with
Xn ⇒ X as n → ∞ and let h : IRd → IR be measurable.
If P(X ∈ Dh) = 0, then h(Xn) ⇒ h(X) as n → ∞.

For a proof, see p. 391 of Billingsley (1986).
Define h(x, y) = x/y1/2, and then apply the continuous

mapping theorem to (4), to obtain that when s2(x) > 0,

n1/2( fn(x) − f (x))

sn(x)
⇒ N(0, 1)
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as n → ∞, and so the confidence interval procedure outlined
above is indeed valid.

The look-ahead density estimator described above has
very appealing and easily derived asymptotic properties.
These attractive properties are a result of carefully investi-
gating the model to identify exploitable properties.

One might ask if this somewhat specialized density es-
timation technique can be complemented by a more general-
purpose approach that does not require as much tailoring to
specific applications. The field of nonparametric functional
estimation encompasses several such approaches. Prakasa
Rao (1983) is an excellent survey of this field, especially
kernel density estimation. We will not go into this area
in any detail because the mathematical techniques used to
analyze kernel density estimators are beyond the scope of
this paper.

3 A SIMPLE MODEL

We now describe a very simple model that will serve as
a vehicle for the concepts to follow. The purpose of the
example is therefore simplicity, and certainly not realism,
although with a few straightforward extensions, the model
could be considered to be quite practical.

Suppose that a single ambulance serves calls in a square
region. By translating and rescaling units, we may assume
that the square is centred at the origin, with lower left-hand
corner at (−1/2,−1/2) and upper right-hand corner at
(1/2, 1/2). For simplicity, we assume that the ambulance
travels at unit speed within the square. The combined
hospital/ambulance base is located at the origin.

Calls arrive (in time) according to a homogeneous
Poisson process with rate λ calls per hour. The location of
a call is independent of the arrival process, and uniformly
distributed over the square. To serve a call, the ambulance
travels in a Manhattan fashion (i.e., at any given time,
movement is restricted to lie only in the x direction or
the y direction) from its present location to the location of
the call. A random amount of time is then spent at the
scene treating the patient, independent of all else. After this
scene time is complete, with probability p (independent of
all else), the ambulance is required to transport and admit
the patient to the hospital, with hospital admission occurring
instantaneously once the ambulance reaches the hospital,
and with probability 1 − p the ambulance is freed for other
work.

4 TERMINATING SIMULATION

In this section, we assume that the ambulance only receives
calls from (say) 7am until 11pm each day. At 11pm, the
ambulance completes the call that it is currently serving
(if any) and returns to base. We will further assume that
if the ambulance is engaged with a call when another call
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is received, then some outside agency, such as another
emergency service, handles the other call. Finally, we
assume that the random variables associated with each day
are independent of those for all other days.

We are interested in 3 performance measures.

u Let U be the (random) fraction of a 16 hour day
that the ambulance is busy. There is some positive
probability that U = 0. But U also has a density
u on (0, 1].

α The long-run fraction of calls attended by the ambu-
lance.

r The conditional density of the response time to a call
given that the ambulance attends the call.

Let Ui denote the fraction of a 16 hour day that the
ambulance is busy on day i , so that the Ui s are i.i.d. replicates
of U , and 0 ≤ Ui ≤ 1. (We do not count any residual time
after 11pm needed to complete any call in progress.) Then

P(U1 = 0) = P(0 calls are received)

= exp(−16λ).

But U1 also has a density u on the interval (0, 1], and
we can construct a look-ahead density estimator for u by
conditioning on all of the random variables that constitute
a single day of operation of the ambulance except for the
time of the arrival of the first call. We will not go into
the details here because the mathematics of this approach
are exactly as discussed in Section 2 (although some of the
implementation details are also interesting), and we will
study a look-ahead density estimator for r in detail below.

Let us turn to α, the long-run fraction of calls attended
by the ambulance.

Let Ni denote the total number of calls received on day
i , and for j = 1, . . . , Ni , let Aij be 1 if the ambulance is
available when the j th call arrives on day i and 0 otherwise.
Then the number of calls Ai attended by the ambulance
on day i is

∑Ni
j=1 Aij . After n days, the fraction of calls

attended by the ambulance is given by

∑n
i=1 Ai∑n
i=1 Ni

. (5)

Dividing both the numerator and denominator of (5) by n,
and applying the SLLN separately to both the numerator
and denominator, we see that∑n

i=1 Ai∑n
i=1 Ni

→ α = E A1

E N1
a.s.
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as n → ∞. But E N1 = 16λ, so we can estimate α by

αn = 1

n

n∑
i=1

Ai

16λ
.

The SLLN establishes that αn is a consistent estimator
of α, and the CLT allows us to construct confidence intervals
for α based on αn .

Finally we develop a look-ahead density estimator for
r , the density of the response time. Before doing so, let us
make sure that we understand what the density r represents.
For x > 0 and δ > 0 sufficiently small, we want

r(x)δ ≈ lim
n→∞

∑n
i=1

∑Ni
j=1 I (Rij ∈ (x, x + δ))∑n

i=1 Ai
(6)

where Rij is the time required for the ambulance to reach
the j th call on day i if the ambulance responds to that call,
and is (somewhat arbitrarily) -1 otherwise.

The right-hand side of (6) represents the limiting value
of the number of calls responded to with a response time in
the interval (x, x + δ) expressed as a fraction of the number
of calls that the ambulance responded to. We have written
“≈” to reflect the more rigorous notion that if both sides
of (6) are divided by δ and then δ → 0 from above, then
the resulting limits are equal, at least at points x at which
r is continuous.

To derive a look-ahead density estimator of r we proceed
as follows. For i ≥ 1 and j = 1, . . . , Ni , let Bij (Cij )
denote the vector location of the ambulance (new call) at
the time at which the j th call on day i is received. Let
d(b, c) denote the time required for the ambulance to travel
from location b to location c. For x > 0,

P(Rij ∈ dx | Aij , Bij ) = Aij P(d(Bij , Cij ) ∈ dx),

i.e., the response time will be x if the ambulance is available
when the call arrives and the time required for the ambulance
to reach the call from its current location is exactly x .

Suppose that C represents a random call location, and is
uniformly distributed over the square as our model assumes.
It immediately follows that for all fixed locations b contained
within the square,

P(d(b, C) ∈ dx) = f (x; b) dx (7)

for an easily computed function f (·; ·). (The function f
gives the total length of all points within the square that are
the fixed L1 distance x from the point v. It can be visualized
by superimposing a diamond representing all points at a
fixed L1 distance x from v, and measuring the length of
the portions of the diamond that fall within the square.)
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The above discussion establishes that we can estimate
the density r using the estimator

rn(x) =
∑n

i=1
∑Ni

j=1 Aij f (x; Bij )∑n
i=1 Ai

. (8)

Dividing both the numerator and denominator of (8)
by n, we find that

rn(x) → EY1(x)

E A1

almost surely as n → ∞, where

Yi (x)

=

Ni∑
j=1

Aij f (x; Bij ).

So how can we assess the accuracy of the estimator
rn(x)? Certainly, the standard central limit theorem cannot
be applied, because rn(x) is a ratio of sample means of i.i.d.
observations. We first consider a strongly related question,
and then return to the problem at hand.

Suppose that X1, X2, . . . is an i.i.d. sequence of ran-
dom variables with finite mean µ = E X1. Let X̄n =
n−1 ∑n

i=1 Xi denote the sample mean. If the real-valued
function h is continuous at µ, it follows that h(X̄n) → h(µ)

a.s. as n → ∞. So how does the error h(X̄n)−h(µ) behave,
for large n? Note that for large n, X̄n will be very close
to µ, and so the asymptotic behaviour of the error should
depend only on the local behaviour of h near µ. Indeed,
if h is appropriately differentiable, then Taylor’s theorem
implies that

h(X̄n) − h(µ) ≈ h′(µ)(X̄n − µ),

and so if the Xi s have finite variance, then

n1/2(h(X̄n) − h(µ)) ≈ h′(µ)n1/2(X̄n − µ)

⇒ ηN(0, 1)

as n → ∞, where η2 = h′(µ)2 var X1.
This intuitive argument can be formalized, and also

generalized to higher dimensions to obtain the following
result, sometimes referred to as the delta method.

Theorem 5. Suppose that (Xn : n ≥ 1) is an i.i.d. sequence
of IRd valued random variables with E‖X1‖2

2 < ∞. Let
µ = E X1 denote their common mean, and let � denote their
common covariance matrix. Let X̄n denote the sample mean
of X1, . . . , Xn. If h : IRd → IR is continuously differentiable
in a neighbourhood of µ with nonzero gradient g = ∇h(µ)
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at µ, then

n1/2(h(X̄n) − h(µ)) ⇒ σ N(0, 1)

as n → ∞, where σ 2 = g′�g.

For a proof, see p. 122 of Serfling (1980).
To apply this result in our context, let

Xi (x) = (Yi (x), Ai ),

and define h(y, a) = y/a. Theorem 5 then implies that

n1/2(rn(x) − r(x)) ⇒ σ(x)N(0, 1),

where

σ 2(x) = E(Y1(x) − r(x)A1)
2

(E A1)2 .

Using the SLLN, one can easily show that σ 2(x) can be
consistently estimated by

s2
n (x) = n−1 ∑n

i=1(Yi (x) − rn(x)Ai )
2

(n−1
∑n

i=1 Ai )2 ,

and the same continuous mapping argument discussed earlier
establishes that

rn(x) ± 1.96sn(x)/
√

n

is an approximate 95% confidence interval for r(x).
Observe that the estimator rn(x), being a ratio estimator,

is biased. Taylor’s theorem can be used to examine this bias.
In particular, reverting to our 1-dimensional digression for
the moment, Taylor’s theorem implies that

h(X̄n) − h(µ) ≈ h′(µ)(X̄n − µ) + 1

2
h′′(µ)(X̄n − µ)2.

Taking expectations, we find that

Eh(X̄n) − h(µ) ≈ 1

2
h′′(µ) var X1/n,

i.e., we have an explicit expression for the asymptotic bias.
As before, this argument can be formalized, and generalized
to higher dimensions.

Theorem 6. Suppose that (Xn : n ≥ 1) is an i.i.d. sequence
of IRd valued random variables with E‖X1‖4

2 < ∞. Let
µ = E X1 denote their common mean, and let � denote
their common covariance matrix. Let X̄n denote the sample
mean of X1, . . . , Xn. If h : IRd → IR is such that h(X̄n) is
bounded for all n with probability 1, and twice continuously
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differentiable in a neighbourhood of µ, then

n(Eh(X̄n) − h(µ)) → 1

2

d∑
i, j=1

∇2h(µ)i j �i j

as n → ∞.

The proof is a slight modification of Theorem 7 in
Glynn and Heidelberger (1990).

We would like to apply this result to the estimator
rn(x). Define h(y, a) = y/a. The only condition that
is not obviously satisfied is that h(X̄n) is bounded for all
n with probability 1. The function f as given in (7) is
bounded by 2

√
2, and so h(X̄n(x)) = rn(x) is also bounded

by 2
√

2. We have therefore established that the bias in the
estimator rn(x) is of the order n−1.

It is reasonable to ask whether this bias is sufficient to
noticeably affect the performance of the confidence intervals
produced earlier for a given runlength n. Recall that the
widths of the confidence intervals are of the order n−1/2.
Thus, the bias decreases at a (much) faster asymptotic rate
than the width of the confidence intervals, and so unless
runlengths are quite small, it is reasonable to neglect bias.

5 STEADY-STATE SIMULATION

We now turn to useful mathematical techniques and results
for steady-state simulation analysis. For this purpose, we
will modify the assumptions of the previous section on
the dynamics of the ambulance model. In particular, in
addition to the assumptions given in Section 3, we assume
that the ambulance operates 24 hours a day, 7 days a week.
Furthermore, calls that arrive while the ambulance is busy
are queued, and answered in first-in first-out order. Once
the current call is complete, the ambulance then attends
to the next call. Recall that a call is completed either at
the scene (with probability 1 − p), or when the ambulance
drops the patient off at the hospital (with probability p).

For this model, 2 of the previous 3 performance mea-
sures are still relevant, but because the ambulance is now
handling all calls, the fraction of calls answered by the
ambulance (α) is no longer of interest. For convenience,
and also to refine the statement of the performance measures
to our new setting, we restate the performance measures.

β The long-run utilization of the ambulance, i.e., the
percentage of time that the ambulance is occupied
with a call.

r The long-run density of the response time to a call.

Note that β is a deterministic constant, while r is a density
function.

Both performance measures involve the term “long-
run”. In order that such long-run measures exist, it is first
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necessary that the ambulance model be stable. In order to be
able to make statements about the stability, or lack thereof,
of the model, it is first necessary to define an appropriate
stochastic process from which our performance measures
can be derived. Statements about the stability of the model
really relate to the stability of the stochastic process.

There are typically a host of stochastic processes that
may be defined from the elements of a simulation. The
choice of stochastic process depends partly on the per-
formance measures in question. Given that two of our
measures are related to response time, it is natural to con-
sider a stochastic process that yields information on response
times. Furthermore, for mathematical convenience, it is of-
ten helpful to ensure that one’s stochastic process is Markov.

For n ≥ 1, let Tn denote the time at which the nth
call is received, and define T0 = 0. For n ≥ 1, let Wn be
the residual workload of the ambulance at time Tn+, i.e.,
just after the nth call is received. By residual workload at
some time t , we mean the amount of time required for the
ambulance to complete any current call, along with calls
that might also be queued at time t . We assume that the
ambulance is idle at the hospital at time T0 = 0, so that
W0 = 0.

Unfortunately, (Wn : n ≥ 0) is not a Markov process
because the response time for a future call, and hence
the workload, depends on the location of the ambulance
when the ambulance clears the previous workload. So if we
also keep track of the location coordinates of the ambulance
Bn = (Bn(1), Bn(2)) at the instant at which the workload Wn

is first cleared, then the resulting process Z = (Zn : n ≥ 0)

is Markov, where Zn = (Wn, Bn).
The process Z is a general state space Markov chain,

and evolves on the state space

S = [0,∞) ×
[
−1

2
,

1

2

]2

.

The first step in ensuring that our “long-run” perfor-
mance measures are defined is to establish that Z exhibits
some form of positive recurrence. One way to achieve this
is to verify that the chain Z satisfies the following condition,
which certainly deserves some explanation!

To avoid a potential confusion between general results
and those for our particular model, we will state general
results in terms of a Markov chain � = (�n : n ≥ 0)

evolving on a state space S .

The Lyapunov Condition There exists a B ⊆ S, pos-
itive scalars a < 1, c, and δ, an integer m ≥ 1,
a probability distribution ϕ on S, and a function
V : S → [1,∞) such that

1. P(�m ∈ ·|�0 = z) ≥ δϕ(·) for all z ∈ B , and

2. E(V (�1)|�0 = z) ≤ aV (z) + cI (z ∈ B) for
all z ∈ S.
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The Lyapunov condition (sometimes called a Foster-
Lyapunov condition) is a stronger condition than we really
require, but it simplifies the presentation considerably. The
function V is called a Lyapunov (think of energy) function.
The second requirement basically states that when the chain
� lies outside of the set B , the energy in the system tends
to decrease, and when the chain lies inside B , the energy
in the system cannot become too big on the next step. This
condition implies that the set B gets hit infinitely often.
Of course, if one takes B = S, the entire state space, then
this requirement is trivially satisfied. The first condition is
needed to ensure that the set B is not too “big”.

In any case, the point is that if a chain � satisfies
the Lyapunov condition, then � is appropriately positive
recurrent. The precise statement is as follows.

Theorem 7. If a discrete time Markov chain � is aperiodic
and satisfies the Lyapunov condition, then it is V -uniformly
ergodic. In particular, � has a unique stationary probability
distribution.

For a proof, see Theorem 16.0.1 of Meyn and Tweedie
(1993).

So the question then is, does our chain Z satisfy the
Lyapunov condition? The answer is yes, and it is instructive
to go through a proof. However, on a first reading one
may skip the following development up to the statement of
Proposition 8 without loss of continuity.

For many systems, the function V may be taken to be
eγ v , where v is some measure of the work in the system.
In fact, as we now show, one may take V (w, b) = eγw for
some yet to be determined constant γ > 0.

Consider what happens on a single transition of the
chain Z , starting from the point Zn = (w, b), where n ≥ 0.
The workload decreases at unit rate, at least until it hits 0,
until the arrival of the next call over an interval of length
τn+1 = Tn+1 − Tn . At time Tn+1 a new call arrives at
location Cn+1 say, and adds some work to the workload. In
particular, there will be some travel time ηn+1 to the scene
of the call, some time Un+1 spent at the scene, and then
potentially some travel time ξn+1 to transport the patient to
the hospital. If the patient requires transport to the hospital
then Bn+1 = (0, 0), which is the location of the hospital.
If not, then Bn+1 = Cn+1, which is the location of the new
call, and ξn+1 = 0.

So for n ≥ 0, the new workload Wn+1 is given by
[Wn − τn+1]+ + Qn+1, where [x]+ = max{x, 0}, and

Qn = ηn + Un + ξn. (9)

We assume that the scene time sequence (Un : n ≥ 1) is
i.i.d. and independent of all else, and that the same is true
of the call location sequence (Cn : n ≥ 1).
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Equipped with this Lindley-type recursion for the work-
load, we can now attempt to identify conditions under which
the Lyapunov condition will hold. If z = (w, b), then
E[V (Z1)|Z0 = z] is given by

Eeγ ([w−τ1]++Q1)

= Eeγ [w−τ1]+ Eeγ Q1

≤ [Eeγ (w−τ1) + P(w − τ1 < 0)]Eeγ Q1

≤ eγw[Ee−γ τ1 + e−(λ+γ )w]Eeγ (3+U1) (10)

= eγw[1 + λ + γ

λ
e−(λ+γ )w]Eeγ (3+U1−τ1)

= V (z)[1 + λ + γ

λ
e−(λ+γ )w]φ(γ ), (11)

where φ is the moment generating function of 3 + U1 − τ1.
Equation (10) follows since the ambulance travels at unit
rate, and the distances it can travel are such that η1 ≤ 2,
and ξ1 ≤ 1. (Recall that the ambulance travels distances as
measured by the Manhattan metric.)

Assuming that EetU1 is finite in a neighbourhood of
0, i.e., U1 has a moment generating function defined near
0, then we have that φ(0) = 1, and

φ′(0) = E(U1 + 3 − τ1).

So if EU1 + 3 < Eτ1, then φ′(0) < 0, and so φ(t) < 1 for
t > 0 in some neighbourhood of 0. So choose γ > 0 so
that φ(γ ) < 1.

Now, there is some K > 0 such that if w > K , then

[1 + λ + γ

λ
e−(λ+γ )w]φ(γ ) < 1. (12)

Furthermore, for w ≤ K we have that

E[V (Z1)|Z0 = z] ≤ Eeγ (K+3+U1) < ∞. (13)

Thus, if we take B = [0, K ] × [− 1
2 , 1

2 ]2, then it follows
from (11), (12) and (13) that the second requirement in the
Lyapunov condition is met.

It remains to check the first requirement. Observe
that if the time till the next call is large enough and the
ambulance transports the current patient to the hospital, then
the ambulance will be at its base when the next call arrives.
So if τ1 > K + U1 + 3 and the current patient requires
transport to the hospital, then independent of Z0 = z ∈ B ,
the next call will be served immediately by the ambulance
from the base. In fact, the chain regenerates at such times.
Let

δ = pP(τ1 > K + U1 + 3)

and ϕ denote the distribution of Z1 = (W1, B1) assuming
that at time T1− the ambulance is free and located at the
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origin. Then we have that for all z ∈ B ,

P(z, ·) ≥ δϕ(·),

and the first requirement in the Lyapunov condition is sat-
isfied.

In summary then, we have established that Z satisfies
the Lyapunov condition. It is straight-forward to show that
Z is aperiodic, and so we arrive at the following result.

Proposition 8. If U1 possesses a moment generating func-
tion in a neighbourhood of 0, and EU1 + 3 < Eτ1, then
the chain Z is V -uniformly ergodic, where V (w, b) = eγw,
for some γ > 0.

The stability condition

EU1 + 3 < Eτ1

has a very nice interpretation in terms of the model. The
left-hand side of the inequality gives an upper bound on the
expected amount of work (time at the scene + travel time to
the scene + travel time from the scene to the hospital) brought
in by an arriving call, whereas the right-hand side gives the
expected amount of time that the ambulance has available
between calls to deal with this work. This condition can
certainly be weakened by being more careful about defining
how much work each call brings to the system, but this is
not something that we will pursue further.

The main point is that Proposition 8 gives easily verifi-
able conditions under which the system is stable. While it
may have appeared somewhat difficult to verify the Lyapunov
condition, the argument used is actually quite straightfor-
ward, and we will see that the payoff is easily worth the
effort. Based on this result, we can now define our perfor-
mance measures rigorously, and also construct estimators
that are consistent and satisfy central limit theorems.

As in Section 4, the rigorous definition of our perfor-
mance measures is based on the strong law of large num-
bers. For simplicity, we state this theorem under stronger
hypotheses than are really necessary.

Theorem 9 (MCSLLN). Let � be a V -uniformly ergodic
Markov chain on state space S with stationary probability
distribution π . Let h : S → IR be a real-valued function
on S. If π |h| = ∫

S |h(x)|π(dx) < ∞, then

1

n

n−1∑
i=0

h(�i ) → πh a.s.

as n → ∞.

For a proof, see Theorem 17.0.1 of Meyn and Tweedie
(1993).
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We turn now to the performance measure β, the long-
run utilization of the ambulance. The actual utilization of
the ambulance over the time interval [0, Tn), i.e., up until
the time of the nth arrival is

n−1 ∑n−1
i=0 min{Wi , τi+1}
n−1

∑n
i=1 τi

. (14)

Now, the SLLN for i.i.d. random variables implies that the
denominator converges to λ−1. We would like to apply
the MCSLLN to the numerator, but it is not yet in an
appropriate form. However, using a simple device we can
fix this difficulty. In essence, we are going to apply filtering;
see Glasserman (1993). We have that

E min{w, τ1} = wP(τ1 > w) + Eτ1 I (τ1 ≤ w)

= λ−1(1 − e−λw),

and so we replace (14) by

βn = 1

n

n−1∑
i=0

(1 − e−λWi ). (15)

Notice that βn is in exactly the form that we need to apply
the MCSLLN, with h(w, b) = 1−e−λw, which is bounded,
and so we find that

βn → β a.s.

as n → ∞. This then is a rigorous definition of β, and
also a proof that the estimator βn is (strongly) consistent.

Let us turn now to r , the steady-state density of the
response time to a call. For n ≥ 0, the response time Rn+1
to the call arriving at time Tn+1 is the sum of the workload
[Wn − τn+1]+ just before the arrival of the call and the
time ηn+1 for the ambulance to travel to the location of the
new call. So the response time Rn+1 depends not only on
Zn = (Wn, Bn), but also on the time interval τn+1.

This dependence of the response time on the time
between calls causes some difficulties in our analysis. There
are several ways to solve these difficulties, but perhaps the
“cleanest” is to expand the state space of our Markov chain
so that it is “sufficiently rich” to supply all of the needed
information.

Accordingly, define Z̃ = (Z̃n : n ≥ 0), where, for
n ≥ 0, Z̃n = (Wn, Bn, τn+1). Using techniques that are
very similar to those used for the chain Z , we can show
that Z̃ is a Ṽ -uniformly ergodic chain on the state space

S̃ = [0,∞) ×
[
−1

2
,

1

2

]2

× [0,∞),
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where

Ṽ (w, b, t) = eθ[w−t ]+

for some θ > 0.
We are now equipped to both define the density r and

derive a look-ahead density estimator for it. Recall that for
n ≥ 0,

Rn+1 = [Wn − τn+1]+ + ηn+1.

So

P(R1 ∈ dx |Z̃0 = z = (w, b, t))

= P(η1 ∈ (x − [w − t]+, x − [w − t]+ + dx)|Z̃0 = z)

= P(d(b, C1) ∈ (x − [w − t]+, x − [w − t]+ + dx))

= f (x − [w − t]+; b) dx, (16)

where the function f (·; ·) was introduced in (7).
If we define g(x, z) = g(x, w, b, t) = f (x − [w −

t]+; b), then we can write (16) as

P(R1 ∈ dx |Z̃0 = z) = g(x, z) dx .

It follows that we can define r(x) = πg(x, ·) where π is
the stationary distribution of Z̃ , i.e., that r defined in this
way is a density of the steady-state response time. This
follows immediately from results in Henderson and Glynn
(2001), and is very similar to the calculation in Section 2
showing that the network completion time L has a density.
We omit the details.

So we define r(x) = πg(x, ·), and this expression
suggests that we might estimate r(x) by

rn(x) = 1

n

n−1∑
i=0

g(x, Zn).

Recall that f is bounded (by 2
√

2), and therefore so is g.
So the MCSLLN establishes that under the conditions of
Proposition 8, rn(x) → r(x) almost surely as n → ∞, for
all x > 0. Hence, we have rigorously defined the density
r , and established that it can be consistently estimated by
rn .

We summarize the above discussion with the following
proposition.

Proposition 10. Under the conditions of Proposition 8, the
utilization β and the density r are well-defined, and the
estimators βn and rn are strongly consistent (as n → ∞).

So we now turn to the error in the estimators. As
before, this can be assessed through confidence intervals
that derive from a central limit theorem. Again, in order for
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simplicity, we state the Markov chain central limit theorem
under stronger conditions than are strictly necessary.

For a function h : S → IR with π |h| < ∞, let h̄(·) =
h(·) − πh denote the function centred by its steady-state
mean. Also, let Eν denote the expectation operator over
the path space of a Markov chain under initial distribution
ν.

Theorem 11 (MCCLT). Suppose that the chain � satisfies
the Lyapunov condition and is aperiodic. Then, for any
function h : S → IR with h(z)2 ≤ V (z) for all z,

√
n

(
1

n

n−1∑
i=0

h(�i ) − πh

)
⇒ σ N(0, 1),

where π is the stationary probability distribution of �, and

σ 2 = Eπ [h̄(�0)
2] + 2

∞∑
k=1

Eπ [h̄(�0)h̄(�k)]. (17)

For a proof, see Theorem 17.0.1 of Meyn and Tweedie
(1993).

We immediately obtain the following result.

Proposition 12. Under the conditions of Proposition 8,

√
n(βn − β) ⇒ σβ N(0, 1)

as n → ∞, for an appropriately defined constant σ 2
β . In

addition, for all x > 0,

√
n(rn(x) − r(x)) ⇒ σ(x)N(0, 1)

as n → ∞, for an appropriately defined constant σ(x).

Thus, just as in the terminating simulation case, the error
in the estimators βn and rn(x) is approximately normally
distributed with mean 0 and variance on the order of n−1.

This result serves as a foundation for constructing con-
fidence intervals for our performance measures. One ap-
proach is to estimate the variance constants directly using
the regenerative method, which is certainly easily applied to
our example. But the method of batch means is, at least cur-
rently, more widely applicable, and the preferred method in
commercial simulation software, and so we instead consider
this approach.

Suppose that we have a sample path �0,�1, . . . ,�n−1.
Divide this sample path into m batches of size b, where
for convenience we assume that n = mb, so that the kth
batch consists of observations �(k−1)b, . . . ,�kb−1. Now,
for k = 1, . . . , m, let Mk be the sample mean over the kth
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batch, i.e.,

Mk = 1

b

kb−1∑
i=(k−1)b

h(�i ),

and let M̄m denote the sample mean of the m batch means
M1, . . . , Mm . Finally, let

s2
m = 1

m − 1

m∑
i=1

(Mk − M̄m)2

denote the sample variance of the Mk ’s. The method of
batch means provides a confidence interval for πh of the
form M̄m ± tsm/

√
m, for some constant t , and relies on

the assumption that for large n, (M̄m − πh)/(sm/
√

m) is
approximately t-distributed, with m −1 degrees of freedom.

The MCCLT above implies that as n → ∞ with m,
the number of batches, held fixed, all of the batch means
are asymptotically normally distributed with mean πh, and
variance mσ 2/n. If each of the batch means are also
asymptotically independent, then a standard result (see p. 173
of Rice 1988 for example) shows that the above confidence
interval methodology is valid.

But how can we be sure that this asymptotic indepen-
dence of the batch means will hold? A sufficient condition
that supplies both the asymptotic independence, together
with asymptotic normality, is that the chain � satisfy a
functional central limit theorem; see Glynn and Iglehart
(1990), from which much of the following discussion is
adapted.

Definition 2. Let � be a Markov chain on state space S,
and let h : S → IR. Define the continuous time process
Y = (Y (t) : t ≥ 0) by Y (t) = ��t�. For 0 ≤ t ≤ 1, let

Ȳn(t) = n−1
∫ nt

0
h(Y (s)) ds

and set

ζn(t) = n1/2(Ȳn(t) − κ t),

for some constant κ . We say that � satisfies a functional
central limit theorem (FCLT) if there exists an η > 0 such
that ζn ⇒ ηB as n → ∞, where B denotes a standard
Brownian motion.

Observe that if � satisfies a FCLT, then the j th batch
mean M j can be expressed as

M j = m[Ȳn( j/m) − Ȳn(( j − 1)/m)]
= κ + n−1/2m(ζn( j/m) − ζn(( j − 1)/m).
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Since the increments of Brownian motion are normally dis-
tributed, the FCLT then implies that the M j ’s are asymptoti-
cally normally distributed with mean κ and variance mη2/n,
which is a conclusion that we had already reached. But the
increments of Brownian motion are also independent, which
implies that the M j ’s are asymptotically independent, and
this is the final result needed to ensure that the batch means
confidence methodology outlined above is asymptotically
valid.

So when can we be sure that � satisfies a FCLT? One
sufficient condition is the following result.

Theorem 13. Suppose that � satisfies the Lyapunov con-
dition, and h is such that h(z)2 ≤ V (z) for all z. If the
constant σ 2 defined in (17) above is positive, then � sat-
isfies a functional central limit theorem with κ = πh and
η2 = σ 2.

For a proof, see Theorems 17.4.4 and 17.5.3 of Meyn
and Tweedie (1993).

Notice that we have already established that the con-
ditions of Theorem 13 hold for our estimators. Thus, we
immediately arrive at the conclusion that the method of batch
means will yield asymptotically valid confidence intervals.

As in the terminating simulation case, the performance
of these confidence interval procedures for finite n may be
negatively impacted by bias. Of course, the bias depends
on the initial distribution µ say of the chain. The bias in
the estimator βn is Eµβn −β, with a similar expression for
rn(x) for each x > 0.

We give the appropriate calculations for β, as those
for r are the same. Let h(w, b) = 1 − e−λw. Borrowing
a technique from Glynn (1995), we see that the bias in βn

under initial distribution µ is

Eµ
1

n

n−1∑
i=0

[h(Zi) − πh]

= 1

n
Eµ

∞∑
i=0

[h(Zi ) − πh] − 1

n
Eµ

∞∑
i=n

[h(Zi ) − πh]

= c

n
+ o(n−1)

provided that

c = Eµ

∞∑
i=0

[h(Zi ) − πh] < ∞. (18)

So the bias in the estimator βn will be of the order n−1

if (18) holds. This result holds in great generality. We in
fact have the following result.
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Theorem 14. Suppose that � satisfies the Lyapunov con-
dition and is aperiodic. Let π be the stationary probability
distribution of �. If h(z)2 ≤ V (z) for all z, and µV < ∞,
then

c = Eµ

∞∑
i=0

[h(�i ) − πh] < ∞,

and

Eµ
1

n

n−1∑
i=0

h(�i ) − πh = c

n
+ O(qn),

as n → ∞, where q < 1.

The proof of this result is a straightforward extension
of Theorem 16.0.1 of Meyn and Tweedie (1993).

We can conclude from this result that if the initial
conditions are chosen appropriately (e.g., if Z0 and Z̃0 are
chosen to be deterministic), then the bias of our estimators
is of the order n−1.

Since the width of the batch mean confidence intervals
is of the order n−1/2, and the bias in the estimators is of
the order n−1, it follows that bias will typically only be an
important factor for small sample sizes.
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