
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

INTRODUCTION TO SIMULATION

Ricki G. Ingalls

School of Industrial Engineering and Management
322 Engineering North

Oklahoma State University
Stillwater, OK 74078, U.S.A.

ABSTRACT

Simulation is a powerful tool if understood and used prop-
erly. This introduction to simulation tutorial is designed to
teach the basics of simulation, including structure, func-
tion, data generated, and its proper use. The introduction
starts with a definition of simulation, goes through a talk
about what makes up a simulation, how the simulation ac-
tually works, and how to handle data generated by the
simulation. Throughout the paper, there is discussion on
issues concerning the use of simulation in industry.

1 DEFINITION OF SIMULATION

Simulation, according to Robert E. Shannon (1975), is �the
process of designing a model of a real system and conduct-
ing experiments with this model for the purpose either of
understanding the behavior of the system or of evaluating
various strategies (within the limits imposed by a criterion or
set of criteria) for the operation of the system.� According
to this definition, a simulation can be a discrete-event simu-
lation, as we will discuss in this paper. Many people who
attend this conference will be familiar with the term �MRP
simulation.� This is a model (actually a copy) of the real
system (the MRP system of record) which experiments (or
scenarios) can be run to evaluate various strategies (such as
how to respond to a drastic change in the forecast). Al-
though we do not teach courses in our curriculum on �MRP
simulation,� a MRP simulation is no less a simulation than
the type of simulation we will discuss in this tutorial.

The difference, and the power, of discrete-event simu-
lation is the ability to mimic the dynamics of a real system.
Many models, including high-powered optimization mod-
els, cannot take into account the dynamics of a real system.
It is the ability to mimic the dynamics of the real system
that gives discrete-event simulation its structure, its func-
tion, and its unique way to analyze results. So, to take lib-
erties with one of my mentors in this field, we will say that
simulation is the process of designing a dynamic model of
an actual dynamic system for the purpose either of under-

7

standing the behavior of the system or of evaluating vari-
ous strategies (within the limits imposed by a criterion or
set of criteria) for the operation of the system.

Throughout this paper, we will be referencing ideas
and thoughts from Shannon (1975), Law and Kelton
(2000), Banks et al. (2000), Kelton, Sadowski, and
Sadowski (2001), Ingalls and Kasales (1999), Ingalls
(1998), and Ingalls and Eckersley (1992).

2 A DRIVE-THROUGH EXAMPLE

In order to give us a reference model for discussion pur-
poses, let us consider the example of a drive-through win-
dow at a fast food restaurant whose logic is shown in Fig-
ure 1. As a car enters from the street, the driver, who we
will call Fred, decides whether or not to get in line. If Fred
decides to leave the restaurant, he leaves as a dissatisfied
customer. One of the great things about a simulation is
that it is easy to track these type of customers. In most
real-world systems, it is usually difficult to track customers
who leave dissatisfied.

If Fred decides to get in line, then he waits until the
menu board (with the speaker no normal human being can
understand) is available. At that time, Fred gives the order
to the order taker.

After the order is taken, then two things occur simul-
taneously. (1) Fred moves forward if there is room. If
there is no room, then he has to wait at the menu board un-
til there is room to move forward. As soon as there is
room, he moves so the next customer can order. (2) The
order is sent electronically back to the kitchen where it is
prepared as soon as the cook is available.

As soon as Fred reaches the pickup window, then he
pays and picks up his food, if it is ready. If the food is not
ready, then Fred has to wait until his order is prepared. In
this drive-through, Fred never hears, �Please pull forward
and we will bring your order out to you.� That is one of
the reasons that Fred and I both like this place.

As soon as Fred parts with his money and gets his food,
then he leaves the pickup window a satisfied customer.

Ingalls

3 DISCRETE-EVENT SIMULATION

STRUCTURE

Although there are various flavors and paradigms in dis-
crete-event simulation, there has evolved a basic structure
that is used by most simulation packages. Regardless of
how complex a discrete-event simulation package may be,
it is likely to contain the basic components that we will de-
scribe in this section.

The structural components of a discrete-event simula-
tion include entities, activities and events, resources,
global variables, a random number generator, a calendar,
system state variables and statistics collectors.

3.1 Entities

The best way to understand the function of an entity is un-
derstand that entities cause changes in the state of the
simulation. Without entities, nothing would happen in a
simulation. As a matter of fact, one stopping condition for
a simulation model is the condition where there are no ac-
tive entities in the system.

Entities have attributes. Attributes are characteristics
of a given entity that are unique to that entity. Attributes
are critical to the understanding of the performance and
function of entities in the simulation.

In our example, the primary entity type is the cars
coming to the restaurant. Also, there is a second entity
type created when the order is taken, and that is the order
itself. It has a relatively short life in the simulation, lasting
only from the time the order is taken until it meets back up
with the car at the pickup window.

We also have two attributes in our simulation. The
first one is the time of day that the car enters the restaurant
parking lot. We will call this attribute StartTime. The sec-
ond is the value of the order. We will call this attribute
OrderValue. Both of these are unique to the customers
who are represented in the simulation.

Another example of an entity is the part that is flowing
through a factory. Entities that represent parts in a factory
could be created randomly or according to a schedule. A
common attribute would be the time that the part started in
the factory. Each part would have a unique time that it
started in the factory. It may also have other attributes such
as priority, the type of part, and cost incurred to produce the
part. In a normal factory simulation that is tracking each in-
dividual part, it would not be unusual to have thousands of
entities active in the simulation simultaneously.

Entities, however, do not need to be parts in a manu-
facturing facility or cars in a drive-through. It is also a
common practice to use entities to represent the flow of in-
formation. This information could be a customer order, an
email alert, a packet in a computer network, etc. It can be
anything non-physical that causes a change in the status of
system. These entities also have attributes. For example,
8

Figure 1: Drive-Through Example Logic Flow

Enter Restaurant

Parking Lot

Is the Line Too
Long?

Leave the
Resturant as a

dissatisfied
customer

TRUE

Get in the Line for
the Menu Board

FALSE

When Arrive at the
Menu Board, Give

Order

Is there Room
to Move

Forward?
Wait until the Car

In Front of you
Moves

CAR

FALSE

Get in Line for
Order Pickup

Window

TRUE

Arrive at Order
Pickup Window -

Pay and Get Order

Leave the
Restaurant Parking

Lot

Order is Made in
the Kitchen ORDER

Order Meets
Car at Order

Pickup Window

Ingalls

an entity representing a packet in a computer network
would have attributes such as packet size, packet destina-
tion, the time that the packet would time-out, etc.

3.2 Activities and Events

Activities are processes and logic in the simulation. Events
are conditions that occur at a point in time which cause a
change in the state of the system. An entity interacts with
activities. Entities interacting with activities create events.

There are three major types of activities in a simula-
tion: delays, queues and logic. The delay activity is when
the entity is delayed for a definite period of time. In our
example, there are three delays. The first is when Fred is
ordering at the menu board, the second is when the order is
being cooked in the kitchen, and the third is Fred picks up
his order at the pickup window. In general, the length of
time for a delay is either constant or is randomly generated.
At the point that the entity starts the delay, an event oc-
curs. This event schedules the entity on the calendar
(which we will get to later). If the delay is for d time units,
then the entity is scheduled to complete the delay d time
units after the current time of the simulation. At that time,
the delay expires and another event is generated.

Queues are places in the simulation were entities wait
for an unspecified period of time. Entities can be waiting
on resources (which we will get to later) to be available or
for a given system condition to occur. Queues are most
commonly used for waiting in line for a resource or storing
material that will be taken out of the queue when the right
conditions exist. In our example, there are three queues,
the first is the part of the line that waits on the menu board
to be available, the second is the order waiting on the
kitchen becoming available, and the third is the part of the
car line waiting on the order pickup window to become
available. All three of these queues are waiting for re-
sources to be available.

Logic activities simply allow the entity to effect the
state of the system through the manipulation of state vari-
ables (which we will get to later) or decision logic. The
first of several logic activities in our example is the deci-
sion whether or not to get in the order line in the first place.
This decision is effected by the length of the line in front of
the menu board.

3.3 Resources

In a simulation, resources represents anything that has a
restricted (or constrained) capacity. Common examples of
resources include workers, machines, nodes in a communi-
cation network, traffic intersections, etc. In our example,
we have three different resources. The first resource is the
menu board, which only one car can use at a time. The
menu board is utilized from the time a car moves in front
of it until the car moves away from it. In our model, the
9

car does not automatically move away from the menu
board after the order has been placed. There must also be
room to move forward. So, this resource is occupied for
both productive time (when the order is being placed) and
unproductive time (when there is not enough room to pull
the car forward). The second resource is the kitchen. It is
utilized from the time an order arrives until the order is fin-
ished cooking. The third resource is the order pickup win-
dow. This resource can also be unproductive. That occurs
when the car has arrived at the window, but the order is not
ready from the kitchen yet. In the course of the simulation,
we can track the key statistics of each of these resources,
including utilization and costs.

It should also be noted that very complex resources
can be utilized in a simulation. In a manufacturing simula-
tion, conveyors are a very complex resource that many
simulation packages offer. Also, transportation options
such as trucks are offered as resources. A third complex
resource is a vat or container that has a (continuous) flow
of material both in an out of the resource. Depending on
the target market of the simulation package, many complex
resources are available to use.

3.4 Global Variables

If you are a programmer, then the idea of having global
variables is nothing new. A global variable is a variable
that is available to the entire model at all times. A global
variable can track just about anything that is of interest to the
entire simulation. In our model we have four global vari-
ables, two of which help us configure the problem and two
of which collect revenue information. The two variables
that help us configure the problem are the length of the line
allowed at the restaurant. The first is MenuBoardLineSize,
which gives the maximum line size for the menu board, in-
cluding the car who is at the menu board. The second is Or-
derPickupLineSize, which gives the maximum line size after
the menu board, including the car at the pickup window. By
changes these two variables, the simulator can analyze the
effectiveness of different line configurations.

The two variables that help use collect revenue infor-
mation are Revenue and LostRevenue. Revenue is the total
amount of revenue collected in the simulation, and LostRe-
venue is the total amount of revenue lost because the cus-
tomer thought that the line was too long.

3.5 Random Number Generator

Every simulation package has a random number generator.
The random number generator (technically called a
pseudo-random number generator) is a software routine
that generates a random number between 0 and 1 that is
used in sampling random distributions. For example, let us
assume that you have determined that a given process de-
lay is uniformly distributed between 10 minutes and 20

Ingalls

minutes. Then every time an entity went through that
process, the random number generator would a generate a
number between 0 and 1 and evaluate the uniform distribu-
tion formula that has a minimum of 10 and a maximum of
20. As an example, let us assume that the generated ran-
dom number is 0.7312, then the delay would be
10+(0.7312)*(20-10) = 17.312. So the entity would delay
for 17.312 time units in the simulation. Everything that is
random in the simulation uses the random number genera-
tor as an input to determine values.

In our example model, we will use a physical random
number generator, two dice. The probability distribution
for the roll of two dice is seen in Figure 2. In our model,
the roll of two dice becomes the basis for every random de-
lay and randomly assigned value in the model. We have
five randomly assigned delays and values in the model, (1)
the time between arrivals of cars to the restaurant, (2) the
value of the order for the car, (3) the delay at the menu
board, (4) the delay at the kitchen, and (5) the delay at the
order pickup window. The formulas for these random val-
ues are as follows:

1. Time between arrivals of cars to the restaurant =

(Dice * 10) seconds
2. The value of the order for the car = (Dice * 2) � 2

dollars.
3. The delay at the menu board = (Dice * 10) sec-

onds.
4. The delay at the kitchen = (Dice * 8) seconds.
5. The delay at the order pickup window = (Dice *

10) seconds.

3.6 The Calendar

The calendar for the simulation is a list of events that are
scheduled to occur in the future. In every simulation, there
is only one calendar of future events and it is ordered by the
earliest scheduled time first. In a later example, it will be-
come more clear how the calendar works and why it is im-

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

2 3 4 5 6 7 8 9 10 11 12
Two Dice Values

Pr
ob

ab
ilit

y

Figure 2: Distribution of Rolling Two Dice
10
portant in the simulation. At this point, just remember that,
at any given point in time, every event that has already been
scheduled to occur in the future is held on the calendar.

3.7 System State Variables

Depending on the simulation package, there can be several
system state variables, but the one system state variable
that every simulation package has is the current time of the
simulation. In order to keep from offending any simulation
vendors, we will choose a different name for our simula-
tion time variable. Our name of the current time of the
simulation is CurrentTime. This variable is updated every
time an entity is taken from the calendar.

3.8 Statistics Collectors

Statistics collectors are a part of the simulation that collects
statistics on certain states (such as the state of a resources),
or the value of global variables, or certain performance sta-
tistics based on attributes of the entity. There are three dif-
ferent types of statistics that are collected, counts, time-
persistent, and tallies. Counts are very straightforward,
they count. In our model, we count the number of Lost
Customers because the line was too long. Time-persistent
statistical collectors give the time-weighted values of dif-
ferent variables in the simulation. A common variable to
track is the utilization of a resource. In our model, we col-
lect 6 different time-persistent statistics, which are the
number of busy resources of the three resources that we
have in the model and, the number of entities in each of the
three queues that serve the three resources. Tally statistics
are collected one observation at a time without regard to
the amount of time between observations. In our model,
we collect a very common statistic, which is the amount of
time that an entity stays in the system. Since we assign the
value of StartTime to the attribute of the entity when it en-
ters the restaurant parking lot, then the value CurrentTime
� StartTime is the total amount of time in the system. If
we are to improve this system, we would want to minimize
this statistic without hurting the revenue too much.

4 A WALK THROUGH THESE CONCEPTS

What we are going to do now is walk through a couple of
steps in our simulation model. As you will see, we will
track the state of the system, the entities on the calendar,
the values of attributes and state variables, and the statistics
we are collecting.

4.1 The State of The System at Noon

Figure 3 shows the state of the system at noon during a
lunch rush at our fast food restaurant. To help us design
the line at the restaurant, we have set two of our global

Ingalls

variables, MenuBoardLineSize and OrderPickupLineSize,
both equal to 3. As you can see, that is the total capacity of
the line at the restaurant. The state of our system at noon is
as follows:

• Car 1 (the Corvette) is at the Order Pickup Win-
dow receiving its order.

• Cars 2 (the convertible VW Bug) and 3 (the mi-
nivan) are in line waiting for the Order Pickup
Window.

• Car 4 (the 2-seat convertible) is ordering at the
Menu Board.

• Cars 5 (the Police Car) and 6 (the Porsche) are
waiting in line for the Menu Board.

• The Order for Car 2 is being cooked in the
Kitchen.

• The Order for Car 3 is waiting in line for the
Kitchen.

• Car 7 (of undetermined type) is scheduled to ar-
rive at the restaurant in the future.

The calendar of this system is made up of the entities

that are scheduled to complete an activity with a specific
time duration. These entities are Car 1, Car 4, the Order
for Car 2, and Car 7. The calendar for these four entities is
shown in Table 1.

Table 1: The Calendar at Noon

Entity Event Event Time
Car(7) Arrive at Restaurant 12:00:20 PM
Car(1) Order Pickup Window Complete 12:00:40 PM

Ordr(2) Kitchen Complete 12:00:56 PM
Car(4) Menu Board Complete 12:01:10 PM

We also know the values of the attributes of the enti-

ties in the system. As you recall, we have two attributes,
StartTime and OrderValue. The values for those attributes
for each of the entities in the system is outlined in Table 2.

Table 2: Entity Attributes at Noon

Entity StartTime OrderValue
Car(1) 11:54:20 AM $ 10
Car(2) 11:55:50 AM $ 6
Car(3) 11:57:10 AM $ 4
Car(4) 11:58:20 AM $ 14
Car(5) 11:59:30 AM $ 14
Car(6) 12:00:00 PM $ 10
Car(7) --- ---

Other important information concerns our system state

variable, CurrentTime, which is set to 12:00:00 PM.
11
Figure 3: State of the System at Noon

The statistics that we are tracking in the simulation
have the values listed in Table 3 as of noon. The
�Time/Obs� column give the amount of time that we have
been collecting the statistic (which is since 11:00 AM) for
time-persistent statistics or the number of observations for
tally statistics.

Table 3: Statistics at Noon

Statistic Value Time/Obs
Revenue $ 504

Lost Revenue $ 74
MenuBoard Utilization 0.9984 1:00:00

Kitchen Utilization 0.7006 1:00:00
OrderWindow Utilization 0.9678 1:00:00

MenuBoard Waiting in Line 1.2306 1:00:00
Kitchen Waiting in Line 0.0822 1:00:00

OrderWindow Waiting in Line 1.0311 1:00:00
Time In System 5.5969 44

4.2 The State of The System at 12:00:20 PM

Here is where we get one of the key ideas about a discrete-
event simulation. A discrete-event simulation moves the
current time of the simulation through events and their tim-
ing instead of distinct time intervals. If we had distinct time
intervals of 1 second, we would go through 20 time intervals
before anything would happen. So instead of going through
20 time intervals with nothing happening, we go straight to
the next scheduled event, which is the first event on the cal-
endar, which is scheduled to occur at 12:00:20 PM. That
event is the arrival of Car 7 to the restaurant.

When Car 7 arrives at the restaurant, the first activity in
the simulation is to set its attributes. Obviously, StartTime is
set to 12:00:20 PM, and the OrderValue is set using the for-
mula (Dice * 2) � 2 after we roll the dice. The roll of the

Ingalls

dice gives us a 9, so the value of the order is $16. After the
attributes are assigned, Car 7 makes a decision whether or
not to get in line to order. Since we have set the
MenuBoardLineSize = 3 and there are 3 cars in the line, Car
7 leaves as a dissatisfied customer. When Car 7 leaves, we
want to capture some important information, namely how
much revenue have we lost because of dissatisfied custom-
ers, which is tracked in our global variable RevenueLost.
RevenueLost is incremented from $74 to $90.

Now that Car 7 has arrived at (and incidentally, left)
the restaurant, we also need to schedule the arrival of the
next car (Car 8) to the restaurant. The time between arri-
vals to the restaurant is set using the formula (Dice * 10) in
seconds. So, we roll the dice and get a 7. Car 8 will arrive
70 seconds in the future at time 12:01:30 PM. Car 8 is
now put on the calendar with the event �Arrive at Restau-
rant� that will occur at the event time of 12:01:30 PM.

So what has changed? Car 7 has arrived and left and
Car 8 is schedule to arrive in the future. We have also up-
dated RevenueLost. We have a new calendar, which is
shown in Table 4.

Table 4: The Calendar at 12:00:20 PM

Entity Event Event Time
Car(1) Order Pickup Window Complete 12:00:40 PM

Order(2) Kitchen Complete 12:00:56 PM
Car(4) Menu Board Complete 12:01:10 PM
Car(8) Arrive at Restaurant 12:01:30 PM

The statistics can be updated at this point as well.

(However, most simulation packages only update statistics
when the value that is being tracked changes). We have
two types of statistics, the counting of Revenue and Reve-
nueLost, the resource utilization statistics and the queue
length statistics. The counting statistics are simply the val-
ues of the variables we are tracking, and RevenueLost has
gone to $90. The other statistics are time-dependent statis-
tics that are time-weighted averages of a given value. As
an example, let us calculate the new value of the average
number of cars waiting in line for the menu board. At
noon, the simulation had been running for one hour and the
average value was 1.2306. From noon to 12:00:20 PM, the
number of cars waiting in line for the menu board has been
2. So the new time-weighted average is ((1.2306 *
1:00:00) + (2 * 0:00:20)) / 1:00:20 = 1.234851. If we were
to convert this formula to seconds, it would be ((1.2306 *
3600) + (2 * 20)) / 3620 = 1.234851. All time-dependent
statistics are calculated in this way. The value for all of the
statistics at time 12:00:20 PM is in Table 5.
12

Table 5: Statistics at 12:00:20 PM
Statistic Value Time/Obs
Revenue $ 504

Lost Revenue $ 90
MenuBoard Utilization 0.998409 1:00:20

Kitchen Utilization 0.702254 1:00:20
OrderWindow Utilization 0.967978 1:00:20

MenuBoard Waiting in Line 1.234851 1:00:20
Kitchen Waiting in Line 0.087271 1:00:20

OrderWindow Waiting in Line 1.036453 1:00:20
Time In System 5.5969 44

4.3 The State of The System at 12:00:40 PM

We want to take one more step in the simulation because
we actually see the line move! Looking at Table 4, we
know that the next scheduled event is that Car 1 finishes its
time at the Order Pickup Window at time 12:00:40 PM.
The first thing to do is set the CurrentTime to 12:00:40
PM. When Car 1 finishes its time at the Order Pickup
Window, we know that Car 1 has paid for its order, and so
Revenue must be increase by the OrderValue attribute of
Car 1. So the value Revenue is increased from $504 to
$514. We also need to calculate a new average Time in
System statistic. The time in the system for Car 1 is the
CurrentTime � StartTime, which would be 12:00:40 PM �
11:54:20 AM, which is 6 minutes and 20 seconds. Since
we are collecting Time in System in minutes, the new aver-
age Time in System is ((5.5969 * 44) + 6.3333) / 45 =
5.613265. The other thing that occurs is that the Order
Pickup Window resource is no longer utilized. Since the
Order Pickup Window resources is available for other cars,
the simulation will allocate the Order Pickup Window re-
source to the car that is first in the line that is waiting to
use the Order Pickup Window. Our Car 2 (the convertible

Figure 4: The State of the System at 12:00:40 PM

Ingalls

VW Bug) is first in line for the Order Pickup Window, so
Car 2 is allocated the Order Pickup Window resource. Can
Car 2 start picking up its order? No, it cannot. The reason
is that the order for Car 2 is still in the Kitchen. So even
though the Order Pickup Window resource is occupied, no
productive work is going on. At the next step in the simu-
lation, the order for Car 2 will complete in the Kitchen and
Car 2 will be able to start the process of picking up its or-
der. But for now, it just has to wait!

Since Car 2 has moved forward, Car 3 moves to first
place in the line waiting for the Order Pickup Window re-
source. Car 4 is still occupies the Menu Board resource
and is still in the process of giving its order. This process
is scheduled to end at time 12:01:10 PM (See Table 4).
Cars 5 and 6 do no change their position in the line and Car
8 is still scheduled to arrive at the restaurant at time
12:01:30 PM. The new state of the system is shown in
Figure 4.

We also update our statistics at this time. As we de-
scribed in at time 12:00:20 PM, we look at what has hap-
pened since the last time we updated the statistics in order
to determine the new values for the statistics. So, what
number will we use to calculate the new average number of
cars waiting for the Order Window, 2 (the number in line at
12:00:20) or 1 (the number in line now)? The answer is 2
because from time 12:00:20 PM to 12:00:40 PM there
were 2 cars waiting in line. The new values for the statis-
tics are shown in Table 6.

Table 6: Statistics at 12:00:40 PM
Statistic Value Time/Obs
Revenue $ 514

Lost Revenue $ 90
MenuBoard Utilization 0.998418 1:00:40

Kitchen Utilization 0.703890 1:00:40
OrderWindow Utilization 0.968154 1:00:40

MenuBoard Waiting in Line 1.239055 1:00:40
Kitchen Waiting in Line 0.092286 1:00:40

OrderWindow Waiting in Line 1.041747 1:00:40
Time in System 5.613265 45

5 INTERPRETING OUTPUT STATISTICS

Let us assume that our model has run from 11:00 AM to
2:00 PM. At 2:00 PM, we stop the simulation and we have
all of our statistics calculated. The �answer� for the simu-
lation is in Table 7.

But what does this data really telling us? Is it saying
that every day, from 11:00 AM to 2:00 PM, the revenue for
the restaurant will be $1,638? Is it saying that every day,
from 11:00 AM to 2:00 PM, the average amount of time
that a car will be in line is 5.0487 minutes? What is this
really saying?
13
Table 7: Statistics at End of Simulation
Statistic Value Time/Obs
Revenue $ 1,638

Lost Revenue $ 170
MenuBoard Utilization 0.9724 3:00:00

Kitchen Utilization 0.7250 3:00:00
OrderWindow Utilization 0.9846 3:00:00

MenuBoard Waiting in Line 0.8785 3:00:00
Kitchen Waiting in Line 0.133 3:00:00

OrderWindow Waiting in Line 1.1567 3:00:00
Time In System 5.0487 140

The answer to that question is, �These numbers gives

us a random answer to the performance of the system.� It
is a random answer because there are random inputs to the
system that give us this answer. So how can we be sure
that the answer is any good?

The answer generated by only one run is not really an
answer at all. To make the point, let us take the following
100 rolls of the dice. You would think that 100 rolls of the
dice would tell us the average. But if you take the 100
rolls in Table 8, the average is only 6.72. Is that close
enough? Would you be willing to bet that the next 100
rolls would come up with an average of 6.72. Probably
not. (If you are, please contact me as soon as possible on
any other wagers you may be considering.)

Table 8: 100 Rolls of the Dice

6 5 8 6 5 4 10 6 7 8
5 9 8 7 8 6 3 8 7 6
9 9 8 8 6 8 9 7 10 5
2 10 11 8 6 8 7 3 8 8
4 6 8 11 2 4 8 9 8 5
9 3 8 7 2 3 9 10 7 7
3 9 5 7 7 7 9 4 8 7
4 10 7 4 10 8 4 8 9 7
3 6 6 3 6 3 10 9 7 4
6 8 5 9 12 6 8 6 4 2

Average: 6.72

So what is the answer to this problem. The answer is

that if we really want to estimate the average value of the
roll of the dice if we roll the dice 100 times, we need to run
the simulation more times. Each time that we run a simu-
lation is called an iteration. So, as an example, let us say
that we have run our dice throwing simulation for 30 itera-
tions and Table 9 has the average values for each of those
iterations.

Ingalls

Table 9: 30 Iterations of Throwing Dice 100 Times
6.72 6.95 6.78 7.14 6.62 6.81
6.75 7.17 6.62 7.3 6.92 7.04
6.79 7.13 7.17 7.12 6.82 7.29
7.13 7.26 7.19 6.52 6.8 7.3
6.95 6.96 6.78 7.17 7.13 6.68

Average: 6.967
Standard Deviation: 0.22992

95% Confidence Interval: [6.8847,7.0493]

If we are simply trying to estimate the average of 100

rolls of the dice, we do not need to worry about the stan-
dard deviation for each iteration. However, we do need to
worry about the standard deviation of the averages from
each iteration. As is shown in Table 9, the average of the
averages (so to speak) is 6.967. The standard deviation of
those 30 averages is 0.22992. With that information, we
can calculate a confidence interval.

A confidence interval is a statistical measure where we
want to bound some statistic. The level of confidence
(95% in our example) is the statistical probability that the
statistic that we are considering lies in the interval. So, the
interpretation of the 95% confidence interval of
[6.8847,7.0493] would be �There is a 95% chance that the
true average of rolling the dice 100 times lies between
6.8847 and 7.0493.� Most statistical and simulation pack-
ages automatically calculate confidence intervals for you.
Even Microsoft Excel has a function to calculate confi-
dence intervals.

So in our example, we want to run 30 iterations so that
we can have good confidence intervals for each of our sta-
tistics. (Although we will not get into the topic in this pa-
per, one should run 30 iterations (or more) if you can in
order to get good confidence intervals.) Table 10 shows
the confidence intervals for each of our statistics.

Table 10: Confidence Intervals after 30 Iterations

Statistic Value
CI

 Lower
CI

 Upper
Revenue $1,649 $1,627 $1,670

Lost Revenue $155 $135 $176
Lost Customers 12.83 10.99 14.67

MenuBoard Utilization 0.97 0.96 0.98
Kitchen Utilization 0.73 0.72 0.74

OrderWindow Utilization 0.99 0.99 0.99
MenuBoard Waiting in Line 0.95 0.89 1.01

Kitchen Waiting in Line 0.12 0.11 0.13
OrderWindow Waiting in Line 1.23 1.18 1.28

Time In System 5.31 5.18 5.44

14
These statistics are very interesting on several fronts.
First, could improve our revenue every day at lunch 9.4%
if we could capture the lost revenue. We need to find a
way to lower the number of lost customers from the 12.83
that we have seen in the current system. We also know
that both the Menu Board and Order Window are highly
utilized, which means that lines are forming in front of
those two resources. We would also want to look at reduc-
ing the car�s time in the system. The minimum average
theoretical time for a car would be 70 seconds at the Menu
Board and 70 seconds at the Order Window, which is 140
seconds, or 2.33 minutes. So, about 3 minutes of the car�s
time is simply waiting. A key customer satisfaction metric
is to minimize the amount of time they have to wait in line.

6 FINDING WAYS TO IMPROVE A SYSTEM

What we have accomplished to this point is the analysis of
a system that exists. We have learned that we can improve
revenue and that we have very busy resources. So let us
run some alternative scenarios to determine what (if any)
improvements we should make.

6.1 Scenario 1: No Lines

Scenario 1 is based on the �eliminating inventory� thought.
If we want to get the customer out of the system quicker,
we would simply need to eliminate some (or all) of the
line. We�ll take drastic action and eliminate all waiting in
the system. If a car cannot pull right up to the Menu
Board, then it will leave. If the Order Window is not
available after the order is placed, then the car waits at the
Menu Board until the Order Window is free. This should
greatly lower the Time in System statistic. Some would say
that this would be the best way to run the drive-through
line since the system is balanced. The arrival rate is 1
every 70 seconds, the Menu Board rate is 1 every 70 sec-
onds, and the Order Window rate is 1 every 70 seconds.
Some would say that this is a perfect production line.

In order to accomplish this in the model, we simply
change 2 variables, MenuBoardLineSize and OrderPicku-
pLineSize, and set them both to a value of 1. Then we run
the model for 30 iterations and get the statistics in Table 11.

Well, the strategy worked the way we expected it to
work. We reduced the Time in System statistic by 37.7%.
Now the cars are whipping through the drive-through. But
there is a catch. We�re losing 5.5 times the number of cus-
tomers that we were losing before! We�ve lowered our
revenues by 40%! This would hardly be considered a vi-
able alternative!

Ingalls

Table 11: Scenario 1 Statistics

Statistic Value
CI

Lower
CI

Upper
Revenue $989 $968 $1,010

Lost Revenue $851 $827 $875
Lost Customers 70.43 68.87 71.99

MenuBoard Utilization 0.68 0.67 0.69
Kitchen Utilization 0.43 0.42 0.44

OrderWindow Utilization 0.84 0.83 0.85
MenuBoard Waiting in Line 0.00 0.00 0.00

Kitchen Waiting in Line 0.00 0.00 0.00
OrderWindow Waiting in Line 0.00 0.00 0.00

Time In System 3.31 3.28 3.34

What was it about eliminating the lines that caused

such a problem? Without the lines, we caused excessive
blocking in the system. Blocking occurs when something
in the system will not allow a resource to become available
even though its service is finished. Throughout this sce-
nario, the car at the MenuBoard was finished ordering, but
the car could not move forward because the Order Window
was still occupied. In this scenario (or in any balanced sys-
tem with random variation and no queuing space), each car
at the MenuBoard has a 50% chance of being blocked by
the OrderWindow. This can be reduced by adding queues
between the resources.

In industrial problems, it is often difficult to determine
where and why blocking occurs. That is why there is so
much emphasis on eliminating and/or controlling the bottle-
neck of the system. It is likely that the bottleneck is in large
part responsible for blocking in other parts of the system.

6.2 Scenario 2: Longer Lines at the Menu Board

Well, since Scenario 1 did not work very well, let us try
another. Let us rearrange the parking lot so that we can get
room for 6 cars waiting in line for the Menu Board (includ-
ing the car whose order is being taken). We will keep the
line for 3 cars for the Order Pickup Window. The results
for Scenario 2 is shown in Table 12.

Well, we did add revenue ($51 per day) and decrease
the number of lost customers, that is good, but now the av-
erage customer waits an additional minute to get the order,
which is bad. You can see why this occurs. With the
Menu Board line being longer, more cars can wait for the
menu board and they do not become lost customers in this
scenario, where they would have become lost customers in
the original model. The price they pay for having room to
get in line is that the line is longer, and so the time through
the system increases. This is another typical trade-off.
Queues are good because they allow more throughput in a
system, but they add cycle time for the system.

15
Table 12: Scenario 2 Statistics

Statistic Value
CI

Lower
CI

Upper
Revenue $1,690 $1,665 $1,715

Lost Revenue $99 $77 $122
Lost Customers 8.50 6.73 10.27

MenuBoard Utilization 0.99 0.99 0.99
Kitchen Utilization 0.73 0.72 0.74

OrderWindow Utilization 0.99 0.99 0.99
MenuBoard Waiting in Line 3.07 2.90 3.24

Kitchen Waiting in Line 0.13 0.12 0.14
OrderWindow Waiting in Line 1.28 1.23 1.33

Time In System 6.33 6.14 6.52

6.3 Scenario 3: Improved Service Times

Let us try one more scenario. This scenario has found new
technology that will cut the average service time at the
Menu Board and the Order Window by 20% from 70 sec-
onds to 56 seconds. To implement this technology, it
would take $30,000 at each store and must be paid for by
increased revenue at the store. This is the only thing that
changes from the original model. The results are shown in
Table 13.

Table 13: Scenario 3 Statistics

Statistic Value
CI

Lower
CI

Upper
Revenue $1,822 $1,794 $1,850

Lost Revenue $10 $5 $15
Lost Customers 0.70 0.33 1.07

MenuBoard Utilization 0.81 0.80 0.82
Kitchen Utilization 0.79 0.78 0.80

OrderWindow Utilization 0.97 0.97 0.97
MenuBoard Waiting in Line 0.26 0.23 0.29

Kitchen Waiting in Line 0.23 0.21 0.25
OrderWindow Waiting in Line 0.85 0.82 0.88

Time In System 3.42 3.36 3.48

Well, now we see some improvement! The Time in

System has dropped from 5.31 minutes to 3.42 minutes.
We have virtually eliminated any lost customers, and have
increased revenue by $174 per lunch shift. We would pay
back the $30,000 for the implementation of the new tech-
nology in 172 days or less than 6 months! It is well worth
the investment and you are a hero for figuring it out!

Why did this scenario show such improvement? It
was because our resources were not so highly loaded. The
Menu Board utilization dropped from 97% to 81%, and so

Ingalls

the line for the Menu Board would be much smaller (it
dropped by 72%). We would have seen a similar drop in
the Order Window utilization, but now the Order Window
is often being blocked by the Kitchen.

6.4 Generating Other Scenarios

This simulation and any other simulation can be used to
evaluate many different scenarios if the person creating the
model allows some flexibility in the model structure. One
also has to consider the amount of time it takes to run a
new scenario. In a large scale simulation, to run and
evaluate a new scenario could take several days.

7 WHAT HAVE WE LEARNED?

This exercise points out several things about simulation in
general. First, simulation can mimic the dynamic behavior
of a system. That is what it is built to do. Regardless of
how complex a system may be, it is likely that a simulation
expert will be able to create a model that will evaluate it.
However, the more complex a system is, the longer it takes
to model, run and evaluate. But do not be discouraged,
there are very good simulation people available to model
large systems.

Second, you (or the person analyzing the system) must
have a good understanding of simulation statistics. It is
important during the creation of the model so that input
distributions are used properly. It is important during the
analysis of the output statistics so that the output is not
misinterpreted. Mistakes with either the inputs or the out-
puts will cause the simulation analysis to be invalid.

Third, to analyze a system, simulation is used to evalu-
ate different scenarios. It does not choose the best scenario
for you. This may seem to be a problem, but most
managers have not shortage of scenarios to evaluate. The
trade off for this is that you can analyze the dynamics of
the system and not just the average behavior.

Fourth, the scenarios that you do choose are generated
by you and not the system. This is where familiarity with
the system under study and a familiarity with system dy-
namics concepts are very valuable.

This is, of course, simply an introduction. Through
this conference and interaction with simulation profession-
als, you can get a deeper understanding of simulation and
what it can do for you.

REFERENCES

Banks, J., J.S. Carson II, B.L. Nelson, and D.M. Nicol,
2000. Discrete Event System Simulation, 3rd Ed.,
Prentice-Hall.

Law, A.M. and W.D. Kelton, 2000. Simulation Modeling
and Analysis, 3rd Ed., McGraw-Hill.
16
Kelton, W.D., R. Sadowski, D. Sadowski, 2001, Simula-
tion with Arena, 2nd Edition, McGraw-Hill.

Ingalls, R.G, C. Kasales, 1999. CSCAT: Compaq Supply
Chain Analysis Tool. Proceedings of the 1999 Winter
Simulation Conference. ed. P.A. Farrington, H.B.
Nembhard, D.T. Sturrock and G.W. Evans, 1201-
1206. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers.

Ingalls, R.G., 1998. The Value of Simulation in Modeling
Supply Chains. Proceedings of the 1998 Winter Simu-
lation Conference. ed. D.J. Medeiros, E.F. Watson,
J.S. Carson, and M.S. Manivannan, 861-864. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers.

Ingalls, R.G., C. Eckersley, 1992. Simulation Issues in
Electronics Manufacturing. Proceedings of the 1992
Winter Simulation Conference. ed. J.J. Swain, D.
Goldsman, R.C. Crain and J.R. Wilson, 1371-1375.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Shannon, R.E., 1975. Systems Simulation � The Art and
Science, Prentice-Hall.

AUTHOR BIOGRAPHY

RICKI G. INGALLS is Associate Professor and Director
of the Supply Chain Design Lab in the School of Industrial
Engineering and Management at Oklahoma State Univer-
sity. He joined OSU after 16 years in industry with Com-
paq, SEMATECH, General Electric and Motorola. He has
a B.S. in Mathematics from East Texas Baptist College
(1982), a M.S. in Industrial Engineering from Texas A&M
University (1984) and a Ph.D. in Management Science
from the University of Texas at Austin (1999). His re-
search interests include the supply chain design issues and
the development and application of qualitative discrete-
event simulation. He is a member of IIE. His email ad-
dress is <ingalls@okstate.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

