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ABSTRACT 

Simulation is a powerful tool if understood and used prop-
erly.  This introduction to simulation tutorial is designed to 
teach the basics of simulation, including structure, func-
tion, data generated, and its proper use.  The introduction 
starts with a definition of simulation, goes through a talk 
about what makes up a simulation, how the simulation ac-
tually works, and how to handle data generated by the 
simulation.  Throughout the paper, there is discussion on 
issues concerning the use of simulation in industry. 

1 DEFINITION OF SIMULATION 

Simulation, according to Robert E. Shannon (1975), is �the 
process of designing a model of a real system and conduct-
ing experiments with this model for the purpose either of 
understanding the behavior of the system or of evaluating 
various strategies (within the limits imposed by a criterion or 
set of criteria) for the operation of the system.�  According 
to this definition, a simulation can be a discrete-event simu-
lation, as we will discuss in this paper.  Many people who 
attend this conference will be familiar with the term �MRP 
simulation.�  This is a model (actually a copy) of the real 
system (the MRP system of record) which experiments (or 
scenarios) can be run to evaluate various strategies (such as 
how to respond to a drastic change in the forecast).  Al-
though we do not teach courses in our curriculum on �MRP 
simulation,� a MRP simulation is no less a simulation than 
the type of simulation we will discuss in this tutorial. 

The difference, and the power, of discrete-event simu-
lation is the ability to mimic the dynamics of a real system.  
Many models, including high-powered optimization mod-
els, cannot take into account the dynamics of a real system.  
It is the ability to mimic the dynamics of the real system 
that gives discrete-event simulation its structure, its func-
tion, and its unique way to analyze results.  So, to take lib-
erties with one of my mentors in this field, we will say that 
simulation is the process of designing a dynamic model of 
an actual dynamic system for the purpose either of under-
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standing the behavior of the system or of evaluating vari-
ous strategies (within the limits imposed by a criterion or 
set of criteria) for the operation of the system.   

Throughout this paper, we will be referencing ideas 
and thoughts from Shannon (1975), Law and Kelton 
(2000), Banks et al. (2000), Kelton, Sadowski, and 
Sadowski (2001), Ingalls and Kasales (1999), Ingalls 
(1998), and Ingalls and Eckersley (1992). 

2 A DRIVE-THROUGH EXAMPLE 

In order to give us a reference model for discussion pur-
poses, let us consider the example of a drive-through win-
dow at a fast food restaurant whose logic is shown in Fig-
ure 1.  As a car enters from the street, the driver, who we 
will call Fred, decides whether or not to get in line.  If Fred 
decides to leave the restaurant, he leaves as a dissatisfied 
customer.  One of the great things about a simulation is 
that it is easy to track these type of customers.  In most 
real-world systems, it is usually difficult to track customers 
who leave dissatisfied. 

If Fred decides to get in line, then he waits until the 
menu board (with the speaker no normal human being can 
understand) is available.  At that time, Fred gives the order 
to the order taker.   

After the order is taken, then two things occur simul-
taneously.  (1) Fred moves forward if there is room.  If 
there is no room, then he has to wait at the menu board un-
til there is room to move forward.  As soon as there is 
room, he moves so the next customer can order.  (2) The 
order is sent electronically back to the kitchen where it is 
prepared as soon as the cook is available. 

As soon as Fred reaches the pickup window, then he 
pays and picks up his food, if it is ready.  If the food is not 
ready, then Fred has to wait until his order is prepared.  In 
this drive-through, Fred never hears, �Please pull forward 
and we will bring your order out to you.�  That is one of 
the reasons that Fred and I both like this place. 

As soon as Fred parts with his money and gets his food, 
then he leaves the pickup window a satisfied customer. 
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3 DISCRETE-EVENT SIMULATION 

STRUCTURE 

Although there are various flavors and paradigms in dis-
crete-event simulation, there has evolved a basic structure 
that is used by most simulation packages.  Regardless of 
how complex a discrete-event simulation package may be, 
it is likely to contain the basic components that we will de-
scribe in this section. 

The structural components of a discrete-event simula-
tion include entities, activities and events, resources, 
global variables, a random number generator, a calendar, 
system state variables and statistics collectors.   

3.1 Entities 

The best way to understand the function of an entity is un-
derstand that entities cause changes in the state of the 
simulation.  Without entities, nothing would happen in a 
simulation.  As a matter of fact, one stopping condition for 
a simulation model is the condition where there are no ac-
tive entities in the system. 

Entities have attributes.  Attributes are characteristics 
of a given entity that are unique to that entity.  Attributes 
are critical to the understanding of the performance and 
function of entities in the simulation. 

In our example, the primary entity type is the cars 
coming to the restaurant.  Also, there is a second entity 
type created when the order is taken, and that is the order 
itself.  It has a relatively short life in the simulation, lasting 
only from the time the order is taken until it meets back up 
with the car at the pickup window. 

We also have two attributes in our simulation.  The 
first one is the time of day that the car enters the restaurant 
parking lot.  We will call this attribute StartTime.  The sec-
ond is the value of the order.  We will call this attribute 
OrderValue.  Both of these are unique to the customers 
who are represented in the simulation. 

Another example of an entity is the part that is flowing 
through a factory.  Entities that represent parts in a factory 
could be created randomly or according to a schedule.  A 
common attribute would be the time that the part started in 
the factory.  Each part would have a unique time that it 
started in the factory.  It may also have other attributes such 
as priority, the type of part, and cost incurred to produce the 
part.  In a normal factory simulation that is tracking each in-
dividual part, it would not be unusual to have thousands of 
entities active in the simulation simultaneously. 

Entities, however, do not need to be parts in a manu-
facturing facility or cars in a drive-through.  It is also a 
common practice to use entities to represent the flow of in-
formation.  This information could be a customer order, an 
email alert, a packet in a computer network, etc.  It can be 
anything non-physical that causes a change in the status of 
system.  These entities also have attributes.  For example, 
8

Figure 1: Drive-Through Example Logic Flow 
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an entity representing a packet in a computer network 
would have attributes such as packet size, packet destina-
tion, the time that the packet would time-out, etc. 

3.2 Activities and Events 

Activities are processes and logic in the simulation.  Events 
are conditions that occur at a point in time which cause a 
change in the state of the system.  An entity interacts with 
activities.  Entities interacting with activities create events. 

There are three major types of activities in a simula-
tion: delays, queues and logic.   The delay activity is when 
the entity is delayed for a definite period of time.  In our 
example, there are three delays.  The first is when Fred is 
ordering at the menu board, the second is when the order is 
being cooked in the kitchen, and the third is Fred picks up 
his order at the pickup window.  In general, the length of 
time for a delay is either constant or is randomly generated.  
At the point  that the entity starts the delay, an event oc-
curs.  This event schedules the entity on the calendar 
(which we will get to later).  If the delay is for d time units, 
then the entity is scheduled to complete the delay d time 
units after the current time of the simulation.  At that time, 
the delay expires and another event is generated. 

Queues are places in the simulation were entities wait 
for an unspecified period of time.  Entities can be waiting 
on resources (which we will get to later) to be available or 
for a given system condition to occur.  Queues are most 
commonly used for waiting in line for a resource or storing 
material that will be taken out of the queue when the right 
conditions exist.  In our example, there are three queues, 
the first is the part of the line that waits on the menu board 
to be available, the second is the order waiting on the 
kitchen becoming available, and the third is the part of the 
car line waiting on the order pickup window to become 
available.  All three of these queues are waiting for re-
sources to be available. 

Logic activities simply allow the entity to effect the 
state of the system through the manipulation of state vari-
ables (which we will get to later) or decision logic.  The 
first of several logic activities in our example is the deci-
sion whether or not to get in the order line in the first place.  
This decision is effected by the length of the line in front of 
the menu board. 

3.3 Resources 

In a simulation, resources represents anything that has a 
restricted (or constrained) capacity.  Common examples of 
resources include workers, machines, nodes in a communi-
cation network, traffic intersections, etc.  In our example, 
we have three different resources.  The first resource is the 
menu board, which only one car can use at a time.  The 
menu board is utilized from the time a car moves in front 
of it until the car moves away from it.  In our model, the 
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car does not automatically move away from the menu 
board after the order has been placed.  There must also be 
room to move forward.  So, this resource is occupied for 
both productive time (when the order is being placed) and 
unproductive time (when there is not enough room to pull 
the car forward).  The second resource is the kitchen.  It is 
utilized from the time an order arrives until the order is fin-
ished cooking.  The third resource is the order pickup win-
dow.  This resource can also be unproductive.  That occurs 
when the car has arrived at the window, but the order is not 
ready from the kitchen yet.  In the course of the simulation, 
we can track the key statistics of each of these resources, 
including utilization and costs. 

It should also be noted that very complex resources 
can be utilized in a simulation.  In a manufacturing simula-
tion, conveyors are a very complex resource that many 
simulation packages offer.  Also, transportation options 
such as trucks are offered as resources.  A third complex 
resource is a vat or container that has a (continuous) flow 
of material both in an out of the resource.  Depending on 
the target market of the simulation package, many complex 
resources are available to use. 

3.4 Global Variables 

If you are a programmer, then the idea of having global 
variables is nothing new.  A global variable is a variable 
that is available to the entire model at all times.  A global 
variable can track just about anything that is of interest to the 
entire simulation.  In our model we have four global vari-
ables, two of which help us configure the problem and two 
of which collect revenue information.  The two variables 
that help us configure the problem are the length of the line 
allowed at the restaurant.  The first is MenuBoardLineSize, 
which gives the maximum line size for the menu board, in-
cluding the car who is at the menu board.  The second is Or-
derPickupLineSize, which gives the maximum line size after 
the menu board, including the car at the pickup window.  By 
changes these two variables, the simulator can analyze the 
effectiveness of different line configurations. 

The two variables that help use collect revenue infor-
mation are Revenue and LostRevenue.  Revenue is the total 
amount of revenue collected in the simulation, and LostRe-
venue is the total amount of revenue lost because the cus-
tomer thought that the line was too long. 

3.5 Random Number Generator 

Every simulation package has a random number generator.  
The random number generator (technically called a 
pseudo-random number generator) is a software routine 
that generates a random number between 0 and 1 that is 
used in sampling random distributions.  For example, let us 
assume that you have determined that a given process de-
lay is uniformly distributed between 10 minutes and 20 
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minutes.  Then every time an entity went through that 
process, the random number generator would a generate a 
number between 0 and 1 and evaluate the uniform distribu-
tion formula that has a minimum of 10 and a maximum of 
20.  As an example, let us assume that the generated ran-
dom number is 0.7312, then the delay would be 
10+(0.7312)*(20-10) = 17.312.  So the entity would delay 
for 17.312 time units in the simulation.  Everything that is 
random in the simulation uses the random number genera-
tor as an input to determine values. 

In our example model, we will use a physical random 
number generator, two dice.  The probability distribution 
for the roll of two dice is seen in Figure 2.  In our model, 
the roll of two dice becomes the basis for every random de-
lay and randomly assigned value in the model.  We have 
five randomly assigned delays and values in the model, (1) 
the time between arrivals of cars to the restaurant, (2) the 
value of the order for the car, (3) the delay at the menu 
board, (4) the delay at the kitchen, and (5) the delay at the 
order pickup window.  The formulas for these random val-
ues are as follows: 

 
1. Time between arrivals of cars to the restaurant = 

(Dice * 10) seconds 
2. The value of the order for the car = (Dice * 2) � 2 

dollars. 
3. The delay at the menu board = (Dice * 10) sec-

onds. 
4. The delay at the kitchen = (Dice * 8) seconds. 
5. The delay at the order pickup window = (Dice * 

10) seconds. 

3.6 The Calendar 

The calendar for the simulation is a list of events that are 
scheduled to occur in the future.  In every simulation, there 
is only one calendar of future events and it is ordered by the 
earliest scheduled time first.  In a later example, it will be-
come more clear how the calendar works and why it is im-
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Figure 2: Distribution of Rolling Two Dice 
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portant in the simulation.  At this point, just remember that, 
at any given point in time, every event that has already been 
scheduled to occur in the future is held on the calendar. 

3.7 System State Variables 

Depending on the simulation package, there can be several 
system state variables, but the one system state variable 
that every simulation package has is the current time of the 
simulation.  In order to keep from offending any simulation 
vendors, we will choose a different name for our simula-
tion time variable.  Our name of the current time of the 
simulation is CurrentTime.  This variable is updated every 
time an entity is taken from the calendar. 

3.8 Statistics Collectors 

Statistics collectors are a part of the simulation that collects 
statistics on certain states (such as the state of a resources), 
or the value of global variables, or certain performance sta-
tistics based on attributes of the entity.  There are three dif-
ferent types of statistics that are collected, counts, time-
persistent, and tallies.  Counts are very straightforward, 
they count.  In our model, we count the number of Lost 
Customers because the line was too long.  Time-persistent 
statistical collectors give the time-weighted values of dif-
ferent variables in the simulation.  A common variable to 
track is the utilization of a resource.  In our model, we col-
lect 6 different time-persistent statistics, which are the 
number of busy resources of the three resources that we 
have in the model and, the number of entities in each of the 
three queues that serve the three resources.  Tally statistics 
are collected one observation at a time without regard to 
the amount of time between observations.  In our model, 
we collect a very common statistic, which is the amount of 
time that an entity stays in the system.  Since we assign the 
value of StartTime to the attribute of the entity when it en-
ters the restaurant parking lot, then the value CurrentTime 
�   StartTime is the total amount of time in the system.  If 
we are to improve this system, we would want to minimize 
this statistic without hurting the revenue too much. 

4 A WALK THROUGH THESE CONCEPTS 

What we are going to do now is walk through a couple of 
steps in our simulation model.  As you will see, we will 
track the state of the system, the entities on the calendar, 
the values of attributes and state variables, and the statistics 
we are collecting. 

4.1 The State of The System at Noon 

Figure 3 shows the state of the system at noon during a 
lunch rush at our fast food restaurant.  To help us design 
the line at the restaurant, we have set two of our global 
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variables, MenuBoardLineSize and OrderPickupLineSize, 
both equal to 3.  As you can see, that is the total capacity of 
the line at the restaurant.  The state of our system at noon is 
as follows:  
 

• Car 1 (the Corvette) is at the Order Pickup Win-
dow receiving its order.   

• Cars 2 (the convertible VW Bug) and 3 (the mi-
nivan) are in line waiting for the Order Pickup 
Window. 

• Car 4 (the 2-seat convertible) is ordering at the 
Menu Board. 

• Cars 5 (the Police Car) and 6 (the Porsche) are 
waiting in line for the Menu Board. 

• The Order for Car 2 is being cooked in the 
Kitchen. 

• The Order for Car 3 is waiting in line for the 
Kitchen. 

• Car 7 (of undetermined type) is scheduled to ar-
rive at the restaurant in the future. 

 
The calendar of this system is made up of the entities 

that are scheduled to complete an activity with a specific 
time duration.  These entities are Car 1, Car 4, the Order 
for Car 2, and Car 7.  The calendar for these four entities is 
shown in Table 1. 

 
Table 1: The Calendar at Noon 

Entity Event Event Time 
Car(7) Arrive at Restaurant 12:00:20 PM 
Car(1) Order Pickup Window Complete 12:00:40 PM 

Ordr(2) Kitchen Complete 12:00:56 PM 
Car(4) Menu Board Complete 12:01:10 PM 

 
We also know the values of the attributes of the enti-

ties in the system.  As you recall, we have two attributes, 
StartTime and OrderValue.  The values for those attributes 
for each of the entities in the system is outlined in Table 2. 

 
Table 2: Entity Attributes at Noon 

Entity StartTime OrderValue 
Car(1) 11:54:20 AM $   10 
Car(2) 11:55:50 AM $    6 
Car(3) 11:57:10 AM $    4 
Car(4) 11:58:20 AM $   14 
Car(5) 11:59:30 AM $   14 
Car(6) 12:00:00 PM $    10 
Car(7) --- --- 

 
Other important information concerns our system state 

variable, CurrentTime, which is set to 12:00:00 PM. 
11
Figure 3: State of the System at Noon 
 

The statistics that we are tracking in the simulation 
have the values listed in Table 3 as of noon.  The 
�Time/Obs� column give the amount of time that we have 
been collecting the statistic (which is since 11:00 AM) for 
time-persistent statistics or the number of observations for 
tally statistics. 

 
Table 3: Statistics at Noon 

Statistic Value Time/Obs 
Revenue  $             504  

Lost Revenue  $               74  
MenuBoard Utilization 0.9984 1:00:00 

Kitchen Utilization 0.7006 1:00:00 
OrderWindow Utilization 0.9678 1:00:00 

MenuBoard Waiting in Line 1.2306 1:00:00 
Kitchen Waiting in Line 0.0822 1:00:00 

OrderWindow Waiting in Line 1.0311 1:00:00 
Time In System 5.5969 44 

4.2 The State of The System at 12:00:20 PM 

Here is where we get one of the key ideas about a discrete-
event simulation.  A discrete-event simulation moves the 
current time of the simulation through events and their tim-
ing instead of distinct time intervals.  If we had distinct time 
intervals of 1 second, we would go through 20 time intervals 
before anything would happen.  So instead of going through 
20 time intervals with nothing happening, we go straight to 
the next scheduled event, which is the first event on the cal-
endar, which is scheduled to occur at 12:00:20 PM.  That 
event is the arrival of Car 7 to the restaurant. 

When Car 7 arrives at the restaurant, the first activity in 
the simulation is to set its attributes.  Obviously, StartTime is 
set to 12:00:20 PM, and the OrderValue is set using the for-
mula (Dice * 2) � 2 after we roll the dice.  The roll of the 
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dice gives us a 9, so the value of the order is $16.  After the 
attributes are assigned, Car 7 makes a decision whether or 
not to get in line to order.  Since we have set the 
MenuBoardLineSize = 3 and there are 3 cars in the line, Car 
7 leaves as a dissatisfied customer.  When Car 7 leaves, we 
want to capture some important information, namely how 
much revenue have we lost because of dissatisfied custom-
ers, which is tracked in our global variable RevenueLost.  
RevenueLost is incremented from $74 to $90. 

Now that Car 7 has arrived at (and incidentally, left) 
the restaurant, we also need to schedule the arrival of the 
next car (Car 8) to the restaurant.  The time between arri-
vals to the restaurant is set using the formula (Dice * 10) in 
seconds.  So, we roll the dice and get a 7.  Car 8 will arrive 
70 seconds in the future at time 12:01:30 PM.  Car 8 is 
now put on the calendar with the event �Arrive at Restau-
rant� that will occur at the event time of 12:01:30 PM. 

So what has changed?  Car 7 has arrived and left and 
Car 8 is schedule to arrive in the future.  We have also up-
dated RevenueLost.  We have a new calendar, which is 
shown in Table 4. 

 
Table 4: The Calendar at 12:00:20 PM 

Entity Event Event Time 
Car(1) Order Pickup Window Complete 12:00:40 PM 

Order(2) Kitchen Complete 12:00:56 PM 
Car(4) Menu Board Complete 12:01:10 PM 
Car(8) Arrive at Restaurant 12:01:30 PM 

 
The statistics can be updated at this point as well.  

(However, most simulation packages only update statistics 
when the value that is being tracked changes).  We have 
two types of statistics, the counting of Revenue and Reve-
nueLost, the resource utilization statistics and the queue 
length statistics.  The counting statistics are simply the val-
ues of the variables we are tracking, and RevenueLost has 
gone to $90.  The other statistics are time-dependent statis-
tics that are time-weighted averages of a given value.  As 
an example, let us calculate the new value of the average 
number of cars waiting in line for the menu board.  At 
noon, the simulation had been running for one hour and the 
average value was 1.2306.  From noon to 12:00:20 PM, the 
number of cars waiting in line for the menu board has been 
2.  So the new time-weighted average is ((1.2306 * 
1:00:00) + (2 * 0:00:20)) / 1:00:20 = 1.234851.  If we were 
to convert this formula to seconds, it would be ((1.2306 * 
3600) + (2 * 20)) / 3620 = 1.234851.  All time-dependent 
statistics are calculated in this way.  The value for all of the 
statistics at time 12:00:20 PM is in Table 5. 
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Table 5: Statistics at 12:00:20 PM 
Statistic Value Time/Obs 
Revenue $             504  

Lost Revenue $               90  
MenuBoard Utilization 0.998409 1:00:20 

Kitchen Utilization 0.702254 1:00:20 
OrderWindow Utilization 0.967978 1:00:20 

MenuBoard Waiting in Line 1.234851 1:00:20 
Kitchen Waiting in Line 0.087271 1:00:20 

OrderWindow Waiting in Line 1.036453 1:00:20 
Time In System 5.5969 44 

4.3 The State of The System at 12:00:40 PM 

We want to take one more step in the simulation because 
we actually see the line move!  Looking at Table 4, we 
know that the next scheduled event is that Car 1 finishes its 
time at the Order Pickup Window at time 12:00:40 PM.  
The first thing to do is set the CurrentTime to 12:00:40 
PM.  When Car 1 finishes its time at the Order Pickup 
Window, we know that Car 1 has paid for its order, and so 
Revenue must be increase by the OrderValue attribute of 
Car 1.  So the value Revenue is increased from $504 to 
$514.  We also need to calculate a new average Time in 
System statistic.  The time in the system for Car 1 is the 
CurrentTime � StartTime, which would be 12:00:40 PM � 
11:54:20 AM, which is 6 minutes and 20 seconds.  Since 
we are collecting Time in System in minutes, the new aver-
age Time in System is ((5.5969 * 44) + 6.3333) / 45 = 
5.613265.  The other thing that occurs is that the Order 
Pickup Window resource is no longer utilized.  Since the 
Order Pickup Window resources is available for other cars, 
the simulation will allocate the Order Pickup Window re-
source to the car that is first in the line that is waiting to 
use the Order Pickup Window.  Our Car 2 (the convertible 

Figure 4: The State of the System at 12:00:40 PM 
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VW Bug) is first in line for the Order Pickup Window, so 
Car 2 is allocated the Order Pickup Window resource.  Can 
Car 2 start picking up its order?  No, it cannot.  The reason 
is that the order for Car 2 is still in the Kitchen.  So even 
though the Order Pickup Window resource is occupied, no 
productive work is going on.  At the next step in the simu-
lation, the order for Car 2 will complete in the Kitchen and 
Car 2 will be able to start the process of picking up its or-
der.  But for now, it just has to wait! 

Since Car 2 has moved forward, Car 3 moves to first 
place in the line waiting for the Order Pickup Window re-
source.  Car 4 is still occupies the Menu Board resource 
and is still in the process of giving its order.  This process 
is scheduled to end at time 12:01:10 PM (See Table 4).  
Cars 5 and 6 do no change their position in the line and Car 
8 is still scheduled to arrive at the restaurant at time 
12:01:30 PM.  The new state of the system is shown in 
Figure 4. 

We also update our statistics at this time.  As we de-
scribed in at time 12:00:20 PM,  we look at what has hap-
pened since the last time we updated the statistics in order 
to determine the new values for the statistics.  So, what 
number will we use to calculate the new average number of 
cars waiting for the Order Window, 2 (the number in line at 
12:00:20) or 1 (the number in line now)?  The answer is 2 
because from time 12:00:20 PM to 12:00:40 PM there 
were 2 cars waiting in line.  The new values for the statis-
tics are shown in Table 6. 

 
Table 6: Statistics at 12:00:40 PM 
Statistic Value Time/Obs 
Revenue $             514  

Lost Revenue $               90  
MenuBoard Utilization 0.998418 1:00:40 

Kitchen Utilization 0.703890 1:00:40 
OrderWindow Utilization 0.968154 1:00:40 

MenuBoard Waiting in Line 1.239055 1:00:40 
Kitchen Waiting in Line 0.092286 1:00:40 

OrderWindow Waiting in Line 1.041747 1:00:40 
Time in System 5.613265 45 

5 INTERPRETING OUTPUT STATISTICS 

Let us assume that our model has run from 11:00 AM to 
2:00 PM.  At 2:00 PM, we stop the simulation and we have 
all of our statistics calculated.  The �answer� for the simu-
lation is in Table 7. 

But what does this data really telling us?  Is it saying 
that every day, from 11:00 AM to 2:00 PM, the revenue for 
the restaurant will be $1,638?  Is it saying that every day, 
from 11:00 AM to 2:00 PM, the average amount of time 
that a car will be in line is 5.0487 minutes?  What is this 
really saying? 
13
Table 7: Statistics at End of Simulation 
Statistic Value Time/Obs 
Revenue  $ 1,638   

Lost Revenue  $    170   
MenuBoard Utilization 0.9724 3:00:00 

Kitchen Utilization 0.7250 3:00:00 
OrderWindow Utilization 0.9846 3:00:00 

MenuBoard Waiting in Line 0.8785 3:00:00 
Kitchen Waiting in Line 0.133 3:00:00 

OrderWindow Waiting in Line 1.1567 3:00:00 
Time In System 5.0487 140 

 
The answer to that question is, �These numbers gives 

us a random answer to the performance of the system.�  It 
is a random answer because there are random inputs to the 
system that give us this answer.  So how can we be sure 
that the answer is any good? 

The answer generated by only one run is not really an 
answer at all.  To make the point, let us take the following 
100 rolls of the dice.  You would think that 100 rolls of the 
dice would tell us the average.  But if you take the 100 
rolls in Table 8, the average is only 6.72.  Is that close 
enough?  Would you be willing to bet that the next 100 
rolls would come up with an average of 6.72.  Probably 
not.  (If you are, please contact me as soon as possible on 
any other wagers you may be considering.) 

 
Table 8: 100 Rolls of the Dice 

6 5 8 6 5 4 10 6 7 8 
5 9 8 7 8 6 3 8 7 6 
9 9 8 8 6 8 9 7 10 5 
2 10 11 8 6 8 7 3 8 8 
4 6 8 11 2 4 8 9 8 5 
9 3 8 7 2 3 9 10 7 7 
3 9 5 7 7 7 9 4 8 7 
4 10 7 4 10 8 4 8 9 7 
3 6 6 3 6 3 10 9 7 4 
6 8 5 9 12 6 8 6 4 2 

Average: 6.72 
 
So what is the answer to this problem.  The answer is 

that if we really want to estimate the average value of the 
roll of the dice if we roll the dice 100 times, we need to run 
the simulation more times.  Each time that we run a simu-
lation is called an iteration.  So, as an example, let us say 
that we have run our dice throwing simulation for 30 itera-
tions and Table 9 has the average values for each of those 
iterations. 
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Table 9: 30 Iterations of Throwing Dice 100 Times 
6.72 6.95 6.78 7.14 6.62 6.81
6.75 7.17 6.62 7.3 6.92 7.04
6.79 7.13 7.17 7.12 6.82 7.29
7.13 7.26 7.19 6.52 6.8 7.3
6.95 6.96 6.78 7.17 7.13 6.68

Average: 6.967 
Standard Deviation: 0.22992 

95% Confidence Interval: [6.8847,7.0493] 
 
If we are simply trying to estimate the average of 100 

rolls of the dice, we do not need to worry about the stan-
dard deviation for each iteration.  However, we do need to 
worry about the standard deviation of the averages from 
each iteration.  As is shown in Table 9, the average of the 
averages (so to speak) is 6.967.  The standard deviation of 
those 30 averages is 0.22992.  With that information, we 
can calculate a confidence interval. 

A confidence interval is a statistical measure where we 
want to bound some statistic.  The level of confidence 
(95% in our example) is the statistical probability that the 
statistic that we are considering lies in the interval.  So, the 
interpretation of the 95% confidence interval of 
[6.8847,7.0493] would be �There is a 95% chance that the 
true average of rolling the dice 100 times lies between 
6.8847 and 7.0493.�  Most statistical and simulation pack-
ages automatically calculate confidence intervals for you.  
Even Microsoft Excel has a function to calculate confi-
dence intervals. 

So in our example, we want to run 30 iterations so that 
we can have good confidence intervals for each of our sta-
tistics.  (Although we will not get into the topic in this pa-
per, one should run 30 iterations (or more) if you can in 
order to get good confidence intervals.)  Table 10 shows 
the confidence intervals for each of our statistics. 

 
Table 10: Confidence Intervals after 30 Iterations 

Statistic Value 
CI 

 Lower 
CI 

 Upper 
Revenue  $1,649   $1,627   $1,670 

Lost Revenue  $155   $135   $176  
Lost Customers 12.83 10.99 14.67 

MenuBoard Utilization 0.97 0.96 0.98 
Kitchen Utilization 0.73 0.72 0.74 

OrderWindow Utilization 0.99 0.99 0.99 
MenuBoard Waiting in Line 0.95 0.89 1.01 

Kitchen Waiting in Line 0.12 0.11 0.13 
OrderWindow Waiting in Line 1.23 1.18 1.28 

Time In System 5.31 5.18 5.44 
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These statistics are very interesting on several fronts.  
First, could improve our revenue every day at lunch 9.4% 
if we could capture the lost revenue.  We need to find a 
way to lower the number of lost customers from the 12.83 
that we have seen in the current system.  We also know 
that both the Menu Board and Order Window are highly 
utilized, which means that lines are forming in front of 
those two resources.  We would also want to look at reduc-
ing the car�s time in the system.  The minimum average 
theoretical time for a car would be 70 seconds at the Menu 
Board and 70 seconds at the Order Window, which is 140 
seconds, or 2.33 minutes.  So, about 3 minutes of the car�s 
time is simply waiting.  A key customer satisfaction metric 
is to minimize the amount of time they have to wait in line. 

6 FINDING WAYS TO IMPROVE A SYSTEM 

What we have accomplished to this point is the analysis of 
a system that exists.  We have learned that we can improve 
revenue and that we have very busy resources.  So let us 
run some alternative scenarios to determine what (if any) 
improvements we should make. 

6.1 Scenario 1: No Lines 

Scenario 1 is based on the �eliminating inventory� thought.  
If we want to get the customer out of the system quicker, 
we would simply need to eliminate some (or all) of the 
line.  We�ll take drastic action and eliminate all waiting in 
the system.  If a car cannot pull right up to the Menu 
Board, then it will leave.  If the Order Window is not 
available after the order is placed, then the car waits at the 
Menu Board until the Order Window is free.  This should 
greatly lower the Time in System statistic.  Some would say 
that this would be the best way to run the drive-through 
line since the system is balanced.  The arrival rate is 1 
every 70 seconds, the Menu Board rate is 1 every 70 sec-
onds, and the Order Window rate is 1 every 70 seconds.  
Some would say that this is a perfect production line.   

In order to accomplish this in the model, we simply 
change 2 variables, MenuBoardLineSize and OrderPicku-
pLineSize, and set them both to a value of 1.  Then we run 
the model for 30 iterations and get the statistics in Table 11. 

Well, the strategy worked the way we expected it to 
work.  We reduced the Time in System statistic by 37.7%.  
Now the cars are whipping through the drive-through.  But 
there is a catch.  We�re losing 5.5 times the number of cus-
tomers that we were losing before!  We�ve lowered our 
revenues by 40%!  This would hardly be considered a vi-
able alternative! 
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Table 11: Scenario 1 Statistics 

Statistic Value 
CI 

Lower 
CI 

Upper 
Revenue $989  $968  $1,010  

Lost Revenue $851  $827  $875  
Lost Customers 70.43 68.87 71.99 

MenuBoard Utilization 0.68 0.67 0.69 
Kitchen Utilization 0.43 0.42 0.44 

OrderWindow Utilization 0.84 0.83 0.85 
MenuBoard Waiting in Line 0.00 0.00 0.00 

Kitchen Waiting in Line 0.00 0.00 0.00 
OrderWindow Waiting in Line 0.00 0.00 0.00 

Time In System 3.31 3.28 3.34 
 
What was it about eliminating the lines that caused 

such a problem?  Without the lines, we caused excessive 
blocking in the system.  Blocking occurs when something 
in the system will not allow a resource to become available 
even though its service is finished.  Throughout this sce-
nario, the car at the MenuBoard was finished ordering, but 
the car could not move forward because the Order Window 
was still occupied.  In this scenario (or in any balanced sys-
tem with random variation and no queuing space), each car 
at the MenuBoard has a 50% chance of being blocked by 
the OrderWindow.  This can be reduced by adding queues 
between the resources.  

In industrial problems, it is often difficult to determine 
where and why blocking occurs.  That is why there is so 
much emphasis on eliminating and/or controlling the bottle-
neck of the system.  It is likely that the bottleneck is in large 
part responsible for blocking in other parts of the system. 

6.2 Scenario 2: Longer Lines at the Menu Board 

Well, since Scenario 1 did not work very well, let us try 
another.  Let us rearrange the parking lot so that we can get 
room for 6 cars waiting in line for the Menu Board (includ-
ing the car whose order is being taken).  We will keep the 
line for 3 cars for the Order Pickup Window.  The results 
for Scenario 2 is shown in Table 12. 

Well, we did add revenue ($51 per day) and decrease 
the number of lost customers, that is good, but now the av-
erage customer waits an additional minute to get the order, 
which is bad.  You can see why this occurs.  With the 
Menu Board line being longer, more cars can wait for the 
menu board and they do not become lost customers in this 
scenario, where they would have become lost customers in 
the original model.  The price they pay for having room to 
get in line is that the line is longer, and so the time through 
the system increases.  This is another typical trade-off.  
Queues are good because they allow more throughput in a 
system, but they add cycle time for the system. 
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Table 12: Scenario 2 Statistics 

Statistic Value 
CI 

Lower 
CI 

Upper 
Revenue $1,690 $1,665  $1,715 

Lost Revenue $99  $77  $122  
Lost Customers 8.50 6.73 10.27 

MenuBoard Utilization 0.99 0.99 0.99 
Kitchen Utilization 0.73 0.72 0.74 

OrderWindow Utilization 0.99 0.99 0.99 
MenuBoard Waiting in Line 3.07 2.90 3.24 

Kitchen Waiting in Line 0.13 0.12 0.14 
OrderWindow Waiting in Line 1.28 1.23 1.33 

Time In System 6.33 6.14 6.52 
 

6.3 Scenario 3: Improved Service Times 

Let us try one more scenario.  This scenario has found new 
technology that will cut the average service time at the 
Menu Board and the Order Window by 20% from 70 sec-
onds to 56 seconds.  To implement this technology, it 
would take $30,000 at each store and must be paid for by 
increased revenue at the store.  This is the only thing that 
changes from the original model.  The results are shown in 
Table 13. 

 
Table 13: Scenario 3 Statistics 

Statistic Value 
CI 

Lower 
CI 

Upper 
Revenue $1,822  $1,794 $1,850  

Lost Revenue $10  $5  $15  
Lost Customers 0.70 0.33 1.07 

MenuBoard Utilization 0.81 0.80 0.82 
Kitchen Utilization 0.79 0.78 0.80 

OrderWindow Utilization 0.97 0.97 0.97 
MenuBoard Waiting in Line 0.26 0.23 0.29 

Kitchen Waiting in Line 0.23 0.21 0.25 
OrderWindow Waiting in Line 0.85 0.82 0.88 

Time In System 3.42 3.36 3.48 
 
Well, now we see some improvement!  The Time in 

System has dropped from 5.31 minutes to 3.42 minutes.  
We have virtually eliminated any lost customers, and have 
increased revenue by $174 per lunch shift.  We would pay 
back the $30,000 for the implementation of the new tech-
nology in 172 days or less than 6 months!  It is well worth 
the investment and you are a hero for figuring it out! 

Why did this scenario show such improvement?  It 
was because our resources were not so highly loaded.  The 
Menu Board utilization dropped from 97% to 81%, and so 
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the line for the Menu Board would be much smaller (it 
dropped by 72%).  We would have seen a similar drop in 
the Order Window utilization, but now the Order Window 
is often being blocked by the Kitchen. 

6.4 Generating Other Scenarios 

This simulation and any other simulation can be used to 
evaluate many different scenarios if the person creating the 
model allows some flexibility in the model structure.  One 
also has to consider the amount of time it takes to run a 
new scenario.  In a large scale simulation, to run and 
evaluate a new scenario could take several days. 

7 WHAT HAVE WE LEARNED? 

This exercise points out several things about simulation in 
general.  First, simulation can mimic the dynamic behavior 
of a system.  That is what it is built to do.  Regardless of 
how complex a system may be, it is likely that a simulation 
expert will be able to create a model that will evaluate it.  
However, the more complex a system is, the longer it takes 
to model, run and evaluate.  But do not be discouraged, 
there are very good simulation people available to model 
large systems. 

Second, you (or the person analyzing the system) must 
have a good understanding of simulation statistics.  It is 
important during the creation of the model so that input 
distributions are used properly.  It is important during the 
analysis of the output statistics so that the output is not 
misinterpreted.  Mistakes with either the inputs or the out-
puts will cause the simulation analysis to be invalid. 

Third, to analyze a system, simulation is used to evalu-
ate different scenarios.  It does not choose the best scenario 
for you.  This may seem to be a problem, but most 
managers have not shortage of scenarios to evaluate.  The 
trade off for this is that you can analyze the dynamics of 
the system and not just the average behavior. 

Fourth, the scenarios that you do choose are generated 
by you and not the system.  This is where familiarity with 
the system under study and a familiarity with system dy-
namics concepts are very valuable. 

This is, of course, simply an introduction.  Through 
this conference and interaction with simulation profession-
als, you can get a deeper understanding of simulation and 
what it can do for you. 
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