
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

JAVA ENGINE FOR UML BASED HYBRID STATE MACHINES

Andrei V. Borshchev
Yuri B. Kolesov

Yuri B. Senichenkov

Experimental Object Technologies
Distributed Computing and Networking Department

St. Petersburg Technical University, RUSSIA

ABSTRACT

One of the approaches to modeling hybrid systems is to
assign algebraic-differential equations describing the
continuous behavior to states of state machines that
represent discrete logic. The resulting hybrid state machine
is a powerful concept to specify complex
interdependencies between discrete and continuous time
behaviors. It, however, exposes the simulation engine to a
number of problems, which we discuss. The hybrid state
machine based approach presented in this paper is fully
supported by UML-RT/Java tool TimeBroker developed at
Experimental Object Technologies.

1 INTRODUCTION

A large class of systems being developed have both
continuous time and discrete time behavior. In fact, any
system that interacts with physical world or the user falls in
that class. Chemical, Automotive, Military, Aerospace are
areas most frequently mentioned in this respect. To model
such systems successfully and to get accurate and reliable
results from simulation experiments one needs an
�executable� language naturally describing hybrid
behavior, and a simulation engine capable of simulating
discrete events interleaved with continuous time processes.

1.1 Approaches to Hybrid System Modeling

There is a number of tools, commercial and academic,
capable of modeling and simulating systems with mixed
discrete and continuous behavior, for a good survey we
refer you to Astrom, Elmqvist and Mattsson (1998) and
Kowalewski (1997). If we leave those designed for some
specific application domain out of consideration, the
approaches implemented in others would form three major
classes: block-based, �physical� and based on hybrid state
machines.

Block-based tools offer graphical language of
hierarchical interconnected blocks, and a library of
elementary blocks with pre-defined continuous, discrete or
hybrid behavior. A new block can be constructed from
existing ones by using unidirectional (output to input)
connections and assigning parameters, or programmed with
some special low-level language.

The most popular tools of that class are MathWorks
MATLAB/SIMULINK <www.mathworks.com>,
Boeing EASY5 <www.boeing.com/
assocproducts/easy5/>, ISI MATRIXX/
SystemBiuld <www.isi.com> and VisSim from Visual
Solutions <www.vissim.com>; the latter is also used in
iLogix STATEMATE MAGNUM <www.ilogix.
com>. (Their closest relative in the discrete-time world
was BONeS Designer <www.altagroup.com>, which
ceased to exist some time ago.)

Using blocks it is very easy to construct models of
small-size systems, even by non professional users.
Standard blocks are normally implemented efficiently.
However, for more or less complex systems, the model
grows into a cumbersome multilevel diagram, not really
reflecting the structure of the system being modeled.

Physical modeling tools allow to use bi-directional
connections between model components and define new
classes of components. Continuous behavior is specified by
a system of algebraic-differential equations. Discrete
behavior is specified by conditional or periodic events that
can assign new values to component variables.

Most of the tools in this class are academic projects:
Omola, OmSim from Lund University <control.lth.
se/~cace/omsim.html>, 20-SIM from Controllab
Products <www.rt.el.utwente.nl/20sim/>, Smile
from Berlin Technical University <www.first.gnd.
de/smile/> and Dynasim Dymola <www.dynasim.
se>. As a generalization of that approach, a modeling
language Modelica <www.dynasim.se/modelica/>
is suggested as a standard model interchange format.

1888

Borshchev, Kolesov, and Senichenkov

The approach works well for modeling physical
systems providing for their natural decomposition into
typical physical components. However, when discrete logic
and continuous behavior are interrelated, it would result in
unnatural models, as the only way to change a system of
equations dynamically implemented to-date in runtime is to
change coefficients or to use �if� statements in right-hand
side of equations. Also, having bi-directional connections
implies high capacity of symbolic transformations at
runtime and a large number of algebraic equations to be
solved numerically, which significantly impacts the
performance.

In hybrid state machines (see, e.g. Maler, Manna and
Pnueli (1992)) the continuous behavior specified as a
system of algebraic-differential equations is associated
with a state of a state machine. When a state changes as a
result of some discrete event, the continuous behavior may
also change. In turn, a condition specified on continuously
changing variables can trigger a state machine transition �
so called change event.

State machines run within objects that communicate in
discrete way, e.g. by message passing, as well as by
sharing continuous-time variables over unidirectional
connections.

Shift from California PATH <www.path.
berkeley.edu/shift/>, and Model Vision from
Experimental Object Technologies <www.xjtek.com/
products/modelvision/30/> � are the only tools
known to us that support hybrid state machines.

Unlike the previous two, this approach provides for
very compact and clear specifications of complex
interdependencies between discrete and continuous
behavior. For purely continuous systems, though, it might
be redundant.

Concluding this short review, we should also say that
the tools mentioned above have much in common: they all
to a certain extent support hierarchical functional
decomposition, object-oriented modeling, they offer
debugging, analysis, visualization and animation
capabilities. For a good Web index of tools we would refer
you to <www-er.df.op.dlr.de/cacsd/hds/
software.shtml>.

In the project described in this paper we follow hybrid
state machine approach as the one that leads to natural
models representation for a widest class of hybrid systems.
Which, we believe would play the decisive role in the
success of the simulation modeling in industrial
development process.

The rest of the paper is organized as follows. Section 2
outlines the architecture of our tool and executable model
that it produces. Section 3 describes the UML-RT-based
modeling language supported. In Section 4 describing the
simulation engine the accent is made on how we approach
the problems induced by the hybrid nature of the system
being simulated. Section 5 provides brief information

about the model development environment. Then we
discuss the possible directions of future work.

2 THE TOOL ARCHITECTURE

The tool TimeBroker that has been developed at Experi-
mental Object Technologies is a merge of COVERS <www.
xjtek.com/products/covers/31/> (Borshchev,
Karpov and Roudakov 1997) and Model Vision <www.
xjtek.com/products/modelvision/30/> product
families. The tool architecture is shown in Figure 1.

Editor

Code
Generator

Debugger

Viewer

Development
Environment

Custom UI

The Model

Hybrid Engine

Java VM

Windows platform Java platform

Figure 1: TimeBroker Architecture

Windows-based Development Environment includes
graphical model Editor and Code Generator that maps the
model into Java code. The model runs on any Java
platform on the top of TimeBroker Hybrid Engine. A
running model exposes an interface to control its execution
and to retrieve information via a text-based protocol over
TCP/IP. That interface is used by Viewer and Debugger �
another part of the Development Environment, and by
Custom UI module that runs on Java platform as well. The
model supports connection of multiple clients from
arbitrary (e.g. remote) locations.

3 MODELING LANGUAGE

We have chosen a subset of Unified Modeling Language,
more precisely, UML for Real Time <www.
objectime.com> and extended it to incorporate
continuous behavior.

The modeling language implemented in our tool
supports two types of UML diagrams: collaboration
diagrams and statechart (state machine) diagrams with
some changes. In collaboration diagrams we have added

1889

Borshchev, Kolesov, and Senichenkov

unidirectional continuous connections between objects
(capsules in UML-RT) and the corresponding interface
elements � input and output variables.

UML statecharts are made hybrid: a system of
algebraic-differential equations over variables (interface or
object�s internal ones) can be associated with each simple
or composite state.

To make such a UML-based model fully executable
we have taken Java as a reasonably high-level language for
defining data types and data transformation. We have also
defined rigorous semantics for all language constructions
with respect to time, atomicity, concurrency, etc.

3.1 Structure Model

The main building block of a hybrid model is called object
(capsule in UML-RT). The object interface elements can
be of two types: ports and variables. Objects interact by
passing messages through ports, or by exposing continuous
time variables one to another.

Object may encapsulate other objects, and so on to any
depth. Encapsulated objects (subcapsules) can export ports
and variables to the container (capsule) interface, see
Figure 2.

Object

Encapsulated
object

Port

Port

Output variable

Input variable

Figure 2: Structure Diagram with Continuous Connections

3.2 Behavior Model

An object may have multiple concurrent activities that
share object local data and object interface. Activities can
be created and destroyed at any moment of the model
execution. An activity can be described by a Java function
or by a state machine (statechart).

Continuous behavior is incorporated into the model at
the statecharts level. Following Maler, Manna and Pnueli
(1992), we assign a system of equations to a state of a
statechart.

Consider an airplane ejection process in Figure 3. Let
the plane fly at the speed of Vp. After the pilot pulls
ejection handle the ejection sequence begins. The rocket
motor fires under the pilot�s seat and pushes it out of the
plane. Let us assume that before leaving the airplane the
seat moves at constant speed Ve along the rails at the angle
θe to the plane. After the seat leaves the plane, two forces
define its trajectory: air resistance and gravity. In the figure
air resistance D is shown projected to X and Y axes. The
coordinate system is bound to the plane.

X

Ve

y2

Vp

Y

Vx

Vy

Dx
Dy

mg

Crash

Parachute

θe

Figure 3: Airplane Ejection Process

Two things can happen to the pilot: he either

successfully opens up a parachute, or crashes with the
plane tail fin. To find out how various parameters like the
plane speed, the pilot seat weight, the ejection angle, the
plane geometry, etc. affect the result, let us build a model
of the ejection process.

Clearly, there are four discrete events in the process:
the pilot pulls ejection handle (modeled by the Eject
command), the seat leaves the plane (when its y coordinate
is greater than y2), the seat crashes with the plane fin
(crash(x,y) is a Boolean function checking pilot seat
coordinates against the plane geometry), and the parachute
opens up in τp time after the seat leaves the plane. In
between these four events the dynamic of the pilot seat is
described by two systems of equations: one while in the
plane and one outside.

The resulting state machine is shown in Figure 4. The
transition correspond to discrete events and equations are
assigned to the states.

1890

Borshchev, Kolesov, and Senichenkov

eey

eex

VV
VV

θ
θ

cos
sin

⋅=
⋅−=

Initial Event: Eject

In Plane

In Air

x

y

V
dt
dx

V
dt
dy

=

=

Action:

2yy >Event:

Equations:

Equations:

()
()

m
VabsSCVg

dt
dV

m
VVSC

dt
dV

V
dt
dy

V
dt
dx

yddyy

xpddx

y

x

⋅

⋅⋅⋅⋅⋅
−=

⋅

+⋅⋅⋅
−=

=

=

2

2

2

ρ

ρ

Parachute Crashed

pτEvent: Event: crash(x, y)

Figure 4: Hybrid Statechart Model of Ejection Process

3.3 Canonic Form of Equations

We allow three types of equations: differential equations,
algebraic equations and formulas. Any set of equations that
appears in the model must be in canonic form meaning it
must be accepted by existing numerical methods. The
canonic form is defined as follows:

1. Ordinary differential equations are resolved for
first derivatives:

),,(tyxf
dt
dx

=

2. Algebraic equations are in the form),,(0 tyxg=
3. Formulas are in the form:),(zyhx =
4. An input variable can neither be in the left-hand

side of a differential equation or formula, nor can
it be declared as unknown.

5. A variable cannot be in the left-hand side of more
than one differential equation or formula.

6. The total number of unknown variables should be
equal to the total number of algebraic equations.

The difference between algebraic equations and

formulas in only in the way they are treated by hybrid
engine: algebraic equations are solved using numerical
methods, and formulas are just calculated.

For example, the behavior of an amplifier with input x
and output y can be described as a formula Kxy = . Also,
formulas often appear as a result of connecting one object
to another: e.g. if input variable p of one object gets
connected to output variable q of another object, it is
described by simple formula qp = .

4 HYBRID ENGINE

The engine takes the model specification and executes it, in
other words it implements the semantics of the modeling
language. The model execution is represented as a
sequence of steps, see Figure 5. There are two types of
steps: time steps, when the time progresses, continuous
time variables may change, but the �discrete� state remains
the same, and event steps when the �discrete� state changes
instantly. This semantics roots to Timed Transition
Systems (Henzinger, Manna and Pnueli 1992, Maler,
Manna and Pnueli 1992).

t0

Now
Next
discrete
event

Stop
time

Time
step

Event
step

time

Some continuous
variable

t0 t1 t1 t1

Figure 5: Hybrid Event Calendar

Our hybrid engine has two parts: discrete engine and

equation solver, see Figure 6. The discrete engine
maintains virtual time and discrete events, takes care of
atomicity, concurrency, nondeterminism, synchronization,
etc. Equation solver numerically solves systems of
algebraic-differential equations supplied by the discrete
engine.

1891

Borshchev, Kolesov, and Senichenkov

The Model

Discrete Engine Equation Solver

Solve System of
Algebraic-Differential
Equations until Stop Time

Check if the current
variable values invoke a
change event

R
K

F4
5

R
K

F8
53

N
ew

to
n

�

Methods
Figure 6: Hybrid Engine Architecture

At the beginning of each time step the discrete engine

invokes equation solver giving it the current global
equation system and a stop time, which is either the time
when the next discrete event is scheduled, or infinity.
While solving the system, the equation solver makes
periodical callbacks to discrete engine to check if the
current combination of variable values satisfies any of the
change event conditions currently awaited by the model. If
yes, the equation solver finds the �exact� time (of course,
with some tolerance, this is discussed in the section 4.3
below) when the condition becomes true, and returns
control to the discrete engine. Otherwise it continues until
the stop time.

The nature of hybrid systems in general, and hybrid
state machines in particular raises several problems to be
addressed by the hybrid simulation engine.

4.1 Checking Correctness of Dynamically

Changing Equation System

A system of equations describing the dependencies of
object�s input, output and internal variables is formed as a
union of elementary equation systems associated with
current states of statecharts. During the object�s lifetime,
that system changes, e.g. as a result of a state change in a
hybrid statechart caused by some discrete event.

Within an object, each time a new system is formed
we have to check whether it is in canonic form, i.e. can be
solved numerically. In the example with two concurrent
statecharts in Figure 7 the transition T will take the object
to an incorrect state because variable y appears in the left-
hand side of differential equations two times.

An important property of the canonic form is its
compositionality: if the equation systems of all objects are
in canonic form, then any global system of equations that
may appear as a result of connecting inputs and outputs of
objects in different ways, will also be in canonic form.

),(tyf
dt
dy

=

Current state

Current state

),(tyg
dt
dy

=

y

T

�

Figure 7: Transition Leading to Incorrect Equation System

Thus, we only need to perform local checking within

one object that changes its state, and then we form the new
global equation system by just combining the local ones.

It is worth mentioning that canonic form is
compositional only when connections between objects are
unidirectional. Otherwise we would have to perform much
more complex runtime checking and transformation.

4.2 Detecting and Breaking Algebraic Loops

Another problem caused by the dynamic nature of the
global equation system is algebraic loops. Consider, for
example two amplifiers in Figure 8. While they are not
connected in a loop, their continuous behavior is described
by three straightforward formulas, but once you add a
loopback, you get an algebraic loop which has to be
rewritten with the equation Y-K1(X-K2Y)=0.

K1 K2
X Y U V -

Figure 8: Algebraic Loop

Algebraic loops is a well-known problem, however the

hybrid engine faces it at runtime. Therefore, each time the
global equation system changes, the algebraic loop
detection algorithm should run. When it detects a loop, it
substitutes one of the formulas in the loop by an equivalent
algebraic equation.

Note that if we do not have the notion of formulas and
treat them as algebraic equations, we will not have that
problem. However, it is extremely inefficient approach, as
formulas are calculated essentially faster than algebraic
equations are solved.

1892

Borshchev, Kolesov, and Senichenkov

4.3 Sensitivity of Hybrid Systems

Unfortunately, hybrid systems may be very sensitive to the
accuracy of the numeric solutions. Even a small
quantitative error made by numerical method could lead to
qualitatively incorrect simulation result. Consider the
following situations.

Suppose that when a value of some continuous time
variable crosses some specified boundary, an event A
occurs, see Figure 9a. Suppose there is also event B
(already scheduled by the discrete engine) that changes the
value of the variable so that A never occurs afterwards. Let
A occur just before B. Then it might happen that equation
solver that works with finite tolerance, will not detect A at
all, because at B it must stop and return control to the
discrete engine. The result could be painful: the execution
path where A occurs first will drop out of consideration.

Triggering level

time

Triggering level

time
a)

b)

B A

Figure 9: Sensitivity Problems

The situation shown in Figure 9b is also dangerous.

Here the equation solver misses a sharp peak that is to be
reacted by the discrete part of the model.

Currently one can only handle these situations by
choosing the right tolerance for numerical method.

4.4 Choosing Numerical Method

The type of equations (algebraic, differential or algebraic-
differential) and stiffness property of differential equations
may change at runtime. First, the equations themselves
change as discrete events are executed. Second, stiffness
may change even for the same equation system within a
single time step. Therefore, the equation solver should be
able to apply different numerical methods and to switch
from one to another.

At the beginning of each time step our solver always
starts with the simplest (and fastest) method for the current

type. In case of differential equation the solver determines
the stiffness and switches to the required method.

5 DEVELOPMENT ENVIRONMENT

As TimeBroker Development Environment is outside the
scope of this paper, we will only give you a brief picture of
it. A typical screenshot is shown in Figure 10. The DE
contains project tree, graphical editors for collaboration
and statechart diagrams, properties pane displaying
attributes of the currently selected object, and output
window. There are wizards for object creation, exporting
and importing object parameters, constructing messages
types. Differential and algebraic equations are entered in
the graphical equation editor.

Figure 10: A Screenshot of Development Environment

A set of useful libraries has been developed for the

tool. They contain various frequently used discrete and
continuous objects such as input generators, resources,
channels, integrators, etc. The user can develop his own
libraries of reusable components; actually, any project can
be opened as a library from another project.

TimeBroker model viewer and debugger gives the
user the full control over the model. There are several
modes the model can be executed: step-by-step, step-by-
step with respect to some particular object, play, fast run
with periodical screen updates, run to a user-specified
graphical breakpoint. The user can access any object in
(dynamically changing) hierarchical model structure,
change values of variables and parameters. All diagrams
are animated. Traces and inspect information is available
for any object. Statistics presentation views (charts, Gantt
charts, histograms) can be linked to statistics collection
objects present in the running model.

A high-level API is provided so that the user can
implement his own optimization strategies on top of
multiple runs of the model.

1893

Borshchev, Kolesov, and Senichenkov

We have developed 3D visualization tools based on
Java 3D. The user can associate attributes of 3D objects
with variables in the model, so that these objects are
animated when the model is running. One can also define a
set of custom controls and link them to model parameters.
Together with custom animation, this forms a Java UI that
can connect to and control a Java model independently of
Windows-based Development Environment.

6 FUTURE WORK

The major directions of future work are the following. On
the modeling language side it is tempting to implement
hybrid statechart inheritance (Harel, Gery 1997), and in
particular � inheritance of algebraic-differential equation
systems.

On the engine side, we are now porting more
sophisticated numerical methods to Java. Our goal is to
have at least the same set of methods for all types of
equations and stiff and non-stiff problems that is available
in Model Vision 3.0 <www.xjtek.com/products/
modelvision/30/>.

Porting the whole Development Environment into Java
(and thus making the tool 100% Java) is also considered.

REFERENCES

K. J. Astrom, H. Elmqvist, S. E. Mattsson. 1998. Evolution

of continuous-time modeling and simulation. The 12th
European Simulation Multiconference, ESM�98, 1998,
Manchester, UK.

A. Borshchev, Yu. Karpov, V. Roudakov. 1997. Systems
modeling, simulation and analysis using COVERS
active objects. Proceedings of the 1997 Workshop on
Engineering of Computer-Based Systems (ECBS �97)
Monterey, CA, March 1997.

D. Harel, E. Gery. 1997. Executable object modeling with
statecharts. Computer, Vol. 30, No. 7, July 1997.

T. Henzinger, Z. Manna, A. Pnueli. 1992. Timed transition
systems. Technical Report TR 92-1263, Dept. of
Computer Science, Cornell University, January 1992.

S. Kowalewski et al. 1997. A case study in tool-aided
analysis of discretely controlled continuous systems:
the two tanks problem. 5th International Workshop on
Hybrid Systems (HS V) Notre Dame USA, September
1997.

O. Maler, Z. Manna, A. Pnueli. 1992. From timed to hybrid
systems. In Proceedings of REX workshop �Real-
Time: Theory in Practice�, Springer-Verlag.

AUTHOR BIOGRAPHIES

ANDREI V. BORSHCHEV is Vice President of
Experimental Object Technologies <www.xjtek.com>.
He received his M.S. in 1989 and Ph.D. in 1995 both from

St.Petersburg Technical University. His interests include
design automation tools for distributed and embedded
systems, object-oriented modeling, simulation and
visualization, e-commerce and other Internet-related
technologies. His email is <andrei@xjtek.com>.

YURI B. KOLESOV is a Director of MV Soft Co.,
Moscow and Project Technical Leader at Experimental
Object Technologies. He received his Ph.D. from Central
Research Institute of Automatics and Hydraulics in 1987.
His interests include visual modeling, hybrid dynamic
systems, object-oriented modeling and object-oriented
databases. His email is <ybk@xjtek.com>.

YURI B. SENICHENKOV is an Associate Professor at
St.Petersburg Technical University and Project Manager at
Experimental Object Technologies. He received his M.S.
in 1972 from St.Petersburg Technical University and Ph.D.
in 1984 from St.Petersburg University. His interests
include numerical methods, OO modeling of hybrid
systems and its industrial and educational applications. His
email is <sen@xjtek.com>.

1894

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

