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ABSTRACT  
 
One of the approaches to modeling hybrid systems is to 
assign algebraic-differential equations describing the 
continuous behavior to states of state machines that 
represent discrete logic. The resulting hybrid state machine 
is a powerful concept to specify complex 
interdependencies between discrete and continuous time 
behaviors. It, however, exposes the simulation engine to a 
number of problems, which we discuss. The hybrid state 
machine based approach presented in this paper is fully 
supported by UML-RT/Java tool TimeBroker developed at 
Experimental Object Technologies. 
 
1 INTRODUCTION 
 
A large class of systems being developed have both 
continuous time and discrete time behavior. In fact, any 
system that interacts with physical world or the user falls in 
that class. Chemical, Automotive, Military, Aerospace are 
areas most frequently mentioned in this respect. To model 
such systems successfully and to get accurate and reliable 
results from simulation experiments one needs an 
�executable� language naturally describing hybrid 
behavior, and a simulation engine capable of simulating 
discrete events interleaved with continuous time processes. 
 
1.1 Approaches to Hybrid System Modeling 
 
There is a number of tools, commercial and academic, 
capable of modeling and simulating systems with mixed 
discrete and continuous behavior, for a good survey we 
refer you to Astrom, Elmqvist and Mattsson (1998) and 
Kowalewski (1997). If we leave those designed for some 
specific application domain out of consideration, the 
approaches implemented in others would form three major 
classes: block-based, �physical� and based on hybrid state 
machines. 

Block-based tools offer graphical language of 
hierarchical interconnected blocks, and a library of 
elementary blocks with pre-defined continuous, discrete or 
hybrid behavior. A new block can be constructed from 
existing ones by using unidirectional (output to input) 
connections and assigning parameters, or programmed with 
some special low-level language. 

The most popular tools of that class are MathWorks 
MATLAB/SIMULINK <www.mathworks.com>, 
Boeing EASY5 <www.boeing.com/ 
assocproducts/easy5/>, ISI MATRIXX/ 
SystemBiuld <www.isi.com> and VisSim from Visual 
Solutions <www.vissim.com>; the latter is also used in 
iLogix STATEMATE MAGNUM <www.ilogix. 
com>. (Their closest relative in the discrete-time world 
was BONeS Designer <www.altagroup.com>, which 
ceased to exist some time ago.) 

Using blocks it is very easy to construct models of 
small-size systems, even by non professional users. 
Standard blocks are normally implemented efficiently. 
However, for more or less complex systems, the model 
grows into a cumbersome multilevel diagram, not really 
reflecting the structure of the system being modeled. 

Physical modeling tools allow to use bi-directional 
connections between model components and define new 
classes of components. Continuous behavior is specified by 
a system of algebraic-differential equations. Discrete 
behavior is specified by conditional or periodic events that 
can assign new values to component variables. 

Most of the tools in this class are academic projects: 
Omola, OmSim from Lund University <control.lth. 
se/~cace/omsim.html>, 20-SIM from Controllab 
Products <www.rt.el.utwente.nl/20sim/>, Smile 
from Berlin Technical University <www.first.gnd. 
de/smile/> and Dynasim Dymola <www.dynasim. 
se>. As a generalization of that approach, a modeling 
language Modelica <www.dynasim.se/modelica/> 
is suggested as a standard model interchange format. 

1888



Borshchev, Kolesov, and Senichenkov 
 

The approach works well for modeling physical 
systems providing for their natural decomposition into 
typical physical components. However, when discrete logic 
and continuous behavior are interrelated, it would result in 
unnatural models, as the only way to change a system of 
equations dynamically implemented to-date in runtime is to 
change coefficients or to use �if� statements in right-hand 
side of equations. Also, having bi-directional connections 
implies high capacity of symbolic transformations at 
runtime and a large number of algebraic equations to be 
solved numerically, which significantly impacts the 
performance. 

In hybrid state machines (see, e.g. Maler, Manna and 
Pnueli (1992)) the continuous behavior specified as a 
system of algebraic-differential equations is associated 
with a state of a state machine. When a state changes as a 
result of some discrete event, the continuous behavior may 
also change. In turn, a condition specified on continuously 
changing variables can trigger a state machine transition � 
so called change event. 

State machines run within objects that communicate in 
discrete way, e.g. by message passing, as well as by 
sharing continuous-time variables over unidirectional 
connections. 

Shift from California PATH <www.path. 
berkeley.edu/shift/>, and Model Vision from 
Experimental Object Technologies <www.xjtek.com/ 
products/modelvision/30/> � are the only tools 
known to us that support hybrid state machines. 

Unlike the previous two, this approach provides for 
very compact and clear specifications of complex 
interdependencies between discrete and continuous 
behavior. For purely continuous systems, though, it might 
be redundant. 

Concluding this short review, we should also say that 
the tools mentioned above have much in common: they all 
to a certain extent support hierarchical functional 
decomposition, object-oriented modeling, they offer 
debugging, analysis, visualization and animation 
capabilities. For a good Web index of tools we would refer 
you to <www-er.df.op.dlr.de/cacsd/hds/ 
software.shtml>. 

In the project described in this paper we follow hybrid 
state machine approach as the one that leads to natural 
models representation for a widest class of hybrid systems. 
Which, we believe would play the decisive role in the 
success of the simulation modeling in industrial 
development process. 

The rest of the paper is organized as follows. Section 2 
outlines the architecture of our tool and executable model 
that it produces. Section 3 describes the UML-RT-based 
modeling language supported. In Section 4 describing the 
simulation engine the accent is made on how we approach 
the problems induced by the hybrid nature of the system 
being simulated. Section 5 provides brief information 

about the model development environment. Then we 
discuss the possible directions of future work. 

 
2 THE TOOL ARCHITECTURE 
 
The tool TimeBroker that has been developed at Experi-
mental Object Technologies is a merge of COVERS <www. 
xjtek.com/products/covers/31/> (Borshchev, 
Karpov and Roudakov 1997) and Model Vision <www. 
xjtek.com/products/modelvision/30/> product 
families. The tool architecture is shown in Figure 1. 
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Windows platform Java platform 
 

Figure 1:  TimeBroker Architecture 
 

Windows-based Development Environment includes 
graphical model Editor and Code Generator that maps the 
model into Java code. The model runs on any Java 
platform on the top of TimeBroker Hybrid Engine. A 
running model exposes an interface to control its execution 
and to retrieve information via a text-based protocol over 
TCP/IP. That interface is used by Viewer and Debugger � 
another part of the Development Environment, and by 
Custom UI module that runs on Java platform as well. The 
model supports connection of multiple clients from 
arbitrary (e.g. remote) locations. 

 
3 MODELING LANGUAGE 
 
We have chosen a subset of Unified Modeling Language, 
more precisely, UML for Real Time <www. 
objectime.com> and extended it to incorporate 
continuous behavior. 

The modeling language implemented in our tool 
supports two types of UML diagrams: collaboration 
diagrams and statechart (state machine) diagrams with 
some changes. In collaboration diagrams we have added 
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unidirectional continuous connections between objects 
(capsules in UML-RT) and the corresponding interface 
elements � input and output variables. 

UML statecharts are made hybrid: a system of 
algebraic-differential equations over variables (interface or 
object�s internal ones) can be associated with each simple 
or composite state. 

To make such a UML-based model fully executable 
we have taken Java as a reasonably high-level language for 
defining data types and data transformation. We have also 
defined rigorous semantics for all language constructions 
with respect to time, atomicity, concurrency, etc. 

 
3.1 Structure Model 
 
The main building block of a hybrid model is called object 
(capsule in UML-RT). The object interface elements can 
be of two types: ports and variables. Objects interact by 
passing messages through ports, or by exposing continuous 
time variables one to another. 

Object may encapsulate other objects, and so on to any 
depth. Encapsulated objects (subcapsules) can export ports 
and variables to the container (capsule) interface, see 
Figure 2. 

 

Object 

Encapsulated 
object 

Port 

Port 

Output variable 

Input variable 

 
Figure 2:  Structure Diagram with Continuous Connections 
 
3.2 Behavior Model 
 
An object may have multiple concurrent activities that 
share object local data and object interface. Activities can 
be created and destroyed at any moment of the model 
execution. An activity can be described by a Java function 
or by a state machine (statechart). 

Continuous behavior is incorporated into the model at 
the statecharts level. Following Maler, Manna and Pnueli 
(1992), we assign a system of equations to a state of a 
statechart. 

Consider an airplane ejection process in Figure 3. Let 
the plane fly at the speed of Vp. After the pilot pulls 
ejection handle the ejection sequence begins. The rocket 
motor fires under the pilot�s seat and pushes it out of the 
plane. Let us assume that before leaving the airplane the 
seat moves at constant speed Ve along the rails at the angle 
θe to the plane. After the seat leaves the plane, two forces 
define its trajectory: air resistance and gravity. In the figure 
air resistance D is shown projected to X and Y axes. The 
coordinate system is bound to the plane. 
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Figure 3:  Airplane Ejection Process 

 
Two things can happen to the pilot: he either 

successfully opens up a parachute, or crashes with the 
plane tail fin. To find out how various parameters like the 
plane speed, the pilot seat weight, the ejection angle, the 
plane geometry, etc. affect the result, let us build a model 
of the ejection process. 

Clearly, there are four discrete events in the process: 
the pilot pulls ejection handle (modeled by the Eject 
command), the seat leaves the plane (when its y coordinate 
is greater than y2), the seat crashes with the plane fin 
(crash(x,y) is a Boolean function checking pilot seat 
coordinates against the plane geometry), and the parachute 
opens up in τp time after the seat leaves the plane. In 
between these four events the dynamic of the pilot seat is 
described by two systems of equations: one while in the 
plane and one outside. 

The resulting state machine is shown in Figure 4. The 
transition correspond to discrete events and equations are 
assigned to the states. 
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Figure 4:  Hybrid Statechart Model of Ejection Process 

 
3.3 Canonic Form of Equations 
 
We allow three types of equations: differential equations, 
algebraic equations and formulas. Any set of equations that 
appears in the model must be in canonic form meaning it 
must be accepted by existing numerical methods. The 
canonic form is defined as follows: 
 

1. Ordinary differential equations are resolved for 
first derivatives: 

  

      ),,( tyxf
dt
dx

=  

 
2. Algebraic equations are in the form ),,(0 tyxg=  
3. Formulas are in the form: ),( zyhx =  
4. An input variable can neither be in the left-hand 

side of a differential equation or formula, nor can 
it be declared as unknown. 

5. A variable cannot be in the left-hand side of more 
than one differential equation or formula. 

6. The total number of unknown variables should be 
equal to the total number of algebraic equations. 

 
The difference between algebraic equations and 

formulas in only in the way they are treated by hybrid 
engine: algebraic equations are solved using numerical 
methods, and formulas are just calculated. 

For example, the behavior of an amplifier with input x 
and output y can be described as a formula Kxy = . Also, 
formulas often appear as a result of connecting one object 
to another: e.g. if input variable p of one object gets 
connected to output variable q of another object, it is 
described by simple formula qp = . 

 
4 HYBRID ENGINE 
 
The engine takes the model specification and executes it, in 
other words it implements the semantics of the modeling 
language. The model execution is represented as a 
sequence of steps, see Figure 5. There are two types of 
steps: time steps, when the time progresses, continuous 
time variables may change, but the �discrete� state remains 
the same, and event steps when the �discrete� state changes 
instantly. This semantics roots to Timed Transition 
Systems (Henzinger, Manna and Pnueli 1992, Maler, 
Manna and Pnueli 1992). 
 

t0 

Now 
Next 
discrete 
event 

Stop 
time 

Time 
step 

Event 
step 

time 

Some continuous 
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t0 t1 t1 t1 

 
Figure 5:  Hybrid Event Calendar 

 
Our hybrid engine has two parts: discrete engine and 

equation solver, see Figure 6. The discrete engine 
maintains virtual time and discrete events, takes care of 
atomicity, concurrency, nondeterminism, synchronization, 
etc. Equation solver numerically solves systems of 
algebraic-differential equations supplied by the discrete 
engine. 
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Figure 6:  Hybrid Engine Architecture 

 
At the beginning of each time step the discrete engine 

invokes equation solver giving it the current global 
equation system and a stop time, which is either the time 
when the next discrete event is scheduled, or infinity. 
While solving the system, the equation solver makes 
periodical callbacks to discrete engine to check if the 
current combination of variable values satisfies any of the 
change event conditions currently awaited by the model. If 
yes, the equation solver finds the �exact� time (of course, 
with some tolerance, this is discussed in the section 4.3 
below) when the condition becomes true, and returns 
control to the discrete engine. Otherwise it continues until 
the stop time. 

The nature of hybrid systems in general, and hybrid 
state machines in particular raises several problems to be 
addressed by the hybrid simulation engine. 

 
4.1 Checking Correctness of Dynamically  

Changing Equation System 
 
A system of equations describing the dependencies of 
object�s input, output and internal variables is formed as a 
union of elementary equation systems associated with 
current states of statecharts. During the object�s lifetime, 
that system changes, e.g. as a result of a state change in a 
hybrid statechart caused by some discrete event. 

Within an object, each time a new system is formed 
we have to check whether it is in canonic form, i.e. can be 
solved numerically. In the example with two concurrent 
statecharts in Figure 7 the transition T will take the object 
to an incorrect state because variable y appears in the left-
hand side of differential equations two times. 

An important property of the canonic form is its 
compositionality: if the equation systems of all objects are 
in canonic form, then any global system of equations that 
may appear as a result of connecting inputs and outputs of 
objects in different ways, will also be in canonic form. 

),( tyf
dt
dy

=

Current state 
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),( tyg
dt
dy

=  
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Figure 7:  Transition Leading to Incorrect Equation System 

 
Thus, we only need to perform local checking within 

one object that changes its state, and then we form the new 
global equation system by just combining the local ones. 

It is worth mentioning that canonic form is 
compositional only when connections between objects are 
unidirectional. Otherwise we would have to perform much 
more complex runtime checking and transformation. 

 
4.2 Detecting and Breaking Algebraic Loops 
 
Another problem caused by the dynamic nature of the 
global equation system is algebraic loops. Consider, for 
example two amplifiers in Figure 8. While they are not 
connected in a loop, their continuous behavior is described 
by three straightforward formulas, but once you add a 
loopback, you get an algebraic loop which has to be 
rewritten with the equation Y-K1(X-K2Y)=0. 
 

K1 K2 
X Y U V - 

 
Figure 8:  Algebraic Loop 

 
Algebraic loops is a well-known problem, however the 

hybrid engine faces it at runtime. Therefore, each time the 
global equation system changes, the algebraic loop 
detection algorithm should run. When it detects a loop, it 
substitutes one of the formulas in the loop by an equivalent 
algebraic equation. 

Note that if we do not have the notion of formulas and 
treat them as algebraic equations, we will not have that 
problem. However, it is extremely inefficient approach, as 
formulas are calculated essentially faster than algebraic 
equations are solved. 
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4.3 Sensitivity of Hybrid Systems 
 
Unfortunately, hybrid systems may be very sensitive to the 
accuracy of the numeric solutions. Even a small 
quantitative error made by numerical method could lead to 
qualitatively incorrect simulation result. Consider the 
following situations. 

Suppose that when a value of some continuous time 
variable crosses some specified boundary, an event A 
occurs, see Figure 9a. Suppose there is also event B 
(already scheduled by the discrete engine) that changes the 
value of the variable so that A never occurs afterwards. Let 
A occur just before B. Then it might happen that equation 
solver that works with finite tolerance, will not detect A at 
all, because at B it must stop and return control to the 
discrete engine. The result could be painful: the execution 
path where A occurs first will drop out of consideration. 

 

Triggering level 

time 

Triggering level 

time 
a) 

b) 

B A 

 
Figure 9:  Sensitivity Problems 

 
The situation shown in Figure 9b is also dangerous. 

Here the equation solver misses a sharp peak that is to be 
reacted by the discrete part of the model. 

Currently one can only handle these situations by 
choosing the right tolerance for numerical method. 

 
4.4 Choosing Numerical Method 
 
The type of equations (algebraic, differential or algebraic-
differential) and stiffness property of differential equations 
may change at runtime. First, the equations themselves 
change as discrete events are executed. Second, stiffness 
may change even for the same equation system within a 
single time step. Therefore, the equation solver should be 
able to apply different numerical methods and to switch 
from one to another. 

At the beginning of each time step our solver always 
starts with the simplest (and fastest) method for the current 

type. In case of differential equation the solver determines 
the stiffness and switches to the required method. 

 
5 DEVELOPMENT ENVIRONMENT 
 
As TimeBroker Development Environment is outside the 
scope of this paper, we will only give you a brief picture of 
it. A typical screenshot is shown in Figure 10. The DE 
contains project tree, graphical editors for collaboration 
and statechart diagrams, properties pane displaying 
attributes of the currently selected object, and output 
window. There are wizards for object creation, exporting 
and importing object parameters, constructing messages 
types. Differential and algebraic equations are entered in 
the graphical equation editor. 
 

 
Figure 10:  A Screenshot of Development Environment 

 
A set of useful libraries has been developed for the 

tool. They contain various frequently used discrete and 
continuous objects such as input generators, resources, 
channels, integrators, etc. The user can develop his own 
libraries of reusable components; actually, any project can 
be opened as a library from another project. 

TimeBroker model viewer and debugger gives the 
user the full control over the model. There are several 
modes the model can be executed: step-by-step, step-by-
step with respect to some particular object, play, fast run 
with periodical screen updates, run to a user-specified 
graphical breakpoint. The user can access any object in 
(dynamically changing) hierarchical model structure, 
change values of variables and parameters. All diagrams 
are animated. Traces and inspect information is available 
for any object. Statistics presentation views (charts, Gantt 
charts, histograms) can be linked to statistics collection 
objects present in the running model. 

A high-level API is provided so that the user can 
implement his own optimization strategies on top of 
multiple runs of the model. 
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We have developed 3D visualization tools based on 
Java 3D. The user can associate attributes of 3D objects 
with variables in the model, so that these objects are 
animated when the model is running. One can also define a 
set of custom controls and link them to model parameters. 
Together with custom animation, this forms a Java UI that 
can connect to and control a Java model independently of 
Windows-based Development Environment. 

 
6 FUTURE WORK 
 
The major directions of future work are the following. On 
the modeling language side it is tempting to implement 
hybrid statechart inheritance (Harel, Gery 1997), and in 
particular � inheritance of algebraic-differential equation 
systems. 

On the engine side, we are now porting more 
sophisticated numerical methods to Java. Our goal is to 
have at least the same set of methods for all types of 
equations and stiff and non-stiff problems that is available 
in Model Vision 3.0 <www.xjtek.com/products/ 
modelvision/30/>. 

Porting the whole Development Environment into Java 
(and thus making the tool 100% Java) is also considered. 
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