
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

VISUALSLX � AN OPEN USER SHELL FOR HIGH-PERFORMANCE

MODELING AND SIMULATION

Thomas Wiedemann

Technical University of Berlin
Franklin Strasse 28/29, FR 5-5

10587 Berlin, GERMANY

ABSTRACT

SLX by Wolverine software is actually one of the fastest
simulation languages. Besides the high performance the
SLX-compiler can be extended very easily by user specific
syntax rules and new basic functions. This �pyramid
power� of SLX is used to build a new system for modeling
and simulation � VisualSLX. This system is a shell atop
the standard SLX-compiler and the runtime system. All
model and simulation data are stored in a universal
database. VisualSLX could be used for a comfortable,
rapid visual modeling and for remote modeling and simu-
lation through the internet without any knowledge of the
SLX-syntax and modeling paradigms. This paper reveals
the architecture and the underlying data structures of the
system. Additional requirements and interfaces are caused
by the application of VisalSLX as a web-based modeling
and simulation system.

1 INTRODUCTION

In the last ten years simulation methods were successful
introduced in almost all areas of science and business
(Wiedewitsch and Heusmann 1995, Roberts and Dessouky
1998). The main algorithms and mathematical basics are
well defined and efficient.

At the moment the focus of research is shifted from
the kernel simulation functions to more peripheral tasks
like graphical modeling, 3D animation in the Web with
VRML, intelligent result analysis with Data-Mining tools
and optimization methods.

However especially in the area of optimization with
simulation models we see a revival of an old critical factor
- the performance of the simulation system. It seems to be
a paradox that almost 35 years old simulation languages
like GPSS are significantly faster than modern simulation
languages and systems.

2 SIMULATION PERFORMANCE

At first glance simulation performance is considered to be
solved by the help of Moore�s law and his physical
realization in Giga-Hertz processors. If only one
experiment with one simulation run is taken into account,
there is no practical difference between 2 seconds or 1
minute of one run. But if the same model is integrated in a
optimization cycle with one thousand experiments and 20
runs per experiment it needs 46 minutes in the first case
and nearly 14 hours in the second case. Thus with the
increasing usage of optimization methods in simulation the
performance of the simulation system becomes one of the
most critical parameters. The performance of simulation
systems is influenced by the following factors:

• The most critical performance killers in modern
systems are all visualization and reporting
functions during run-time. It can be shown very
easily, that even small and inexpensive 2D-bitmap
animations and parameter indicators consume
about 90% of the processor power. 3D-animations
even intensify the problem. Modern 3D-graphic
adapters with hardware support for animations
could defuse the situation, but the necessary
amount of information interchange to move an
object in the virtual space will sometimes exceed
the amount for the abstract movement inside the
simulation model.

• A lot of modern simulators like TAYLOR II
contain proprietary script languages for defining
application specific strategies for scheduling and
routing. Regrettably there are no available details
about implementation of this script languages,
however the scripts seem to be interpreted or
executed in an interpreter-like mode. It is almost
well known from the roots of computer science
that besides a lot of advantages the performance is
the weak side of interpreters. Therefore their

1865

Wiedemann

usage in simulation tools is very critical under
performance constraints.

• The performance of older simulation systems, like
GPSS/H is often better than the performance of
modern object oriented simulation systems. One
reason for this very astonishing fact is the
immoderate and sometimes needless usage of
inheritance techniques. Especially if �virtual�
class methods are used, for each call of an object
method the processor must fetch the object data
pointer, then it has to calculate an indexed pointer
to the table of virtual functions and then it
receives the correct address of the function.
Compared to one single call of a function this
procedure needs 3-20 times more processor
cycles. The highly sophisticated cache and
queuing buffers of the modern processors could
be knocked out by this procedure and in result the
processor falls back to the single speed of the
main memory.

As a result of the discussed performance problems, the
applicability for optimization of actual simulators differs
widely. So the paradox situation has occurred, that for very
expansive and complex simulation experiments with
optimization tasks GPSS is still used by large companies.
The historical merits of GPSS and its performance are
well accepted, but the main syntax and semantics are still
at the level of 1964. Therefore it was registered with
interest, when Wolverine Software, the vendor of GPSS/H
released a successor for GPSS � the SLX �system.

3 THE �PYRAMID POWER� OF SLX

In difference to GPSS the new SLX system uses a modern
C-like syntax. The source text is well structured and
supports subprograms and include files.
 The first important feature of SLX is its performance.
As mentioned in (Henriksen 1995) this is achieved by very
efficient list structures for the future event list and the
generation of native assembler code by the SLX compiler.
SLX is probably still one of the last modern simulation
languages which optimizes the generated machine code at
the assembler level. The results are impressive � SLX is 3
to 20 times faster than other known simulation tools like
TAYLOR or SIMPLE++.
 The second important feature of SLX is its
extensibility. The compiler itself can be extended at
compile time with new syntax rules and commands. The
power of this feature outstrips all known C++-macro
definitions. An excellent example is the H5-extension,
which makes SLX understanding GPSS programs
(Henriksen 1999).

 Although the performance and extensibility of SLX
are excellent, there are also some deficits:

- Due to the traditionally text based user interface
the readability of a SLX-model is lower than
models in Arena or Taylor. This is especially true
for inexperienced modelers.

- The SLX syntax is more powerful than GPSS but
the required code for standard model objects like
buffers and machines is longer and more variable
definitions are required.

In general SLX obtains very good perspectives due to its
performance and flexibility. It seems to be useful to add
some higher modeling level to the basic SLX system. One
option - a database user interface is presented at the follow-
ing pages. This system allows a very comfortable modeling
similar to Taylor, but with the performance of SLX.

4 THE VISUAL SLX SYSTEM

The regularity of the SLX syntax and its well structured
source code allow an automated generation of SLX
programs from a high-level modeling workbench. As a
result of earlier projects we decided to realize this system
not as a hard coded program generator, but as an open and
flexible code generator based on meta-models. The term
�meta model� in this context does not denote an universal,
world reference model, but a relative simple template for a
class of application specific models like production
planning, logistics or network models. Each specific meta-
model defines:

! a set of application specific simulation objects like

machines, buffers, cars or network routers;
! a set of parameters for every object with type

information, default values and handling options;
! the code template for the used simulation

language, in this case SLX.

The user of the modeling system defines his instances of
the meta-model objects and the necessary parameters. All
data is stored in the database. A model management system
allows different versions of a model and stores the history
of the model.
 In order to simulate the defined model the user model
data is combined with the code templates of the meta-
model objects. The SLX program is compiled by the SLX-
compiler and executed by the run-time system in
command-line mode. Results are stored as text files by the
SLX system. They can be imported to the database for
further analysis. A second option of result analysis is given
by traditional programs like Excel or future Data Mining
tools (Wiedemann 1998).

1866

Wiedemann

4.1 The Modeling Workbench

A common user of the modeling shell uses the following
operations:

• create or select model
• create, select or copy version
• create or select model object
• edit object parameters.
• code generation and start of the simulation result

analysis.

 A first working application of this modeling
workbench was realized with Access. This approach was

used for rapid prototyping the data structures and the
necessary algorithms. The final VisualSLX Workbench
will be realized as a web-based interface (see details of
implementation).

In the first Access-Workbench all user operations are
simply done by editing the database entries. The user does
not need any knowledge about the SLX system or the
related meta-model. The data of the meta-model are used
for defining object types in the user model. Almost all
labels and pull-down-lists in the model instances are
generated from the related meta-model definitions. During
a model edit session the meta-data definition can be
changed by the administrator of the VisualSLX-shell. This
is especially useful in the early state of a meta-model,
when the meta-model itself is created and tested.

The main form for defining a model of the VisualSLX
user shell is shown in fig. 2. The center of the screen show
all existing model objects and the type of the object. The
subform below shows the parameters of the selected object.
The number of parameters is unlimited and depends only
on the used meta-model.
 Each parameter field can comprise not only a single
number but also complex definitions like functions calls
(e.g. rn_uniform(Service,10,30) which calculates a random
value in SLX). If the user shell is used for other simulation
systems, such complex definitions must be transformed
from a common representation into the language specific
syntax. Otherwise the model will be language specific.

4.2 Details of Code Generation

The templates for code generation are stored as text fields
in the database. The length of each database ranges from
single words to some lines (see fig. 3).

Figure 1: The Main System Architecture

Simulation - results

SLX - Model

VisualSLX

Meta model

User Model
Objects

Parameters Meta - Objects

Meta-Parameters

Code templates Code generator

SLX compiler and
runtime system

result analysis

Figure 2: The Actual Modeling Form Figure 3: Code Templates

1867

Wiedemann

 All fields for user data must be marked with variable
names and special symbols like # as markers. So the
operation time for a machine object is defined as

 advance #optime#

where �advance� is the regular command of SLX for
delaying the moving object and �#optime#� is the parameter
which is taken the user model during code generation.
 In result of the well structured SLX syntax the code
generator writes code to different sections of the SLX source
code file.
 In queuing models typical sections are:

• global declaration area for variable and objects
• local declaration area for local variables
• main process model
• control structures.

The target section of each template line is specified in the
database entry of the code generator. The number and
names of sections are not limited and are defined also in
the meta-model.

4.3 Simulation processing

The generated source file is stored in a local directory and
SLX is called from the user shell in command line mode
with options for output of all important data to files. Both,
the local directory and the command line options are stored

in database tables for fast adjustments of the VisualSLX-
System.
 The simulation system is started from the user
interface with the shell-command of the operating system.
 In case of syntax errors in the source code of the
model (which is possible, if a new code template is tested),
the SLX compiler returns a error listing. In any case the
control returns back to the user interface.
 When SLX is started as minimized icon the user does
not recognize this external procedure, but works only with
the user shell.
 In general the simulation model contains report
functions for writing a trace file. The current format of the
trace-file is defined as:

 Time, Event-type, StaticObjectID, DynObjectID
 100, 1, 1, 1
 300 2, 1 1
 300 1, 2, 1

With this trace file each event in the model reports the
actual time, e.g. the affected machine and product and the
type of event (Entry , Exit , Breakdown-Start,..). The trace
file is imported by the user shell after the simulation.

4.4 Model data handling

The proprietary data structures of current simulators cause
tremendous problems for all users. The solution for this
problem should be the same as it has been for business
systems years before - a database. Thus in the presented
user shell all simulation data is stored in a database, which
includes:

• model data with all parameters and definitions of
the model behavior,

• experiment parameters and optimization methods,
• simulation results and statistical values.

The main problem of this simulation database consists in
the high complexity of real processes. The database
structure has to allow a high flexibility of relationships
between all objects of a simulation model. As it concerns
other information systems, there is a serious discussion
about the usage of relational or object-oriented databases.
 Regarding that relational databases have a strong
performance and well defined interfaces, we use a
relational database. This should not be considered as a
general decision against object-oriented databases.
 The Entity-Relationship-Model (ERM) of the simu-
lation database is shown in fig. 5. This database structure is
of the same kind like as the SIMCO system, which was
presented in Widemann (1998).

Object type (A) code � dest 6
code

Object type (A) code � dest 5

for each
object of
class A

Object type (B) code � dest 6

Object type (B) code � dest 5

for each
object of
class B

Program start codes � dest 2

Program start codes � dest 1

Program end codes � dest 9

Program start codes � dest 8

one code
instance

one code
instance

1 2 5 6 8 9

ed up

final
programTemporary Output buffers (1..20)

database
order

Figure 4: The Code Generation Process

1868

Wiedemann

The attributes of the database-tables are divided into two
groups:

• Attributes for administration and for building the
relationships between the different levels of the
model objects (objectid, parentobjectid, datatype,
subtype, unique database ID).

• A set of attributes for the storage of the object
data themselves. Currently we have 3 integer
fields (i,j,k), 3 double fields (d,e,f) and two string
attributes (s,c).

This data structure is currently used for all model entities.
The most important relationship is created by the objectid-
parentid relation. Each object can have N child-objects or
parameters. Sets of parameters can be stored as a list of
sub-parameters. There is no restriction concerning the
depth of the parameter hierarchy. We are limited only by
increasing access time, because each additional level
requires one more memory-access.
 The internal data names like i,j,k are covered by
dynamic changing labels in the user interface. The
definitions of the labels are stored in the meta-model.
 The storage of all model and meta-model data in a
database provides external applications with access to all
simulation data. With SQL and a ODBC-driver a client
system is able to ask for information by using SELECT-
statements or is capable to make changes by applying
UPDATE-commands for all model and experiment
parameters in the simulation database.

5 VISUALSLX IN THE WEB

The user shell can work in three modes:

• as a traditional, stand-alone system,
• as a multi-user database in a local network,
• and as a real client server system in Intranet or

Internet environments.

The first two modes are realized by the database forms
shown. New or application specific forms can be devel-
oped in a short time by using latest technologies of assis-
tant supported database design (e.g. in Microsoft Access).

The third mode requires an additional module for
interfacing to the web. Due to existing powerful software
components for internet applications, this interface is
realized as combination of the VisualSLX code generator
and a web-server (see fig. 6). A CGI-interface or similar
technology does not exist. Database related requests from
the web are received from the Winsock-component in the
VisualSLX/WEB-application and are answered im-
mediately. Advantages of this web-server integration are:

• a very high performance in result of direct data-

exchange and open database tables in stand-by-
mode,

• a long-time connection between the client and the
server with continuous data flow during
simulation processing or result processing .

There is almost no difference between the generation of a
SLX source file for simulation and generating a HTML-
form for a web based user interface ! Due this fact we can
use the same code generator for HTML generation. There
are no SLX or HTML specific sub programs in the code
generator itself. Thus the code generator can be used for
almost all text based simulation languages or text based
user interfaces.

.

Database forms
for local network

access

HTML
Browser

VisualSLX
Database

Webserver
for static

pages

Figure 6: The Access Modes of the Shell

 VisualSLX
� Web-server
 (Code/HTML
 generation)

Web
WIN-
SOCK
.OCX

Model contains Version contains contains

 1

n 1

n Parameters

refers to Objects

has subpar.

refers to

n

1

contains

n

1

contains

n

1

Labels

n 1

Runs contains

Results

have

Figure 5: The ERM-Model of the Database

1869

Wiedemann

6 WEB SPECIFIC REQUIREMENTS

In result of specific characteristics of the actual Internet
technologies some typical problems have encountered.

6.1 Web Performance

Outside an intranet the bandwidth is very often critical and
is rapidly changing. For this problem we see a solution in
parallelly editing more than one entry. For example all
objects and their parameters could be offered in form fields
at the same time. Checking operations are done with one
connect to the web server and all problems are reported to
the user at the same time. A second option is the usage of
more than one browser window and a interleave
interaction mode of the user. The best solution would be a
Java-based user-interface which performs all major
operations at the client side. For time reasons this solution
is planned for a future version.

Due to the delay of information transfer from the
server to the Web, the state of the simulation system and
the visualization on the web based client user interface may
differ within some seconds. So the feedback for user
interactions like Break or Stopping the simulation will
double the interchange time (from the client to the server
and back), of up to 10 seconds. The main solution is given
by the further technical improvement of the Web or a
usage inside a Intranet with guaranteed quality of service.
A simulation at the client side is not very useful due to the
current low performance of Java.

6.2 Multi User Problems

In a multi-user local database mode a database record is
locked, while a user edits the content. During this time the
record is visible to other users, but can not be edited.
 The Web is a system without defined sessions. Thus a
user can switch off the computer or close the browser
during an edit operation and the database does not receive
any information about the loss of the connection. Similar to
modern client server system this problem can be solved by
a timeout of the lock mode. In the current database this
locking operation and the check for timeout is explicitly
done by VisualSLX.

6.3 License and Security Constraints

Web-based simulation also creates new requirements for
software licensing and project management. Traditional
software licenses of simulation packages only allow a
single place usage. In general a web-based system must
have a network license. The payment of the simulation
customers can be done per project or by time used.
 A very critical fact also consist in data security. If a
company uses a web-based simulation system possibly

sensible data will be stored in an external database. In
order to provide a safe simulation study some secret data
could be encrypted with a public key from the company. A
special decrypt-DLL will be included in the import
routines of the simulation model. The private key for
decryption is directly transfered between the customer and
the decryption module. If the source code of the
decryption-DLL is validated by an external institution, the
security of the private input data for simulation will be
very high.

7 FUTURE DEVELOPMENT

The perspectives of SLX and the presented VisualSLX
system are very interesting. Thus the further development
of this concept will enclose the following activities in the
near future (please look at <http://www.aedv.cs.
tuberlin.de/simco> for actual information):

♦ online-animation with VRML or Flash,
♦ result analysis with database and data mining

tools,
♦ integration of the SLX-HLA interface, which was

developed by the Technical University of
Magdeburg,

♦ parallel and hyper-computing with a distributed
version of VisualSLX and run-time versions of
SLX.

8 SUMMARY

This paper has presented a shell for the SLX simulation
system. The most important features of the system are:

♦ a flexible and open meta model for definition of
application specific classes of simulation models;

♦ all model, meta model and simulation data are
stored in databases:

♦ SQL as a set-oriented language for the manage-
ment of the model and simulation experiments,

♦ a universal code generator for the SLX source
code and the HTML code for a web based user
interface.

♦ Flexible architectures for data-interchange and bi-
directional control with other, complex infor-
mation systems,

♦ Flexible and powerful interfaces to related
software packages concerning statistical result
analysis, presentation, optimization, Data-mining
and knowledge reasoning.

By the help of the system the needed knowledge for
making a successful simulation with SLX is reduced
significantly. By using the shell a user needs only common
knowledge about modeling and simulation and no

1870

Wiedemann

programming practice in SLX. With additional user
interfaces in Excel, Access or in the Web modeling with
SLX will be available also for managers and decision
makers.
 At the first level of meta-model management a
VisualSLX administrator can modify predefined examples
by their used labels and parameters. This approach is
especially useful for model domains with different naming
covnetions but equal simulation algorithms.
 At the second and highest level of meta-model
management a VisualSLX administrator is able to create
new meta-models. In general this requires a very good
knowlegde of SLX.
The VisualSLX shell could be seen as an additional level
of the SLX-pyramid (see Figure 7 and Henriksen (1999)).
The new level adds a high level modeling approach to the
powerful SLX base pyramid.
 The VisualSLX system is currently tested and will be
available as an add-on product to SLX. The usage of the
system as a user shell for other text based simulation
systems is possible.

Even the first prototype of the new simulation
environment allows very interesting applications in the
area of client-server-simulation and hyper-computing.
Thus the presented concept could be an interesting
perspective for the future development of modeling and
simulation.
 The underlying universal database structure could be
seen as a first attempt to a common interchange format in
the area of modeling and simulation. Together with the
strong performance of SLX the presented concept could be
seen as an interesting step towards a really new concept of
flexibility and performance in simulation.

REFERENCES

Henriksen, J. 1995. An introduction to SLX. In

Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos, K. Kang, W.
Lilegoon, D. Goldsman, 502-509. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Henriksen, J. 1999. SLX: Pyramid Power. In Proceedings
of the 1999 Winter Simulation Conference, ed. P.
Farrington, H. Nembhard, D. Sturrock, G. Evans,
167-175. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Roberts C. and C. Y. Dessouky. 1998. C. An overview of
object-oriented simulation. SIMULATION 70(6).

Wiedewitsch J. and J. Heusmann J. 1995. Future directions
of modeling and simulation in the Department of
Defense. In Proceedings of the SCSC�95, Ottawa,
Ontario, Canada.

Wiedemann, T. 1997. Perspectives of component-based
modeling and simulation. In Proceedings of the Wold
Congress on Systems Simulation, Singapore.

Wiedemann. T. 1998. SIM-MINING AND SIMSQL - A
DATABASE ORIENTED APPROACH FOR
COMPONENT-BASED AND DISTRIBUTED
SIMULATION, In Proceeding of Summer Simulation
Conference, Reno Nevada.

AUTHOR BIOGRAPHY

DR. THOMAS WIEDEMANN is a scientific assistant at
the Department of Computer Science at the Technical
University of Berlin. He has finished a study at the
Technical University Sofia and a Ph.D. study at the
Humboldt-University of Berlin. His research interests
include simulation methodology, tools and environments in
distributed simulation and manufacturing processes. His
teaching areas include also intranet solutions and database
applications.

Figure 7: The Extended SLX �Pyramid (Henriksen 1999)

Application specific
SLX - packages

SLX-Extensions

SLX-

Kernel

Application specific, highlevel models
with database support

Application specific meta-models

1871

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

