
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

FINDING A SUBSTRATE FOR FEDERATED COMPONENTS ON THE WEB

John A. Miller
Andrew F. Seila

Junxiu Tao

Computer Science and MIS Departments
University of Georgia

Athens, GA 30602, U.S.A.

ABSTRACT

Recent developments in software component technology
have renewed the promise of reusable software. Combining
this with the possibilities of sharing simulation results and
models using the Internet makes these new developments all
the more important, particularly for Web-Based Simulation.
Interoperability standards and data interchanges standards
(e.g., XML) help facilitate having simulation models interact
with other simulation models as well as other information
technology components. This paper examines newer com-
ponent technologies such as Enterprise Java Beans (EJB)
and Jini in a search for an ideal substrate for Web-Based
Simulation. Components will need distributed capabilities
as well as the ability to flexibly and dynamically join an
existing group of interacting components (referred to as a
federation).

1 INTRODUCTION

This paper has a simple goal: to find a suitable substrate
for Web-Based Simulation. Early Web-Based Simulation
systems used Common Gateway Interface (CGI) Scripts and
then Java Applets. Both provided remote access via the Web
to simulation models. Research over the last few years is
turning Web-Based Simulation into much more than just
remote access:Component technologyallows simulation el-
ements and support modules to be rapidly combined together
(e.g., Java Beans provides a base component capability).
Distributionallows components to run on different machines
on the Web (e.g., Remote Method Invocation (RMI) pro-
vides a basic mechanism for components to make remote
method calls).Federationallows independently developed
components to dynamically join an existing federation of
components. Technologies that are useful for this include
agent-based technologies as well as some distributed com-
ponent technologies such as Enterprise Java Beans and Jini.
These technologies have been tested using the JSIM Web-
Based Simulation Environment (papers: Nair et al. (1996),

Miller et al. (1997), Miller et al. (1998), Seila et al. (1999),
Miller et al. (2000)), (theses: Nair (1997), Zhang (1997),
Zhao (1997), Ge (1998), Xiang (1999), Tao (2000), Huang
(2000)).

2 COMPONENTS ON THE WEB

Today, software that is large in size and provides substantial
functionality is produced every day. On the other hand,
users needing only a couple of advanced features are forced
to purchase the more expensive product with superfluous
features. To solve this crisis, component technology is a
good solution. Software components are reusable building
blocks for constructing software systems, and have the
capability to function both independently and interactively
by working with other components, Cassady-Dorion et al.
(1997). By following some agreement, developers can reuse
the components that were produced by other developers at
different times and places.

The title of this section indicates what is needed. First
a useful component technology is needed. This technology
should allow software to be developed as separate modules
that work together as an application or system.

This concept can be examined from different viewpoints.

• From a binding perspective,when are the compo-
nents bound together: at compile-time, load-time
or run-time? Compile-time binding is clearly too
inflexible for today’s Web applications. Ideally, a
running application or system should be able to
interact with components as needed, so that run-
time binding should be supported. Use of intro-
spection/reflection allows an application to interact
with components that possibly only came into ex-
istence after the application had already started.

• From a development perspective,how easy is it
to bring components together to accomplish some-
thing useful? Is it as simple as "plug-and-play"?
What ensures that when played the components

1849



Miller, Seila, and Tao

play music and not dissonance? What orches-
trates their play (builder tools, monitors, agent
brokers, etc.)? How should the components inter-
act, by method calls, synchronous remote method
calls, asynchronous remote method calls, http re-
quest/reply messages, events, distributed events,
etc? Which approach is the most flexible and
makes it easy for developers to assemble compo-
nents?

• From a distribution perspective,where can the
components reside when they work together and
can they be easily moved? Must the components
be in the same process, the same machine (or
virtual machine), the same local area network (or
domain), or anywhere on the Web? How are the
components located, by IP address and port number,
by Uniform Resource Locator (URL), by name or
by services offered? What type of naming or
brokering service is provided? How difficult is it
to move a component from one location to another?

In the rest of paper, we will address these questions by
illustrating the capabilities of components in Java. Specifi-
cally, we will examine three types of components and con-
sider their suitability as a substrate (mallable infrastructure)
for Web-Based Simulation.

Table 1: Java Component Technologies
Java Technology Environment Distribute

Java Beans Local Machine None
Enterprise Java BeansClient-Server Basic
Jini Distributed Full

3 JAVA BEANS

Imagine having two Java applications (programs): one a
simulation model of a FoodCourt and a second a simulation
model of Emergency Room (see Figures 1 and 2).

Figure 1: FoodCourt Simulation Model

Figure 2: Emergency Room Simulation Model

Each program has a main method, so that it can be
executed. What needs to be done to "upgrade" these pro-
grams to components? First, the execution of the bean
needs to be initiated/controlled by a container (e.g., the
Beans Development Kit (BDK) Bean Box) or some other
component (e.g., a Model Agent). Next, the two models
should be able to interact. This requires some form of com-
munication. Direct communication is usually in the form
of method calls, while indirect communication is usually in
the form ofevents. Because of the greater flexibility offered
by events, Java Beans utilizes them as the primary form
of communication for beans (components). Two indepen-
dently developed components can be hooked up using an
event adaptor. The source component fires an event which
the adaptor listens for. Once the adaptor receives the event,
it calls a method in the target component. Adaptors are
small pieces of code that are easy to automatically generate.
Most visual development tools (e.g., BDK) allow dynamic
component assembly using adaptors to hookup components
without requiring any hand coding. Other important capa-
bilities include introspection and persistence.Introspection
allows development tools or other components to discover
what properties a component has as well as get and set the
values of these properties.Persistenceallows the state of
beans/objects to be saved and restored. Java serialization
provides this in an internal format, while externalization
may provide this in an open format (e.g., XML, Huang
(2000)).

Components are very useful in simulation modeling
and analysis. A simulation model may be built from com-
ponents, Healy and Kilgore (1998). Simulation models
themselves may be treated as components that may interact
in certain ways, Miller et al. (1998), Ge (1998). In addition,
components may act as service providers (e.g., information
management, Miller et al. (2000), Huang (2000)) or agents
(e.g., model agents, Seila et al. (1999), Xiang (1999)) for
simulation models. This work allows a group of models
and agents to be assembled in a bean box and executed
together to simulate a more complex simulation problem,
as illustrated in Figure 3 in which upon leaving the food

1850



Miller, Seila, and Tao

Figure 3: Interacting Simulation Components

court simulation, a fraction of the customers enter a hospital
emergency room simulation.

4 ENTERPRISE JAVA BEANS

Java Beans are very useful, but they need to be taken out of
the box (i.e., they simply run in a bean box (or equivalent)
which executes in a single Java Virtual Machine (JVM)).
The first comprehensive effort to take beans out of box is
Enterprise Java Beans (EJB). The intent of EJB is to provide
server-side components or beans. This complements Java
Beans which provides client-side components. Although,
both are components that share things in common, they
have some fundamental differences and are certainly not
interchangeable. One major difference is that events provide
the primary means of communication for Java Beans, while
remote method calls are the primary means to communicate
with Enterprise Beans. Another major difference is that
Java Beans are usually visible (i.e., have a GUI interface),
while Enterprise Beans are not.

The design goals for the EJB component architecture
are to enable enterprises to build scalable, secure, multi-
platform, business-critical applications as reusable, server-
side components, Roth (2000). An enterprise application
model, or in other words, an Enterprise Bean is a body
of code with fields and methods to implement modules of
business logic, Pawlan (2000). It is a building block that
can be used alone or with other Enterprise Beans to build

a complete and robust thin-client multi-tiered application.
An Enterprise Bean can be implemented to interact with
other Enterprise Beans.

There are two types of Enterprise Beans: Session Beans
and Entity Beans. By using a Session Bean, the client
begins a session with an object that acts like an application,
executing a unit of work on behalf of the client, possibly
including multiple database transactions. By using an Entity
Bean, the client accesses an object that represents a persistent
entity (e.g., one stored in a database). Generally, a Session
Bean represents a communication session with a client, and
an Entity Bean represents data in a database, Roth (2000),
Pawlan (2000).

• A Session Bean represents a transient conversation
with a client, and might execute database reads and
writes. A Session Bean might invoke the JDBC
calls itself or it might use an Entity Bean to make
the call, in which case the Session Bean is a client
to the Entity Bean. A Session Bean’s fields contain
the state of the conversation and are transient. That
means if the server or the client crashes, the Session
Bean is gone.

• An Entity Bean may represent data in a database
and the methods to act on that data. In an ob-
ject/relational database context, there would be one
bean for each object/row in a class-extent/table.
The Entity Beans are transactional and long-lived.
As long as the data remains in the database, the
Entity Bean exists.

To simplify the programming of enterprise applications,
EJB technology wraps a collection of services for support-
ing an EJB installation in the EJB server. These services
include management of distributed transactions, manage-
ment of distributed objects and distributed invocations on
these objects, and some low-level system services. An EJB
server provider can implement a container which provides
a home for EJB components. When Enterprise Beans are
installed into the container, the container provides a scal-
able, secure, transactional environment in which Beans can
operate. The container handles the object life cycle, includ-
ing creating and destroying an object. It also handles the
state management of Beans.

When an Enterprise Bean is installed in a container, the
container provides two interfaces to the bean: a universal
interface for creating and destroying Enterprise Bean in-
stances (its EJBHome remote interface) and an interface to
the specific methods provided by the Enterprise Bean (its
EJBObject remote interface). The container is also respon-
sible for making the Bean’s EJBHome interface available
in the Java Naming and Directory Interface (JNDI). To con-
struct a Bean, you must first implement the methods that
are declared in the EJBObject interface.

1851



Miller, Seila, and Tao

EJB provides many advanced programming services
beyond those provided by Java and Java Beans such as trans-
action, security, naming and deployment services. These
services are all very useful in modern information sys-
tems. These are also quite a challenge for programmers
to develop on their own. Because of this, EJB simplifies
the development of enterprise information systems, partic-
ularly those involving Web or Application Servers. The
question for the simulation community is how useful is
this complex software technology for simulation modeling
and analysis. In the sense that modern Web-Based Simu-
lation systems include information technology for storage,
retrieval and visualization of simulation models and results,
EJB technology is likely to play a role in future Web-Based
Simulation systems.

A distributed JSIM simulation system built using EJB
technology has been developed supporting a small subset
of the DoD’s High Level Architecture (HLA), Kuhl et al.
(1999), functionality, Tao (2000). Figure 4 illustrates the
EJB Architecture for Distributed JSIM.

Figure 4: EJB Architecture for Distributed JSIM

At run-time, the simulation models and model agents
work as federates in the the Distributed JSIM system. By
functionality, Distributed JSIM consists of three parts: the
Graphical Builder, the Federate Deployer and the Federation
Adaptor. Among these three parts, the Graphical Builder
is the most important. It acts as a client of the Federate
Deployer and the Federation Adaptor, and controls their
behavior. Each part of Distributed JSIM provides services
for build-time (federation building), for run-time (federation
execution) or for both.

Build-time services are provided by the combined ef-
forts of the Graphical Builder and Federate Deployer. The
Graphical Builder provides a graphical environment in which
users can build complex federations. It can manage and
display the available federates that are both from the local
machine and from the remote server. The Federate Deployer

is on the server side. It provides methods for managing
remote federates and is implemented using EJB.

Run-time services are provided by the combined efforts
of the Graphical Builder and Federation Adaptor. The
Graphical Builder provides services that support federation
execution, event management, object and method invocation,
etc. The Federation Adaptor can store remote simulation
models and control the behavior of these simulation models.
It is located on the server side and communicates using RMI.
Together with the Federation Adaptor, the Graphical Builder
provides the communication service for linked federates, so
other federates in the same federation can interact with the
remote simulation model.

A basic finding of this research is that EJB can support
HLA-style federated simulations in a limited and sort of
convoluted way, but it is not a perfect solution, Tao (2000).
It is more suitable for providing simulation services such
as information management. (An early part of this work
involved building a custom Bean Box in which adaptors
could make remote method calls using RMI to give Java
Beans a distributed capability; this was not pursued since
we wish to use/customize an infrastructure, not build our
own.)

5 JINI

Both Java Beans and Enterprise Beans are useful for sim-
ulation. Unfortunately, they are not interchangeable (or
transmutable). Another solution, where beans (components)
can be dynamically placed on the client-side or server-side
would be more useful in developing federated simulation
systems. This would allow simulation models to be run
either on the client-side or server-side. (The client-sever
distinction would then become less important than the notion
of whether the bean interacts with a human.)

The emerging Jini technology, Arnold et al. (1999),
holds promise as a suitable substrate for federated compo-
nents on the Web. Jini is oriented to general distributed sys-
tems, not just client-server systems; it is meant to strongly
support plug-and-play, to support flexible component in-
teraction as well as component mobility, and to provide
distributed events. Jini will make it quick and easy for
applications (and even devices) to join an impromptu net-
worked community.

Using Jini, a component can join a federation, interact
with other components and then leave the federation. This
is precisely what is needed for an HLA-style simulation,
Kuhl et al. (1999). A prototype implementation of a new
federated JSIM is currently underway to test the feasibility
of this approach. This project will unfold in two steps.

The first step will be to allow JSIM components to
communicate using distributed events. Currently, JSIM has
several classes for event communication (e.g., InformEvent,
InjectEvent, ReportEvent, SimulateEvent). These classes

1852



Miller, Seila, and Tao

extend the JsimEvent class which extend the EventObject
class. The JsimEvent would need to be modified to ex-
tend RemoteObject. JSIM also has several event listener
classes (e.g., InformListener, ReportListener, InjectListener,
SimulateListener). These classes extend EventListener, and
would need to be modified to extend RemoteEventListener.
Each class currently has a handler method such as the one
shown below.

public void handleSimulate
(SimulateEvent evt);

All of these methods will need to be renamednotify .
Because Jini was built to integrate well with Java Beans
components, this step should be a straightforward extension
of the current JSIM. At this point, an improved (over the
EJB implementation) Distributed JSIM will be available.

The second step involves adding a federated nature to
JSIM which will allow components to be easily added and
removed from the federation. This capability currently is
weakly supported since components can be dynamically
assembled by a designer using the BDK Bean Box (or
equivalent visual tool). Participation in the federation must
be extended to distributed components, components should
be mobile and joining a federation should be possible ei-
ther programmatically or through an enhanced visual de-
velopment/deployment tool. This work will utilize Jini’s
Discovery, Join, Lookup and Leasing services.

In order to make it easier for separately developed
federates to communicate, the distributed events will pass
XML messages between federates. This will increase the
interoperable nature of the system and minimize the need
for custom communication code generation or hand coding.
This flexibility is gained at the price of extra processing.
Federates will need to convert internal Java objects into XML
and vice versa. In order for federates to understand the XML
messages sent to them, we will explore tagging conventions
such as Beans Markup Language (BML) or analogs of the
Knowledge Query and Manipulation Language (KQML).

Figure 5 shows the XML event messages sent from
federate to federate.

dennis

Model Agent

kevin

larry

danny

robert

Repository Agent

Database Agent

ERoom Model

FoodCourt Model

Model Agent

Scenario Agent

Figure 5: XML Event Messages in Federated JSIM

In this figure, a scenario agent contacts a repository
agent to find simulation models and model agents suitable
for carrying out the wishes of the user. Once found, they are
deployed to separate machines (dennis and danny). Each
model agent oversees the execution of its model. Periodi-
cally, the model agent will save information in the database.
After the model/model agent complete, the scenario agent
will be notified, and then the scenario agent is able to ex-
amine results stored in the database. The database agent
will, as all federates do, receive XML messages. To store
this information several approaches, Huang (2000), may
be used: (1) use an XML database (future option), (2)
convert an XML document into a Java object and directly
store this in a Java-enabled object-relational database sys-
tem (e.g., Cloudscape), or (3) convert the XML document
into relational tables using a utility such as Oracle’s XML-
SQL utility, or (4) store the XML as a CLOB and extract
meta-data to store in tables for searching purposes.

6 CONCLUSIONS

The search for an suitable substrate indicates that compo-
nents technologies for the Web are progressing rapidly. In
the JSIM project, a prototype has been built using Java Beans
which works fine on a single machine. A new prototype built
using Enterprise Java Beans shows enhanced capabilities.
Unfortunately, the strong client-server orientation limited
the flexibility of what we could do with components. It
is quite helpful though in providing server-side simulation
support functions (e.g., information management). The
latest project which is currently underway uses the Jini
distributed component technology. This technology shows
great promise because of its high flexibility.

REFERENCES

Arnold, K., O’Sullivan, B., Scheifler, R., Waldo, J. and
Wollrath, A. 1999. The Jini specification. Addison-
Wesley.

Cassady-Dorion, L., Brumbaugh, M., Maheshwari, S.,
Wright. J., Brookshier, D., Last, B. and Mathis, J.
1997. Industrial strength Java. New Riders.

Ge, Y. 1998. Development of a web-based simulation
environment using Java Bean. Masters Thesis, The
University of Georgia.

Healy, K.J., Kilgore, R.A. 1998) Introduction to Silk and
Java-based simulation.Proceedings of the 1998 Winter
Simulation Conference, 327-334.

Huang, X. 2000. XML databases and their application to
JSIM. Masters Thesis, The University of Georgia.

Kuhl, F., Weatherly, R,. Dahmann, J. 1999.Creating
computer simulation system: An introduction to the
high level architecture. Prentice Hall.

1853



Miller, Seila, and Tao

Miller, J., Seila, A., Xiang, X. 2000. The JSIM web-based
simulation environment.Future Generation Computing
System Journal: Special Issue on Web-Based Modeling
and Simulation. (to appear).

Miller, J., Ge, Y. and Tao, J. 1998. Component-based
simulation environments: JSIM as a case study using
Java Beans.Proceedings of the 1998 Winter Simulation
Conference, 373-381.

Miller, J., Nair, R., Zhang, Z., and Zhao, H. 1997. JSIM:
A Java-based simulation andaAnimation environment.
Proceedings of the 30th Annual Simulation Symposium,
31-42.

Nair, R. 1997. JSIM: A Java-based query driven simula-
tion and animation environment. Masters Thesis, The
University of Georgia.

Nair, R., Miller, J., and Zhang, Z. 1996. A Java-based
query driven simulation environment.Proceedings of
the 1996 Winter Simulation Conference, 786-793

Pawlan, M. 2000. Enterprise Java Beans working with entity
and session Beans.<http://developer.java.
sun.com/developer/technicalArticles/
Beans/EJBEntity/index.html> .

Roth, B. 2000. An introduction to enterprise Java
Beans technology.<http://developer.java.
sun.com/developer/technicalArticles/
Beans/IntroEJB/index.html> .

Seila, A.F. and Miller, J.A. 1999. Scenario management in
web-based simulation.Proceedings of the 1999 Winter
Simulation Conference, 1430-1437.

Tao J. 2000. HLA-compliant distributed JSIM. Masters
Thesis, University of Georgia.

Xiang, X. 1999. Use of Agents to control the execution of
Simulation Components. Masters Thesis, The Univer-
sity of Georgia.

Zhang, Z. 1997. A Java-based simulation and animation en-
vironment: JSIM’s foundation library, Masters Thesis,
The University of Georgia.

Zhao, H. 1997. A graphical designer For JSIM. Masters
Thesis, The University of Georgia.

AUTHOR BIOGRAPHIES

JOHN A. MILLER is a Professor and the Graduate Coor-
dinator in the Department of Computer Science at the Uni-
versity of Georgia. His research interests include database
systems, simulation and workflow as well as parallel and
distributed systems. Dr. Miller received the B.S. degree
in Applied Mathematics from Northwestern University in
1980 and the M.S. and Ph.D. in Information and Computer
Science from the Georgia Institute of Technology in 1982
and 1986, respectively. During his undergraduate education,
he worked as a programmer at the Princeton Plasma Physics
Laboratory. Dr. Miller is the author of over 60 technical pa-
pers in the areas of database, simulation and workflow. He

has been active in the organizational committees of research
conferences in all three areas, including IEA/AIE, ANSS,
RIDE, WEBSIM and WSC. He is an Associate Editor for
ACM Transactions on Modeling and Computer Simulation
and IEEE Transactions on Systems, Man and Cybernetics
as well as a Guest Editor for the International Journal in
Computer Simulation and IEEE Potentials.

ANDREW F. SEILA is an Associate Professor in the Terry
College of Business at the University of Georgia, Athens,
Georgia. He received his B.S. in Physics and Ph.D. in
Operations Research and Systems Analysis, both from the
University of North Carolina at Chapel Hill. Prior to joining
the faculty of the University of Georgia, he was a Member
of Technical Staff at the Bell Laboratories in Holmdel, New
Jersey. His research interests include all areas of simulation
modeling and analysis, especially output analysis. He has
been actively involved in the Winter Simulation Conference
since 1977, and served as Program Chair for the 1994
conference.

JUNXIU TAO is currently employed by Intergraph Cor-
poration, Huntsville, Alabama. She received her M.S. in
Computer Science from the University of Georgia in 2000.
Her research interests include simulation, distributed com-
puting and enterprise information systems.

1854


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

