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ABSTRACT

Recent breakthroughs in communication and software en-
gineering has resulted in significant growth of web-based
computing. Web-based techniques have been employed for
modeling, simulation, and analysis of systems. The mod-
els for simulation are usually developed using component
based techniques. In a component based model, a system
is represented as a set of interconnected components. A
component is a well defined software module that is viewed
as a “black box”i.e.,only its interface is of concern and not
its implementation. However, the behavior of a component,
which is necessary for simulation, could be implemented
by different modelers including third party manufacturers.
Web-based simulation environments enable effective shar-
ing and reuse of components thereby minimizing model
development overheads. In component based simulations,
one or more components can be substituted during sim-
ulation with a functionally equivalent set of components.
Such Dynamic Component Substitutions (DCS) provide an
effective technique for selectively changing the level of ab-
straction of a model during simulation. It provides a tradeoff
between simulation overheads and model details. It can be
used to effectively study large systems and accelerate rare
event simulations to desired scenarios of interest. DCS
may also be used to achieve fault-tolerance in Web-based
simulations. This paper presents the ongoing research to
design and implement support for DCS in A Web-based
Environment for Systems Engineering (WESE).

1 INTRODUCTION

The marked growth in communication technology and soft-
ware engineering has resulted in significant growth in the
use of the World Wide Web (WWW) (Fishwick 1996). The
distributed resources of the WWW have been harnessed
together using Web-based computing methodologies (Fish-
wick 1996, Rao et. al. 1999, Rao et. al. 2000). Web-based

techniques enable active interaction between interconnected
computing systems that can be individually or collectively
used to provide a generic set of computational resources.
These techniques have transformed the WWW into a giant
computational infrastructure (Rao et. al. 1999, Rao et. al.
2000). The computational infrastructure of the WWW has
been exploited to enable Web-based simulations (Page et.
al. 1994, Rao et. al. 2000). Web-based simulation is an
effective solution to address a number of issues exacerbating
modeling, simulation, and analysis, such as:(i) effective
sharing and reuse of simulation models developed by dif-
ferent modelers (Rao et. al. 2000);(ii) availability and
accessibility of the models (Page et. al. 1994) without loss
of proprietary information (Rao et. al. 2000);(iii) porta-
bility and inter-operability of the models (Vinoski 1997);
(iv) capacity for large scale simulations (Page et. al. 1998,
Rao et. al. 2000). Due to its effectiveness, web-based
simulations are steadily growing in importance.

In web-based simulation environments, the models for
simulations are usually developed using component based
modeling techniques (Pidd et. al. 1999, Rao et. al. 2000).
In a component based model, a system is represented as
a set of interconnected components (Rao et. al. 2000). A
component is a well defined entity which is viewed as a
“black box”, i.e., only its interface is of interest and not its
implementation. A component could in turn be specified
using a set of sub-components. During simulation, each
atomiccomponent is associated with a specific, well defined
software module that implements its behavior and function-
ality. The software modules could be those implemented
by the modeler, available locally, or those obtained via the
WWW from other third party model developers (Rao et.
al. 2000). Web-based simulation environments insulate the
user from the intricacies involved utilizing third party mod-
els and the overheads of distributed simulation. Component
based modeling techniques offer a number of advantages
(Pidd et. al. 1999, Rao et. al. 2000). Components are not
only useful modeling abstractions but are also convenient
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units for information exchange over the WWW. Sharing and
reuse of components considerably reduces modeling and val-
idation overheads. Component based modeling technique
also eases exploration of design alternatives through “plug
and play” of components (Rao et. al. 2000). Hence, it is
prevalently used for web-based modeling and simulation
(Fishwick 1996, Rao et. al. 1999, Rao et. al. 2000).

In component based simulation models, one or more
components can be substituted by functionally equivalent
set of components without altering the basic characteris-
tics of the model. Substituting one or more components
with a single component and vice versa is synonymous to
varying the level of abstraction of the model. For example,
in the case of logic simulations, a structural model of a
component could be substituted by its behavioral model and
vice versa to change the levels of abstraction. Substitution
of components may be done statically, prior to simulation,
or dynamically, during the course of simulation. Static
component substitution has been employed to address ca-
pacity and performance of large scale simulations. Huang
et. al. present techniques for selectively abstracting differ-
ent components of network models to improve performance
and capacity of network simulations (Huang et. al. 1998).
Rao et. al. aggregate components that utilize a common
implementation, increasing the capacity of simulators, to
enable ultra-large scale simulations (Rao and Wilsey 1999).
Levelized code compilation techniques, that selectively re-
place parts of combinatorial logic circuits with equivalent
behavioral descriptions, are widely used to improve perfor-
mance of circuit simulations (Wang and Maurer 1990). The
primary drawback of these techniques is that, functionality,
observability, and model details cannot be altered during
simulation. However, observability and model details are
crucial for effectively studying large scale systems.

On the other hand, substituting components during sim-
ulation provides a dynamic tradeoff between model details
and performance of the simulation. Dynamic Component
Substitution (DCS) not only encompasses the utility of its
static counterpart but also provides a number of other use-
ful features. DCS enables effective “What-if” analyses and
exploration of design alternatives to be carried out during
the life time of a simulation. DCS is a novel approach for
simulation of “multiple futures” (Hybinette and Fujimoto
1999). It is an alternative approach for fast simulations
and provides an attractive solution to accelerate rare event
simulations (Altamirano and Altamirano 1994). It is an
effective technique for debugging and validating large sim-
ulations. The technique can also be used to dynamically
alter the tradeoffs between resource consumption and model
details during simulation. DCS can be used to selectively
abstract parts of a model thereby enabling simulation and
analysis of large systems in reasonable time frames. The
technique can also be used to achieve better fault-tolerance
in web-based simulations. However, implementing support

for DCS in optimistically synchronized simulations, Time
Warp simulations in particular, is a complicated task. This
paper presents the issues involved in implementing support
for DCS in a Web-based Environment for Systems Engi-
neering (WESE). A brief background on the distributed
synchronization mechanism and the simulation kernel used
in WESE is presented in Section 2. An overview of WESE is
presented in Section 3. The issues involved in implemented
DCS in WESE are presented in Section 4. Some of the
experiments conducted using the DCS feature of WESE are
presented in Section 5. Section 6 presents some concluding
remarks along with pointers to future work.

2 BACKGROUND

The distributed simulation capabilities of WESE have been
enabled using WARPED, a parallel optimistic simulator.
WARPED uses the Time Warp (Jefferson 1985) paradigm
to achieve distributed synchronization. A Time Warp syn-
chronized simulation is organized as a set of communicating
asynchronous logical processes (LPs). The LPs communi-
cate between each other by exchanging discretevirtual time
stamped events (Jefferson 1985). Virtual Time is used to
model the passage of time and define a total order on the
events in the system. Each LP processes its events incre-
menting its local virtual time (LVT), changing its state, and
generating new events. The LPs must be synchronized in
order to maintain the causality of the simulation; although
each LP processes local events in their correct time-stamp
order, events are not globally ordered. Causal violations
may occur due to the optimistic nature of Time Warp.
Causality violations are detected by a LP when it receives
an event with time-stamps lower than its LVT (astraggler
event). On receiving a straggler, arollback mechanism is
invoked to recover from the causality error. The rollback
process recovers the LP’s state prior to the causal violation,
canceling the erroneous output events generated by send-
ing out anti-messages, and re-processing the events in their
correct causal order (Jefferson 1985). Each LP maintains a
list of state transitions along with lists of input and output
events corresponding to each state to enable the recovery
process. A periodic garbage collection technique based on
Global Virtual Time (GVT) is used to prune the queues by
discarding history items that are no longer needed. The
distributed simulation is deemed to have terminated when
all the events in the system have been processed in their
correct causal order.

The WARPED kernel presents an interface to build
logical processes based on Jefferson’s original definition
of Time Warp (Radhakrishnan et. al. 1998). The kernel
provides an application program interface (API) to build
different LPs with unique definitions of state. The basic
functionality for sending and receiving events between LPs
using a message passing system is supported by the kernel. In
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WARPED, LPs are placed into groups called “clusters”. LPs
on the same cluster communicate with each other without
the intervention of the message passing system, which is
faster than communication through the message system.
Although LPs are grouped together into clusters they are
not coerced into synchronizing with each other. Control
is exchanged between the application and the simulation
kernel through cooperative use of function calls. Further
details on the API and working of WARPED is available
in the literature (Radhakrishnan et. al. 1998).

3 WESE

The Web-based Environment for Systems Engineering
(WESE) was developed to ease modeling and simulation
of systems over the WWW (Rao et. al. 2000). In WESE
the model of a system is represented using a set of inter-
connected components. A component is treated as a “black
box” with a set of inputs and outputs;i.e., only the inter-
face specification of the component is of concern and not
its implementation. The actual implementation of a com-
ponent could be developed by the modeler or by other third
party designers. Accordingly, WESE provides a component
based modeling language, a framework for developing a
web-based repository of components, and the infrastructure
for distributed simulation. An overview of WESE is shown
in Figure 1. As shown in Figure 1, the environment provides
a Hyper Text Markup Language (HTML) interface and a
text based frontend that can be used to interact with the
WESE Server. The server forms the core of WESE and
orchestrates the various parallel and distributed activities of
the system. The input to WESE is the model of the system
described using the System Specification Language (SSL).
The Backus Normal Form for SSL grammar is shown in
Figure 2. As shown in Figure 2, the specification of a model
or a SSL design file consists of a set of interconnectedmod-
ules. Each module consists of three main sections, namely;
(i) thecomponent definition sectionthat contains the details
of the components to be used to specify a module (such
as the Universal Resource Locator (URL) of a factory and
name of the source object along with initial parameters);(ii)
thecomponent instantiation sectionthat defines the various
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Figure 1: Overview of WESE

design_file ::=
include_list ssl_design_module ssl_design_module

include_list ::= include_clause include_clause include_list
include_clause ::=include “ file_name ”;
file_name ::= identifier identifier . identifier
ssl_design_module ::=

label ssl_module ssl_module ssl_design_module
ssl_module label ssl_module ssl_design_module

ssl_module ::=
{ component_definition_section}
{ component_instantiation_section}
{ net_list_section}

label ::=
identifier (number,number)
identifier (number,number label_string)

label_string ::= , identifier , identifier label_string
component_definition_section ::=

component_definition
component_definition component_definition_section

component_definition ::=
component_name(number , number):url optional_parameter

optional_parameter ::= parameter; ;
component_name ::= identifier(number, number)
parameter ::= “ string ” “”
url ::= host_name: port_number . factory
host_name ::= identifier identifier . host_name
factory ::= identifier identifier . factory
port_number ::= number
component_instantiation_section ::=

component_instantiation
component_instantiation component_instantiation_section

component_instantiation ::=
identifier . identifier optional_parameter identifier . identifier number optional_parameter

net_list_section ::= net_list net_list net_list_section
net_list ::= identifier ( mode , number ) : instance_list ;
instance_list := instance instance , instance_list
instance ::= identifier( mode , number )
mode ::= in out
identifier ::= start_char any_char
start_char ::= [a - z, A - Z]
any_char ::= [a - z, A - Z, 0 - 9, _ ]
string ::= string_char string_char string
string_char ::= []
number ::= [0 - 9]

Figure 2: BNF for SSL Grammar

components constituting the module; and(iii) the netlist
sectionthat defines the interconnectivity between the var-
ious instantiated components. SSL permits alabel to be
associated with each module. Thelabel may be used as a
component definition in subsequent module specifications
to nest a module within another. In other words, thelabels,
when used to instantiate a component, result in the complete
module associated with the label to be embedded within the
instantiating module. This technique can be employed to
reuse module descriptions and develop hierarchical speci-
fications. As shown in Figure 1, the input SSL source is
parsed into an object oriented (OO) in-memoryintermedi-
ate form(SSL-IF) using the SSL parser. Hierarchical SSL
models are elaborated or “flattened” at the end of parsing by
the elaborator (Rao et. al. 1999). Elaboration is a recursive
process that flattens a hierarchical model by substituting
each module reference (made through the use oflabels)
with an unique instance of the module. As shown in Fig-
ure 1, the elaborated model, which is also represented using
SSL-IF, forms the primary input to all the other modules
of WESE.

The WESE Server also performs the task of collab-
orating with the distributed factories and coordinating the
simulations. As shown in Figure 1, thesimulation manager
performs the activities associated with coordinating with
the object factories (via thefactory manager) to setup a
distributed simulation. Thefactory managerperforms the
tasks of interacting with the distributed factories using a
predefined protocol. It not only provides a uniform inter-
face to communicate with different object factories but also

1842



Rao and Wilsey

insulates the other modules of the server from the intricacies
of the underlying protocols. Theinformation manageris
responsible for interacting with the factories (via thefactory
manager) and constructing the formal specifications used
by WESE’s formal framework. The current implementa-
tion of WESE is geared to generate formal specifications
in PVS, a higher order logic specification language. The
PVS specification can be used to formally verify different
attributes of the system by using a mechanized theorem
prover.

To ease design, development, and use of components
WESE provides a framework for constructing web-based
object factories. An object factory can be viewed as a web-
based repository of components with an added capability
for simulating them. The object factories play a pivotal role
in providing a framework for management of components
and the infrastructure for distributed simulation. Figure 3
illustrates the layout of a WESE factory. The initial handle
to a factory is provided by thegatewaymodule. The module
hooks on to a specified IP (Internet Protocol) address via the
communication backbone and processes the initial requests
from different simulation managers. This IP address that
should be specified in the configuration file to locate and
communicate with a factory. The task of interacting with
a simulation manager to create components and to set up a
simulation is handled by thesession manager module. The
session manager also handles some of the specific semantics
of the simulation engine. Theconfiguration managertailors
the components generated by the factory to meet the user’s
specifications. The simulation sub-system constitutes the
actual simulation engine of the factory. A WESE factory
is built from sub-factories andobject stubs. The object
stubs are the atomic components of a factory. Object stubs
contain attributes of the physical component (such as cost,
size, and speed) along with the formal specifications for the
component. The object factories collaborate with the WESE
Server to enable web-based simulations. WESE provides a
simple, yet robustapplication program interface(API) for
developing simulation models. Further details on the API
and WESE are available in the literature (Rao et. al. 2000).
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Figure 3: A WESE Factory

4 IMPLEMENTING DCS IN WESE

DCS may be achieved by replacing a given LP, or a set of
LPs, in a simulation with a functionally equivalent LP, or a
set of LPs. Some of the scenarios that could arise in DCS are
illustrated in Figure 4. The“1 to 1” case, shown in Figure 4,
in which one LP is replaced by another, is the simplest
instance of DCS. As shown in the figure, the“N to 1”
scenario, where in a set of LPs are replaced with a equivalent
LP, arises when a compound component, consisting of a set
of sub-components, is replaced with an atomic component.
This scenario is equivalent to abstracting a part of the model.
The“N to M” instance is one where in a set of LPs (N LPs)
are replaced with a equivalent set of LPs (M LPs). This
scenario arise when a compound component, is replaced with
another compound component. However, this instance can
be viewed as sequence of atomic component substitutions.
An atomic component may be replaced with a compound
component, reducing the level of abstraction, causing a
single LP to be replaced with a set of LPs. The“1 to N”
scenario, shown in Figure 4, illustrates this case. To enable
modeling of the different scenarios and effectively utilize
support for DCS, modifications to the modeling language
and simulation infrastructure are required. Consequently, to
enable DCS in WESE, modifications to SSL, the SSL parser,
SSL-IF, elaborator, and the simulation infrastructure were
carried out. The issues involved in the implementation of
these modifications along with the tradeoffs in their design
are discussed in the following subsections.

- Source LP(s) - Destination LP(s)

1 To 1

N to M 1 To N

N To 1

Figure 4: Scenarios in DCS

4.1 Modifications for modeling DCS

The initial phase of implementing support for DCS in WESE
involved extending SSL to include additional constructs for
modeling the different scenarios illustrated in Figure 4.
Care was taken to ensure that the extensions were minimal
so that the language continues to be simple, flexible, and
easy to process. The primary extension was to permit an
auxiliary moduleor component definitionto be associated
with a module. The BNF of the modified grammar rule
for a module is shown in Figure 5. When DCS for a
module is requested, the set of components contained by
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ssl_module ::= auxiliary_component ssl_module_bodyssl_module_body
ssl_module_body ::={ component_definition_section}

{ component_instantiation_section}
{ net_list_section}

auxiliary_component ::= label : url optional_parameter

Figure 5: Modified BNF for SSL Module

the module are substituted using the auxiliarymoduleor
component definitionand vice versa, as the case may be.
Modeling the“N to 1” , the “N to M” , and the“1 to N”
scenarios (illustrated in Figure 4) using this extension is
straightforward. In WESE, DCS can be performed only at
a module level. However, a module can contain a single
component and it can be replaced it with an auxiliary
component. This feature can be exploited for modeling the
“1 to 1” DCS scenario. The semantics of thenetlist was
also extended to include references to the auxiliary module
and component definitions.

SSL-IF was also extended to correspondingly reflect the
changes to the grammar. The elaborator was also modified
to account for the auxiliary components. The elaborator
also flattens auxiliary modules and component definitions.
It results in the creation of unique instances of the auxiliary
components. The auxiliary components are an integral part
of the elaborated SSL-IF and are identified using special
flags in the various data structures. The elaborator was
extended to identify primary input and output components,
i.e., components that are directly connected to the input
and output ports of the enclosing module. This information
is utilized during simulation to update netlist entries when
components are substituted with other components. The
elaborator also collates information on the set of components
contained by each module. This information is utilized to
identify a set of components that need to be replaced when
DCS is initiated. The data collated by the elaborator is
embedded into the corresponding SSL-IF nodes generated
during elaboration. The data is passed on to the simulation
modules of WESE that utilize them for enabling efficient
DCS. Modifications to the simulation infrastructure ofWESE
to enable DCS are presented in the following subsection.

4.2 Simulation infrastructure for DCS

The process of dynamically substituting components during
simulation (as shown in Figure 4) involves the following
steps: triggering DCS in the simulation, creation of new
LPs that model the components, updation of states and
events of the LPs, and updation of kernel information. In
Time Warp synchronized simulations, additional care must
be exercised to implement these phases in the presence of
rollbacks that could occur in a Time Warp synchronized
simulation. A number of modifications were carried out to
the simulation modules of WESE to enable DCS. The most
significant change was a modification to the structure and
API of a LP. The API was modified to utilize object oriented
(OO) techniques to completely disassociate a user-defined

LP from the simulator core, as shown in Figure 6. In the
earlier API, theUserDefined Object class would be
directly inherited from theKernel Object class. As
illustrated in the figure, theKernel Object and User
Object are linked using pointer references. TheUser
Object translates the API function calls to corresponding
Kernel Object methods while theKernel Object
translates WARPED API function calls to corresponding
User Object methods. The API presented by theUser
Object class is similar to the earlier API of WESE. Hence,
the changes required to the existing components of WESE
were minimal.

This design is motivated primarily by two factors. The
primary issue being that the WARPED kernel does not
support creation and deletion of LPs during simulation.
In other words, the WARPED kernel does not permit the
structure and composition to change once simulation com-
mences. However, DCS involves changes in structure and
composition during simulation. This issue is resolved by
using the class hierarchy, shown in Figure 6, wherein the
Kernel Object s are static (i.e., they do not change during
simulation) while theUser Object class hierarchy is dy-
namic (i.e., it can change during simulation). TheKernel
Object s provide the static interface to theWARPED kernel,
while differentUserDefined Objects can be plugged
into the Kernel Object during simulation. This tech-
nique enables dynamic substitution of components while
adhering to the specifications and semantics of the WARPED
kernel. However, this design does not provide an effective
technique for creating new components that may be neces-
sary during DCS. Hence, inWESE, the auxiliary components
that could potentially be used during simulation are also
created. However, these components merely as place hold-
ers and do not perform any activity until they are activated
through DCS.

The second motivation for the design is that theKernel
Object class provides a convenient spot for implementing
support for DCS by utilizing the simulation infrastructure

copyState(BasicState*);

int **fanInList;
int **fanOutList;

State

copyState(BasicState*);

Basic State

copyState(BasicState*);

User Object State

Structure of a WESE LP
Simulation Object

/* WARPED API */

User Object

UserDefined Object

Kernel Object

sendEvent(Event *);
Event *getEvent();
int *getFanOutList(int);
State* getCurrentState();

void initialize();
void finalize();
void executeProcess();

sendEvent(Event *);
Event *getEvent();
int *getFanOutList(int);
State* getCurrentState();

void initialize();
void finalize();
void executeProcess();
BasicState*

allocateState();

State*
allocateState();

Figure 6: Modified Structure of a WESE LP
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of WARPED. The WARPED kernel insulates theKernel
Object s from rollbacks which considerably reduces the
complexity and overheads involved in implementing DCS.
Also, with this design, the overheads and process of DCS is
transparent to the components. This solution is independent
of the underlying synchronization mechanism. Accordingly,
in WESE, an event driven approach has been adopted for
carrying out the sequence of steps involved in dynamically
substituting components. The set ofkernel eventsused by
WESE was extended to include events for sequencing the
different phases of DCS. The primary drawback of this
design is that it introduces additional state saving over-
heads in Time Warp simulations. However, a number of
Time Warp optimizations can be employed to minimize state
saving overheads (Fujimoto 1990). This design also intro-
duces additional overheads during simulation since each
API function call involves one extra level of indirection.
Also, maintaining the auxiliary components could prove
to be a bottleneck for large simulations (Rao and Wilsey
1999). However, component aggregation techniques can
be employed to minimize the overheads (Rao and Wilsey
1999).

Activate

Aux. Comp.
for module M

Module (M)
Event

Step 1
Trigger DCS

Event(s)
Update

Step 3

if  it is a primary input node then update
information of driving component(s)

if it is a primary output node then update
information of the driven component(s)

On receiving a DeActivate Event:

Also send the updates to the
corresponding auxiliary components(s)

DeActivate
Event(s)

On receiveing an Update Event, appropriately
change the fan-in/fan-out entrie(s)

in structure due to DCS.
in the state; reflecting the change 

Step 4

that are going to be
substituted by the

Step 2
Deactivate all coponent(s)

auxiliary component(s)

M

M

M

M

Figure 7: Sequence of Operations During DCS

A typical sequence of steps performed by theKernel
Object s to achieve DCS are shown in Figure 7. The figure
also illustrates the corresponding sequence of transforma-
tions that occur to the model during the different phases. The
kernel events that participate in DCS are also shown. The
initial phase involves triggering DCS in the simulation by
scheduling anActivate or aDeActivate event, as the
case may be, to the corresponding auxiliary component(s).
DCS could be triggered externally, by using interactive
simulation features, or internally, by the simulation model
based on certain application-specific conditions. On receiv-

ing a Activate or a DeActivate event, theKernel
Object s initiates the process of DCS. During the second
phase of DCS, the activated set of auxiliary components
scheduleDeActivate events to the set of components
that they are going to substitute. The information on the set
of components to be replaced is collated during elaboration
and is passed onto the correspondingKernel Object s
by the WESE server during initialization. The server also
passes the primary input and output component flags col-
lated by the elaborator (as explained in subsection 4.1) along
with the netlist data to the respectiveKernel Object s.
In the next phase, theKernel Object s that receive the
DeActivate Event utilize this information to schedule
Update Event s to all the related components. The re-
lated components are those components with which a given
component communicates. This list of related components
is obtained from the from the netlist data of the component.
The primary input and output components also schedule
Update Event s to the auxiliary component to provide
the list of related components. This information is required
to build the netlist of the new component. On receiving the
variousUpdate Event s, the variousKernel Object s
update their netlists reflecting the change in structure. As
shown in Figure 7, during subsequent simulation cycles, the
events generated would be passed on to the new components
while the old components get deactivated. To handle the
different scenarios that could arise during DCS (as shown
in Figure 4, additional sub-tasks, such as instantiating new
components in different object factories, are performed in
the corresponding DCS phases.

The kernel events used during the different phases of
DCS are scheduled using WARPED’s simulation infrastruc-
ture. The usage is similar to that of any other WARPED
application. Hence, to ensure that the events are scheduled
in the correct sequence, adeltadelay is introduced between
each event using a two tuple definition for simulation time.
The use of a two tuple definition for simulation time is
hidden from the user by the API. Since the process of DCS
proceeds indelta cycles, it appears to occur at a particular
instant in simulation time. Thedeltadelays also ensure con-
sistent recovery from rollbacks. The data pertaining to the
component is stored in the state of theKernel Object .
When a rollback occurs, WARPED appropriately restores
the state of theKernel Object ensuring coherence of
the different phases in DCS. The disadvantages of the event
driven design for DCS is that a large number of events could
be scheduled during DCS. Hence, if DCS occurs frequently,
the performance of the simulation could deteriorate. One of
the limitations of the current implementation is that it can
be used to substitute only “memory less” components (i.e.,
components that do not have an explicit notion of state). In
other words, the current implementation does not provide
support to map the state of the old module to that of the
new module. Research is underway to provide a support for
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mapping the state space of one module to another during
DCS. Also, it must be noted that the transient events that
were already scheduled for the old set of modules do not
get reassigned to the new set of components. They continue
to get processed by the substituted set of components. The
experiments conducted using DCS in WESE are presented
in the following section.

5 EXPERIMENTS

The experiments conducted to evaluate the support for DCS
in WESE consisted of two phases. During the first phase an
object factory consisting of a collection of logic gates was de-
veloped. The factory contained logic gates such as two input
and gate, two inputor gate, two inputexclusive-or
gate, andnot gate. More complex components, such as a
half adder and a full adder , were included in the
hardware factory. The factory also contained a bit pattern
generation component and a bit display component. The
pattern generator can generate all possible bit patterns of
a given length and can be used to exercise the inputs of a
model developed using components from the factory. The
display component can be used to generate a set of bits as
outputs from the simulations. The factory also contained a
controller component that provides a convenient interface
to trigger DCS. The second phase of the experiment con-
sisted of developing logic models in SSL using the various
components from the hardware factory. The characteristics
of some of the models using the experiments is shown in
Table 1. The models included auxiliary component speci-
fications for the modules that had equivalent higher level
abstractions. The number of components replaced by each
auxiliary component in the models is also shown in the table
(column Replaced by Aux. ). For example, model M1
was implemented using structural models of full adders. The
structural models of also included an auxiliary specification
to use thefull adder component available in the factory.
The full adder component substitutes nine components
constituting the structural model. The SSL descriptions also
used thecontroller components activate the auxiliary
modules (trigger DCS) at different time points during sim-
ulation. The simulation experiments were conducted on a

Table 1: Models Used in Experiments
Model Description Number of Components
Name Regular Aux. Replaced

by Aux.
M1 4-bit adder 56 4 9
M2 5-bit Mux. 33 6 4
M3 Cascaded half-adders 16 6 2
M4 Chain of not gates 70 5 6
M5 Chain of not gates 330 1 30

network of shared memory multi-processor (SMP) work-
stations. Each workstation consisted of two Pentium pro
Processors (166 Mhz.) with 128 mega bytes (MB) or main
memory (RAM). The workstations were inter-connected us-
ing fast Ethernet. The graph in Figure 8 presents the change
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Figure 8: Events Versus Duration of DCS

in the total number of events processed with respect to the
duration of simulation time in which the auxiliary compo-
nents were active. These statistics were collated from the
experiments conducted using a single factory where in no
rollbacks occur. The data points shown with zero durations
did not involve any DCS and represent the basic number of
events executed by each model. As illustrated by the graphs,
for short durations during which the auxiliary component
is active, the total number of events processed is higher.
The increase in number of events is due to the additional
kernel events used to activate and deactivate the components
during DCS. However, as the duration increases the num-
ber of events processed decreases. The number of events
decrease since a set of components are replaced by a single
component which results in the elimination of a number
intermediate events used and the total number of events in
the simulation decreases. As shown in Figure 8, the dura-
tion of simulation time for which DCS reduces the number
of events varies with respect to the model characteristics.
This value plays a crucial role in the effectiveness of DCS
to improve performance of the simulations. If the duration
is smaller than this threshold value, then as the number of
substitutions increases, the total number of events in the
simulation increases and the performance of the simulation
decreases, and vice versa.

Figure 9 presents the time for simulating modelM5
in parallel using a varying number of factories. These ex-
periments were conducted by deploying the object factory
on different workstations and modifying the SSL descrip-
tions to choose components from the different factories.
The components were chosen from the different factories at
random. The timing information shown in the graph is the
average of 10 simulation runs. As illustrated by the graph,
the performance of the simulations increases as the duration
during which the auxiliary components are active increase.
As shown in Figure 8, the improvement in performance is
due to the decrease in the total number of events that need
to be processed. As illustrated by Figure 9, the parallel
simulations performed using 3 factories performs better than
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those performed using a single factory. The performance im-
proves since the simulation overheads get distributed across
the three processors. In the 2 factories case the computa-
tional overheads dominate the simulation, while in the 4
factories case communication overheads dominate. Hence,
in these cases the overheads dominate the gains accrued
by employing parallel simulation and the performance of
the simulations do not improve. As illustrated by Figure 8
and Figure 9 the performance of parallel simulations can
be improved through DCS.

6 CONCLUSIONS

Component based modeling techniques provide a effective
means to study systems through “plug and play” of compo-
nents. In this paper the issues involved in substituting the
components dynamically, during simulation were presented.
The design and implementation of the support for Dynamic
Component Substitution in WESE was illustrated. The ex-
periments in which DCS was used to change the level of
abstraction of the model during simulation were described.
The results obtained from the experiments indicate that
considerable gains in the performance of simulation can be
accrued by employing DCS. The technique can be used to
accelerate simulations, rare event simulation in particular,
to scenarios of interest. DCS can be used to replace a single
component with multiple components and simultaneously
study the effects of different decisions. This provides a
novel technique for simulating multiple futures. DCS can
also be used to selectively study parts of a large simula-
tion thereby increasing the performance and the capacity to
simulate large scale models over the WWW.
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