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ABSTRACT

Simulation is used in the design process of dynamic
systems. The results of simulation are employed for
validating a model, and they are helpful for the improve-
ment of the design of a system with respect to both,
qualitative and quantitative properties. The paper concen-
trates on these aspects and applications of simulation in
education, advocates its presence in student curricula,
presents building blocks of education modules for simula-
tion and validation with respect to both content and
method, discusses requirements for simulation and valida-
tion education, and finally suggests the integration of
simulation teachware in virtual classrooms and distance
learning environments. Modeling and simulation is almost
necessarily based on modeling languages with precise
semantics. In education as well as in practice, suitable
computer tools should be employed.  We suggest Petri nets
with sequential semantics and partial order semantics as a
modeling language. The contribution is based on experi-
ences from several university courses on system modeling
and simulation with Petri nets, including practical training.
Moreover, relevant concepts from recent distance learning
projects are mentioned.

1 INTRODUCTION

The handling of abstraction and of models is generally
claimed to be one of the central issues of computer science.
The same topic is also central in engineering and science.
However, little attention is paid to the process of model
creation and validation. This observation holds for research
as well as for education. In industrial practice computer
scientists have to create models from existing or planned
reality as one of the first steps in system design. A
thorough knowledge of theoretical topics which are usually
taught to computer science students - like model semantics,
verification techniques, transformation of models within
one or between several modeling languages - is a necessary
prerequisite for this work but it does not really give
information about how to create and validate models. In
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other words: We do not teach students to build the right
model but only consider theoretical issues within the world
of models in detail. Simulation of a system model is an
approved method for validation if the simulation results
can be compared with the intended behavior of the system.

As observed in (Denning 2000), experimental methods
in computer science have not yet received the deserved
general recognition in universities, although these methods
have frequently lead to important developments of theories
and of practical systems in practice. The creation of models
and their simulation are the core issues in experimental
methods. Simulation by playing with different values of
parameters is particularly useful for the improvement of
systems with respect to quantitative properties such as
performance.

This contribution does not try to provide suggestions
for any kind of simulation education but concentrates on
the aspects of simulation based model validation and
system evaluation (w.r.t. quantitative measures), motivated
in the above paragraphs. It is organized as follows. In
Section 2 we glimpse at application scenarios where simu-
lation is used for validation purposes in early phases of
system design. We will refer to these scenarios in subse-
quent sections. Section 3 presents building blocks that we
consider essential for simulation skills. Consequently, it is
argued that these topics are to be taught in education of
simulation and validation. Concrete modeling languages
for executable models are presented in Section 4. We
report on experiences teaching these models and according
tools in Section 5. Finally, Section 6 mentions some ideas
about implementation of simulation matters in software for
distance learning in an academic context, before some
short conclusions end the paper.

2 SIMULATION AS A MEANS FOR
MODEL VALIDATION

Any simulation technique can be taught separately for its
own. However, for a proper understanding of simulation
techniques and their right applications it is reasonable to
embed the presentation of the technique into a larger
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context, where simulation is applied for solving a problem.
This statement implies in particular that we suggest not to
collect simulation techniques in dedicated courses on
simulation but rather provide single simulation techniques
where needed. In this section we provide scenarios
showing how and where simulation can be applied to
system validation and performance improvement.

This contribution concentrates on models of discrete
dynamic systems. The behavior of such a system is
constituted by its set of runs, containing event occurrences
and dependencies between event occurrences. In most
cases, a system (which can be hardware, an algorithm, a set
of rules or a combination thereof) is constructed with the
goal to support or to generate a specific set of runs. Its
model should exhibit a comparable behavior, i.e., if the
runs of the model do not relate to the intended runs of the
system then something is wrong with the relationship
between the system and the model. The creation of runs
from a model and analysis of these runs will be referred to
as simulation. Thus, by simulation of models and compari-
son of runs, information about the validity of a model with
respect to a system is obtained. If the model includes time
parameters, then simulation yields information of the
performance of the system.  More detailed, we distinguish
four scenarios.

1. For a given system, a model is generated. It is
validated by simulating runs and comparing these
runs with the known or intended  runs of the
system. If the model�s behavior differs from the
system�s behavior then either the design of the
model contains flaws (that might remain hidden
without inspecting runs) or the model is too
abstract for representing the relevant behavior.
Figure 1, restricted to the two upper rows, illus-
trates this principle of validation by simulation.

2. For a given model (i.e., a specification), a system
is to be constructed. The validity of the model is
checked via simulation of the model. Only if its
behavior meets given requirements for the sys-
tem�s behavior or corresponds to the needs of the
users, the specification is correct with respect to
the application. An illustrating figure looks like
the one shown in Figure 1 except that the upper-
most horizontal arrow (annotated by �Build
Model�) should show in the reverse direction and
can be interpreted as �Create System�.

3. For a given set of runs (i.e., a specification) a
model is generated. From this model, a system is
created. In general, the model might have more
runs than those given by the specification.
Consequently, the same holds for the system.
Some of these additional runs are admissible with
respect to the application, some are not.
Simulation of the model and interpretation of its
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runs yields an improved specification. In addition
to the modification of 2., the architecture of
Figure 1 would need an additional arc from
�Simulated Behavior� to �Model�.

4. A system might be perfectly valid and correct but
terribly inefficient. When the relevant perfor-
mance parameters are already included in the
model then simulation serves for a performance
prognosis of the system. In particular, questions
about quantitative consequences of changing
performance parameters can be efficiently
answered using simulation. If the system to be
constructed has certain performance constraints
then simulation of the model helps to tune the
system such that these requirements are met. In
Figure 1, the third row illustrates this aspect of
simulation application in system design. If for
performance reasons a model is significantly
changed then in general the prior validation step
has to be repeated.
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Evaluate

Figure 1: Application of Simulation for Validation

3 BUILDING BLOCKS OF SIMULATION AND
VALIDATION EDUCATION

The scenarios of the previous section showed that simula-
tion can be applied in different ways in the system design
process. Usually several persons playing different roles are
involved in this process. Designing a model, validating a
model with respect to users of the current application,
improving a model by tuning performance parameters and
implementing a model are the most prominent tasks that
need different types of expertise. Moreover, further impor-
tant tasks on a meta-level are: designing a suitable model-
ing language, developing suitable modeling and simulation
tools, embedding the validation steps in a management
process etc. When talking about simulation and validation
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in education, one has to be aware of the diversity of
different skills necessary to perform the above mentioned
tasks. This does not necessarily imply that every student
must be able to fulfill all the above roles before reaching
his or her final degree, but it does mean that without
knowledge on the context of simulation including require-
ments of every part of a design process, it is not possible to
properly understand an isolated task. So we advocate that a
curriculum should include all following essentials of
simulation and validation at least up to some degree:

3.1 Modeling is a Process Incorporating
Machines and Humans

Modeling is a process incorporating machines and humans,
and so is system design. At several steps, simulation can
help to validate a models on different levels of abstraction
in cooperation with the user. Here simulation does not only
mean construction of runs (like program test) but also
analysis of runs with respect to relevant parameters. It is
important to keep in view that the simulation results are
evaluated by humans. So their value highly depends on the
quality of the interfaces of simulation programs. More
importantly, the job of the system designer requires high
social and communication skills. Only if he or she can
filter the right collection of requirements from a set of
partly imprecise, contradictory or incomprehensible ideas
received within communication processes, and only if he or
she can convince the relevant persons that the developed
design is the optimal solution to the problem (often
employing results from simulation) a system design project
can be a success.

In education, all phases of a modeling and simulation
process including communication of simulation results
have to be exercised.

3.2 Simulation has Diverse Objectives

As emphasized above, simulation is used for system vali-
dation with respect to correctness of the model. This
concerns in particular causal dependencies of events. In a
next step, a correct model can be simulated for analysis of
time, cost and other quantitative parameters. If the
behavior can be improved, the model is changed and the
first step of validation has to be performed again. Other
parameters include for example the steady-state-behavior.
Several different modeling languages are used, which can
have strong interrelations. Simulation techniques can also
be quite different, even if the general aim of simulation
sketched above remains the same.

Students have to learn that simulation is not just one
technique but a collection of techniques following a
common philosophy. Whereas it is important to understand
the philosophy, there is no point in including all reasonable
objectives of simulation in one course. Instead we consider
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it important to find a precise answer to the question of
simulation objectives before selecting techniques and tools.

3.3 Systems Can Run Automatically or Interactively

Systems can run automatically or interactively, and so
should their models. For simulating interactive behavior, the
user can simulate the interaction. So simulation needs to
consider the role of the modeler as well as the user�s role.

In education, students have to learn what kind of infor-
mation is the input and the output to a simulation tool and
to experience user interfaces. It is a good exercise to devel-
op concepts for an own simulation tool including inter-
faces, taking the specific users and objectives into account.

3.4 Simulation Tools Differ with Respect to
Diverse Quality Criteria

Simulation can be done manually, but for complex systems
tools are necessary. Existing tools provide many different
features, supporting different aspects of simulation. The
above aspects lead to quality criteria for software tools,
depending on the respective users and application domain.
Important additional quality criteria are the functionality
and the efficiency of a simulation tool.

For selecting the optimal tool in practice, one has to
learn how simulation tools work, why some problems are
more complex than others, and why some algorithms are
faster than others. So a basic knowledge on the fundamen-
tals of modeling languages and algorithms is necessary.
This includes a rough understanding of mathematics, data
structures and algorithm science.

3.5 Simulation Tools Can be Integrated in
Software Architectures

Simulation can be viewed as a component in a software
architecture which can be composed with other compo-
nents. For example, a look-ahead simulation of an inter-
active system might detect undesirable states. Then a
control component excludes runs of the system leading to
these states. This concept can be used for automatic and for
interactive systems (yielding intelligent assistant systems).
For this kind of application, simulation input and output
must respect suitable interfaces.

We do not consider this topic a must in education.
However, apparently component based system design is
the current trend in software engineering, and simulation
can be viewed a very important component.

3.6 Simulation is Based on Content

As for all techniques, simulation can only be understood
within a concrete application domain. In turn, each domain
has specific simulation aspects. Examples include Distri-
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buted Algorithms (fairness assumptions are essential), Data
Base Transactions (concurrency control), Operation
Systems (each run should never end), and Workflows (each
run should eventually end). Clearly, this point closely
relates to 3.2. The difference is that this building block
concerns details of an application domain to derive the
relevant objectives for simulation.

Since scientists will have to learn details of application
domains in practice, it is a good exercise to do the same at
least once in the university.

4 A MODELING LANGUAGE

We do not aim at defining all the best languages for
modeling and simulation in this paper. Instead, this section
presents one modeling language and its semantics, i.e., the
set of runs of a model. Since simulation is based on (pro-
perties of) runs, a precise understanding of the runs of a
model is a prerequisite for any simulation approach. The
following section will report on experiences in education
using the modeling language presented here.

The language we suggest for modeling and simulation
of dynamic systems is given by Petri nets (for an introduc-
tion to Petri nets and its semantics see Desel 1999). Petri
nets provide graphical means for specifying models that
support an easy understanding. At the same time, Petri nets
have a solid mathematical basis and there exists a rich
theory on their semantics, their analysis, their simulation
and their application in numerous domains. Moreover,
many tools supporting Petri nets have been developed.

The core idea of modeling with Petri nets is to concen-
trate on local entities of objects, on local entities of events
that can change the state of objects, and on the interrela-
tions between objects and events. Objects and events
constitute vertices of a Petri net graph, the interrelations
are represented by directed arcs. Thus it is possible to
represent large and complex systems in a readable way,
provided each single event only depends on or changes a
limited number of objects and each object can only be
changed by a limited number of events. By avoiding global
states as an elementary ingredient of the model, the size of
a model only grows proportional to the size of a system,
which allows to construct Petri nets in a compositional
way. Global states are defined as a derived concept. Each
set of coexisting local states can be viewed a global state.

Figure 2 shows an example of a very simple Petri net
representing a process in a car factory.

The local objects are represented by circles. In this
example, each object can be in one of two states: marked
or unmarked. Viewing an object as a condition, these states
read as true or false. In the example, initially exactly one
condition is true (marked, i.e., carries a token), the others
are false (unmarked).

The behavior of a Petri net is given by the occurrence
rule. A transition, drawn as a square and representing an
16
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Figure 2: A Petri Net

action, can occur if and only if all its pre-conditions are
fulfilled. Its occurrence sets the pre-conditions of the tran-
sition to false and the post-conditions to true. In the
example, the transition �Start� has only one pre-condition
which is initially marked.  Its occurrence leads to a
subsequent marking where the only true conditions are
�Parts-body-available� and �Parts-chassis-available�.

The subsequent occurrences of transitions define an
occurrence sequence which can be viewed as a single run
of the model. Most simulation tools for Petri nets construct
and explore occurrence sequences. The set of all occur-
rence sequences is known as the sequential semantics of a
Petri net. One (of four) maximal occurrence sequence of
the example is �S  P_b_t_A  P_c  A� (where the names of
the transitions are abbreviated in an obvious way).

Sequential semantics has the disadvantage that concur-
rency is not explicitly represented. Instead, concurrent tran-
sitions, i.e., transitions that occur independently, are arbi-
trarily ordered. So concurrency yields an explosion of the
number of runs. Moreover, concurrent transitions occur-
rences are not distinguished from alternative, mutually
exclusive transition occurrences. Semantics based on partial
orders do not exhibit these problems. A partially ordered run
of a Petri net is defined as another Petri net, where concur-
rent actions are represented by transitions that are not
connected by means of a directed path. Figure 3 shows two
partially ordered runs of the net of Figure 2. Each of these
runs corresponds to two occurrence sequences.

Transitions can be equipped with durations, time
intervals or with stochastic time distributions. For each run,
sequential or partial-order-based, the consumed time can
be computed. Similarly, cost parameters associated to
transitions yield total costs for runs.

We use Petri nets (more precisely, Place/Transition
nets) as a modeling language. Runs of a model can be
occurrence sequences or partially ordered runs. Occurrence
sequences can be visualized in the Petri net model, par-
tially ordered runs are visualized as in Figure 3. This
visualization supports the validation. We concentrate on
properties of runs concerning performance analysis. So, in
our setting, Figure 1 translates to Figure 4.
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Figure 4: Simulation of Petri Nets

In classes, students have to understand the mathe-
matics and the application of the model, its semantics and
preferably a part of the underlying theory.

5 TEACHING SIMULATION

It is very hard to learn aspects of simulation without any
practicing. Our experience from several courses on Petri
nets, on workflow and on analysis techniques have shown
that the combination of lecturing and practical exercises with
computer tools works very well and helps students to deepen
their understanding and to detect misunderstandings. These
courses took place at the University of Karlsruhe, at the
International University in Germany (in Bruchsal) and at the
Catholic University in Eichstätt. The students had different
backgrounds. In most cases, computer science was not the
primary subject. So there was no deep general background
on mathematics and computer science.

It turned out that the translation of a case given in
form of natural language into a model was difficult for
almost all students, no matter if they had prior knowledge
on computer science or not. The understanding of the
system dynamics was not a problem, even if the formal
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definitions were an obstacle for students from other areas.
Perhaps surprisingly, the handling of the tools including
import and export of models, parameters and diverse repre-
sentation of simulation results was easy for all students
after a relatively short time of vocational adjustment.  The
ability to interpret results of simulation with respect to the
model or to the system took some more time. After some
experience, patterns of relations were recognized. For
example, variations of throughput-time, resource utiliza-
tion, role allocation etc. were used in a systematic way to
improve a model.

The cyclic process of building, simulating, and
improving models was performed in groups of two up to
four persons, ending with presentations of the final model
and simulation results. In most cases the topic had been
discussed extensively within the groups. Moreover, playing
with alternatives and finding out good design solutions
with the help of simulation apparently was a challenge and
fun for the students. So here the combination of lecturing
(including introduction to tools), group work and working
with tools was very successful.

Here are some words about the used tools. As a
simulation tool for sequential runs we employed EXPECT,
developed in the group of Wil van der Aalst at the Tech-
nical University in Eindhoven (The Netherlands) (van der
Aalst and Waltmans 1990 and 1991). This tool is tailored
to work in combination with the analysis tool WOFLAN
(van der Aalst et al. 1997) and the commercial tools COSA
(a workflow management tool) and PROTOS (a business
process modeling tool). The students had to use all these
tools in combination for given case studies. Main results
that had to be presented at the end of a course was a correct
design and a distribution of resources to activities allowing
for performance values that are either optimal or meet
given performance requirements.

For partially ordered runs, we used VIPtool, developed
in the group of this author (Desel 1999 and 2000). The
combination of partially ordered runs and performance is
desribed in (Desel and Erwin 2000). The architecture of the
VIPtool together with links to the above mentioned tools as
applied in the courses is shown in Figure 5.

6 DISTANCE LEARNING

Currently we are working on the integration of lectures on
modeling and simulation in a computer based learning
environment. The goal is to transfer the positive experience
of combining lecturing, practicing and group work in a
web based education tool. Central components of this tool
are content modules that can be combined in different but
restricted ways. Moreover, these modules can be used in
different ways, for assistance of conventional lectures
(overhead transparencies, scripts) as well as for explorative
learning and guided tours (Desel et al. 1999). �Toy� simu-
lation tools can be integrated in such an environment as
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Figure 5: Architecture of Tools
applets, but for serious applications the students have to
switch to �real� simulation tools. These tools can easily be
started from the education tool but there is no general way
to provide simulation results back to the education tool.
Current research is on investigating such interfaces, in
particular to support the common work on a simulation
example by groups located at different sites.

This work is done in the context of several running
governmental research projects on virtual universities,
namely ViKar (Virtueller Hochschulverbund Karlsruhe),
VIROR (Virtuelle Universität Oberrhein) and vhb
(Virtuelle Hochschule Bayern). The overall aim of these
projects is to feature the construction of learning modules
that allow to be accessed via the internet (distance
learning). A further activity within these projects is the use
and the improvement of other new technologies in educa-
tion. For example, lectures on simulation have been
16
synchronously transferred to other universities via mbone
(for a desription of this and further new media in education
see Jiménez-Peris et al. 2000).

Whereas in these projects it turned out that the success
of computer based teaching systems often suffers from
lacking attractiveness compared to conventional educa-
tional settings, things look more positive in the specific
domain of modeling and simulation. As mentioned above,
modeling and simulation is integrated in a cyclic develop-
ment process where several persons and tools are involved.
Moreover, semantics of modeling languages and features
of involved tools are not very easy to understand for
students. So, by its very nature, modeling and simulation
needs theory, tool knowledge, group work and tool usage -
a combination that can be provided by a computer based
environment. For simulation of interactive systems includ-
ing social systems, different students at different locations
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can play the role of the distributed environment. Taking the
success of distributed internet games into account, students
should have a very high motivation to apply these
techniques for learning modeling and simulation issues.

7 CONCLUSIONS

Aspects of simulation education suggested in this paper
range from experiences based on several courses to visions
for distance learning. The main contribution is meant to be
a collection of important criteria that have to be observed
in courses for presence education and also when moving to
education supported by new media. The detailed parts of
the paper are restricted to applications of simulation in
system development and particularly in validation and to a
particular modeling language supported by a set of tools.
The more general statements, however are claimed to be
relevant for simulation education in general.
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