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ABSTRACT  
 

Batching jobs in a manufacturing system is a very common 
policy in most industries. The main reasons for batching are 
avoidance of set ups and/or facilitation of material handling. 
Good examples of batch-wise production systems are ovens 
found in aircraft industry and in semiconductor manu-
facturing. Starting from the early nineties much research 
efforts have been put in constructing strategies for the 
dynamic control of these systems in order to reduce cycle 
times. Typically, these so-called �look-ahead strategies� 
base their scheduling decision on the information on a few 
near future product arrivals. In this paper we give a literature 
overview of the developed strategies, evaluate their per-
formance and explore their relevance for practical situations 
by means of a simulation study. 

 
1 INTRODUCTION 

 
�To start the machine now or to wait for a next customer to 
arrive�, that is the question which stresses the essence of the 
control task for many batch processing systems. The trade-
off includes the balancing of logistic costs (e.g. stock 
keeping, machine utilization) on the one hand and customer 
service (e.g. lead-times, lead-time uncertainty) on the other 
hand. As such it is a very common problem found in many 
industries. In this article we survey strategies which help the 
planner solve the problem efficiently. The type of systems 
we study here are ovens found in e.g. the aircraft industry 
and semiconductor manufacturing, cf. Glassey et al. 
(1991,1993), Hodes et al. (1992), Uzsoy et al. (1992,1994). 
Both industries are characterized by a highly competitive 
nature. Therefore, lead time reductions and improvements of 
the service level are of vital importance. 

The paper is organized as follows: in Section 2 main 
characteristics are described for the studied system. As a 
starting point we use case examples from aircraft and 
semiconductor industry. In Section 3 we address the 
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control problem by giving an overview of developed look-
ahead strategies. The potential of the look-ahead strategies 
is demonstrated in Section 4. By an extensive simulation 
study strategies are compared for their performance. 
Section 5 addresses the use of look-ahead strategies for 
practical situations. In this section we evaluate system 
performance for a wide range of system configurations as 
far as product and machine characteristics are concerned. 
Finally, in Section 6, conclusions are drawn and 
suggestions are made for future research. 

 
2 SYSTEM DESCRIPTION 
 
A typical batch process in aircraft industry concerns the 
hardening of synthetic parts (cf. Hodes et al. 1992). This 
process is characterized by specific settings for temperature, 
pressures and service times, which relate to different products. 
Typically, different products cannot be batched together. 
Batch sizes are limited by the physical size of the oven and by 
a process constraint, which determines a maximum fill rate for 
the oven. Service times are considered to be constant 
(including sequence independent set up times), depending on 
product and/or oven characteristics. Preemption of jobs is not 
allowed because this would make products worthless for any 
further use. This is due to strict quality constraints.  
 Systems that are quite similar to the system described 
above are the ovens used for diffusion/oxidation in the 
semiconductor manufacturing (see e.g. Fowler et al. 
(1992), Uzsoy et al. 1992). Further some other systems can 
be found which have more or less similar characteristics, 
like ferries, elevators and restaurants, cf. Bagchi et al. 
(1972), Deb et al. (1973), Hopp et al. (1996). 
 
3 LOOK-AHEAD STRATEGIES � 

AN OVERVIEW 
 
The described systems are known in literature as bulk 
queuing systems. Bulk queuing systems are characterized 
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by the fact that customers arrive in groups and/or are 
served in groups. In van der Zee et al. (1997a) it is shown 
how control strategies for bulk queuing systems may be 
classified according to the amount of information which is 
known on future arrivals of customers. Three typical 
situations can be distinguished (compare Figure 1): 

 
1. No information available 
2. Full knowledge of future arrivals 
3. A limited number of near future arrivals are 

known or predicted. 
 
The first category of control strategies concerns those 

strategies that base their decision on local information 
only. The most important example of such a strategy is the 
Minimum Batch Size rule (MBS), which was introduced 
by Neuts (1967). According to this strategy a batch starts 
service as soon as at least a certain fixed number of 
customers is present. Using a dynamic programming 
approach, Deb and Serfozo (1973) showed how this critical 
load should be chosen in order to minimize the expected 
discounted cost over an infinite horizon. If the cost of 
serving is set to zero and the cost of waiting is linear, 
minimizing the expected averaged cost is equivalent to 
minimizing the average flow time. 
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Figure 1: Control of a Batch Shop 

 
While the above types of strategies assume zero 

information on future arrivals, full knowledge of such 
arrivals is supposed to be available when it comes to 
deterministic machine scheduling. An overview of this 
type of strategies is given by Uzsoy et al. (1994), who 
discusses planning and scheduling models applicable to the 
semi-conductor industry. The relevance of this type of 
models is quite limited because, in practice often only little 
information on future arrivals is available. 

In this article we focus on the third category of control 
strategies: the so-called look-ahead strategies. Glassey and 
Weng (1991) were among the first to introduce this type of 
strategies for (semi-conductor) batch processing systems, 
which are characterized by the fact that they assume a few 
near future arrivals to be known and/or predicted. They 
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discuss the practical usability of a dynamic programming 
approach to find a sequence of loading times of given lots, 
in such a way that total delay is minimized. They argue 
that this approach fails for reasons of computational 
feasibility, and availability and quality of data on future 
arrivals. Therefore they present a Dynamic Batching 
Heuristic (DBH). This heuristic decides when to start a 
production cycle thereby aiming for a minimal average 
flow time. The planning horizon in DBH is just one service 
time. DBH proves to perform better than MBS, based upon 
the knowledge of just a few arrivals. Starting from the 
single product single machine shop discussed by Glassey 
and Weng other authors proposed new look-ahead 
strategies in order to deal with several extensions (see 
Table 1). 

The first extension of the DBH rule concerned the 
multiple products case, which was considered by Fowler et 
al. (1992). Here products may differ as far as service time 
or maximum batch size is concerned. Their Next Arrival 
Control Heuristic (NACH) proves to be a robust heuristic 
in case forecast data on future arrivals are used, i.e., 
estimated arrival moments for new lots. Weng et al. show 
how performance can be improved for the multiple product 
single machine case by their Minimum Cost Rate heuristic 
(MCR), which shows an analogy with the Silver and Meal 
heuristic (1973). However, a disadvantage of MCR is the 
relatively large amount of data needed to realize the 
improvement in performance. Also robustness of the 
heuristic is weaker than for NACH. For that reason 
Robinson et al. (1995) propose a slightly altered and more 
robust version of MCR, named Rolling Horizon Cost Rate 
heuristic (RHCR). Above that, they also show how this 
rule can be extended to the case of a batch � serial system. 
Here the production system consists of a batch machine 
followed by a serial machine, which processes piece-wise.  
 In two articles van der Zee et al. (1996,1997a) 
introduce the Dynamic Job Assignment Heuristic (DJAH). 
It covers the multiple machine case and allows for 
compound arrivals. The criterion for optimization for 
DJAH is the minimization of logistic costs per part 
(customer) on the long term. Logistic costs associated with 
a job consist of linear waiting costs and a fixed amount of 
set up costs (e.g. energy costs). The definition of this cost 
function also covers an important special case: if set up 
costs are zero, minimization of logistic costs comes down 
to minimization of average flow time (cf. Fowler et al. 
(1992)). Although the DJAH heuristic proved its strength 
as a control strategy for multiple identical machines, it is 
less suited for those situations where alternative machine 
types are available. Here, the choice for different types of 
machines may be based on the required processing 
conditions (e.g. temperature, pressure), product 
characteristics (e.g. volume, dimensions) or operating costs 
(e.g. set up costs) or it is simply a matter of a
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Table 1:  Overview of Developed Look-Ahead Strategies 
Strate

gy 
Number 

of machines 
(1,M) 

Machine  
Characteristi

cs 
(I,NI) 

Number of 
products(1,N) 

Product 
Characteristi

cs 
(I,NI) 

Batc
h arrivals 

(1,B) 

Forecas
t 
data 

(Yes,No
) 

Criterion 
(F,C) 

MBS M I 1 I 1 - F,C 
DBH M* * 1 * 1 No F 
NACH 1 I N NI 1 Yes F 
MCR 1 I N NI 1 No F,C** 
RHCR 1 I N NI 1 Yes F,C** 
DJAH M  I N NI B Yes F,C 
DSH M  I,NI N NI B Yes F,C 

Legenda 
MBS  = Minimum Batch Size rule (Neuts, 1967) 
DBH  = Dynamic Batching Heuristic (Glassey et al., 1991, 1993) 
NACH = Next Arrival Control Heuristic (Fowler et al., 1992) 
MCR = Minimum Cost Rate heuristic (Weng et al., 1993) 
RHCR = Rolling Horizon Cost Rate heuristic (Robinson et al., 1995) 
DJAH = Dynamic Job Assignment Heuristic (van der Zee et al., 1996, 1997a) 
DSH  = Dynamic Scheduling Heuristic (van der Zee et al., 1999) 

 
I   = Identical machine(product) characteristics only (service time, allowed batch size) 
NI   = Non-identical machine(product) characteristics allowed (service time, allowed batch size) 
F   = Average flow time 
C   = Logistic costs 

**  = No explicit formulation available in literature 
***  = See van der Zee et al. (1997a) 
 

 
 

 
historical growth pattern. To deal with these situations the 
Dynamic Scheduling Heuristic (DSH) was developed 
which strongly focuses on finding a good fit of machine 
and product characteristics. 
 
4 COMPARISON OF STRATEGIES  
 
In order to compare the performance of the developed  
heuristics they were extensively tested by a series of 
simulation experiments. Their response for various system 
configurations, which reflect different settings for product 
specifications and number of machines, was analyzed. The 
simulations which were carried out concern single/multi-
product and single/multi-machine configurations. To enable 
judgement on the relative performance of the heuristics, for 
each of these cases different settings were studied. To allow 
for comparison of simulations, our settings have been 
derived from cases already mentioned in the literature, cf. 
Glassey et al. (1991), Fowler et al. (1992). 

The package which was used to carry out the simulation 
experiments is ExSpect (Bakkenist 1994). ExSpect is a Petri 
Nets-based analysis tool. It allows for structural analysis as 
well as dynamic analysis by simulation. To facilitate the 
modeling process a logistics reference model was adopted 
(van der Zee et al., 1997b). A simulation model built 
according to this reference model can easily be adapted to 
incorporate new control rules or even new control structures. 
Moreover, the principles of object oriented design (see e.g.  
13
Booch, 1994) underlying both ExSpect and the reference 
model, guarantee reusability of model components in order 
to support further research. 

 
4.1 Experimental Factors 
 
In Table 2  an overview is given of experimental factors 
and their range. Four series of experiments are mentioned 
(I-IV). Experiments differ as far as the number of products 
(N) and the number of machines (M) is involved. 

Two different criteria were applied to analyze the 
performance of the control strategies: the average flow 
time criterion and the minimal cost criterion. While the 
first criterion was applied to all control strategies, the latter 
criterion was only applied to MBS, MCR and DJAH, 
because NACH and DBH do not consider logistical costs 
nor can they easily be extended to do so (see Section 2). 
For all simulations operating costs were chosen uniformly: 
waiting costs equal 1 per unit of time, while set up costs 
constitute a fixed amount of 60. Note that we did not 
include RHCR in the simulations. The reason for this is 
that research by Robinson et al. (1995) already showed that 
if there is no error in the prediction of future arrivals, 
simulation results for MCR and RHCR are almost 
identical. On the other hand they showed that if forecasting 
errors are introduced, RHCR yields no better results than 
NACH. 
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Table 2:  Design of the Simulation Study 
               Configuration 
Factor 

I: N=1, M=1 II: N=n, M=1 III: N=1, M=m IV: N=n, M=m 

1.  Criterion Flow time; 
Cost Price 

Flow time; 
Cost Price 

Flow time; 
Cost Price 

Flow time; 
Cost Price 

2.  Control Strategy MBS 
DBH 
NACH 
MCR 
DJAH 

MBSX 
NACH 
MCR 
DJAH 

MBSX 
DJAH 

MBSX 
DJAH 

3.  Interarrival Distribution Exponential 
Uniform 

Exponential 
Uniform 

Exponential 
Uniform 

Exponential 
Uniform 

4.  Quality of Information 
     (with regard to future 
     arrivals) 

Known, 
Predicted 
Missing Data 

Known, 
Predicted, 
Missing Data 

Known, 
Predicted, 
Missing Data 

Known, 
Predicted, 
Missing Data 

5.  Number of Products  2  4 
6.  Product Mix (%)  (50:50),  

(75:25)  
 (25:25:25:25),  

(50:30:10:10) 
7.  Capacity per product 5,10 (5,5), (7,3) 5,10 (5,5,5,5), 

(8,6,4,2) 
8.  Processing Time per 
     product 

25, 50 (25,25),(40,10) 25, 50 (25,25,25,25), 
(40,30,20,10) 

9.  Number of Machines   2 2 
10.Traffic Intensity 0.3;0.6;0.9 0.3;0.6;0.9 0.3;0.6;0.9 0.3;0.6;0.9 
Number of Simulations 132 126 57 57 
 
For each scenario one basic (default) setting has been 

defined which reflects a particular setting for product and 
machine characteristics. These settings are marked boldly in 
Table 2. Alternative system configurations were chosen by 
changing the value for exactly one of these decision 
variables. For example, to estimate the effect of a longer 
processing time on the system performance in the single 
product single machine case, the processing time was set to 
50 time units instead of 25. In the same way the robustness 
of the heuristics, reflected by its response to forecasting 
errors or incomplete data on future arrivals, was evaluated. 
Forecasting errors are assumed to be normally distributed 
with mean equal to zero and a standard deviation which 
equals half the standard deviation of the interarrival times 
(1/λ), where λ equals the arrival rate. In the simulation 
model forecasting errors are associated with the data the 
decision maker receives on future arrival moments. Note that 
the possibility of forecasting errors requires a more refined 
updating of the information set on future arrivals (AR). At 
each decision moment corresponding with a product arrival 
the forecasted arrival moment for this product is removed 
from AR. Further, for decision making arrivals that are 
forecasted at t, but in �reality� occur at t ~ later than t, are 
ignored once the decision moment t0 passes t. 

Also performance for heuristics in situations in which 
the decision-maker lacks on average 50% of the data on 
future arrivals is tested. These situations are modeled by 
associating a chance of 0.5 with each arriving product that 
it is not reported to the decision-maker before its actual 
arrival. As a consequence the heuristics have to base their 
decision on the knowledge of later arrivals. For example, in 
case of the NACH heuristic the lack of information on the 
13
next arrival may mean that a decision is based on its 
knowledge of a second or even third arrival. This kind of 
robustness tests is very important because many practical 
situations in business are characterized by the fact that only 
incomplete or imprecise information is available to support 
decision making. 

Because workload tends to have a major impact on the 
performance of a queuing system, all settings mentioned 
were analyzed for low (30%), moderate (60%) and high 
(90%) traffic intensities. While the Poisson distribution is 
fully defined by the mean arrival rate λ, the uniform 
distribution is characterized by its range. To establish a 
mean interarrival time 1/ λ we chose the range is [0.5/λ, 
1.5/λ ]. 

 
4.2 Results 
 
In the previous subsection the design of the simulation 
study was discussed. Let us now consider the outcomes of 
the study. Results for the simulation study are summarized 
in Figures 2 and 3. While Figure 2 addresses settings where 
a flow time criterion has been adopted, Figure 3 concerns 
those case situations where the criterion is to minimize 
average cost per individual product. 

Simulation results for each strategy are clustered 
according to a specific setting for the number of product 
types (N) and the number of machines (M), e.g. N=1, M=2. 
Performance is computed as the average of simulation 
results for settings mentioned in Table 2 for situations in 
which arrivals are known with certainty. Robustness is 
related to the response of look-ahead strategies to 
situations where future arrivals are forecasted or data on 
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future arrivals are incomplete. It can be interpreted as the 
performance under uncertainty. Robustness is computed as 
the average of simulation results - concerning average 
waiting time and average cost price - for the corresponding 
case-situations mentioned in this paper. It should be 
remarked that results for specific settings of experimental 
factors can be found in van der Zee et al. (1997a).  

 

Figure 2: Comparison of Strategies � Waiting Time 
 

Figure 3: Comparison of Strategies � Cost Price per Item 
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Conclusions which may be drawn from the figure are: 
 
• System performance is considerably improved if  

information on future arrivals is included in 
decision making (compare results for MBS and the 
look-ahead strategies). 

• Simulation results for the different look-ahead 
strategies differ by a small margin for most 
settings. In case N>1 DJAH shows better perfor-
mance/robustness than other look-ahead strategies. 

 
5 EXPLORATION � MATCHING SYSTEM 

CHARACTERISTICS AND CONTROL 
STRATEGY 

 
In Section 4 we compared look-ahead strategies for their 
performance. In this section we consider practical 
relevance of control strategies by means of an explorative 
simulation study. The basic question which will be 
addressed is: how do system parameters influence relative 
performance of look-ahead strategies? System parameters 
which are studied are: 

 
• Workload 
• Lot size of arriving goods 
• Number of products 
• Number of machines 
• Set up costs 

 
Given the outcomes of the simulation study described 

in Section 4, we will only consider the DJAH and MBS 
strategies in this study. The following general assumptions 
underlie this research as far as the design of the simulation 
study is concerned: 

 
• Poisson arrivals. 
• Product types are identical as far as machine 

capacities and processing times are concerned 
• Machine capacity is equal to 5. 
• Processing time equals 25 time units. 
• Waiting costs equal 1 per unit of time. 
 
Note how these settings of experimental factors closely 

relate to the simulation study described in Section 4. 
 

5.1 Workload 
 
In Figure 4, average waiting time is shown for the case in 
which a single machine (M=1) handles one type of 
products (N=1). The lot size (LS) of arriving products 
equals one. 
 Figure 4 shows the results for average waiting time for 
DJAH and MBS for increasing workloads. Note that we 
relate workload to traffic intensity. Traffic intensity is 
defined here as the quotient of the mean arrival rate of 
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Figure 4: Workload 
 
customers and the maximum service rate of the system, cf. 
Chaudry et .al. (1983) and van der Zee et al. (1997a). Two 
different settings for MBS are shown in the figure: 

 
• MBS, B=1: Glassey et al. (1991) refer to this rule 

as the �greedy� rule. According to this rule, the 
machine is loaded at the moment the machine 
is/becomes idle and there is at least one item in 
queue, i.e., it coincides with the MBSX rule for 
this case. 

• MBS, B=opt: The machine is loaded only if a 
minimum batch size can be met by the number of 
items in queue. The minimum batch size is 
estimated by simulation in such a way that a 
minimal average waiting time is realized. 

 
The figure indicates that the look-ahead strategy 

DJAH shows significantly lower values for average 
waiting time than both MBS policies. The differences tend 
to be greater for low and moderate traffic intensities. This 
can be explained by the fact that for high traffic intensities 
both policies will often take the same decision. The larger 
queue length in case of high traffic intensities will make 
postponement of the decision less profitable or, in case the 
maximum machine capacity is exceeded, even useless. 
These results are confirmed in earlier research by Glassey 
et al. (1991,1993). Another conclusion from their research 
is that performance of MBS with B=1 is close to the 
performance of MBS with B=opt. The results in Figure 4 
indicate that this proposition is true for low traffic 
intensities, where a minimum batch size of 1 is the optimal 
choice. For moderate and high traffic intensities percentual 
differences of 3-5% are found. In our opinion these 
differences are not negligible. 
 

13
 
5.2 Compound Arrivals 
 
In order to obtain insight in system behavior in case of 
compound arrivals, two series of simulations are 
performed. In case LS=1,2,� lot sizes of arriving products 
may be one or two, each with probability 1/2. In case 
LS=1,2,3, lot sizes of arriving products are 1, 2 or 3, each 
with probability 1/3. The results for these simulations are 
depicted in Figure 5. To enable comparison with settings in 
which products arrive one at a time, the results for DJAH 
which were found in Subsection 5.1 are included in the 
figure.  

Figure 5: Compound Arrivals 
 
The figure shows that for low traffic intensities the 

average waiting time for compound arrivals is smaller than 
for situations in which products arrive individually. This is 
explained by the fact that at low traffic intensities the 
loading of the machine is often only dependent on the next 
arrival moment due to the low number of arrivals. Average 
waiting time is therefore mainly determined by those few 
arrivals which take place during processing. Since in case 
of compound arrivals the number of arrivals decreases 
because of the increase in lot size, less arrivals may be 
expected during processing. As a consequence average 
waiting time reduces. On the other hand, at moderate and 
high traffic intensities, machine capacity gets an increasing 
influence on performance. The irregularity of arrival 
moments combined with the varying lot sizes leads to 
higher average waiting times. As expected, the effect is 
greater if the variance of lot sizes is greater. 
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In Table 3, the relative differences in percentages 
between DJAH and MBS for compound arrivals are shown 
for different traffic intensities (ρ). 

 
Table 3: Relative Performance of DJAH compared 
with MBS 

LS = 1 LS = 2 LS = 3 Ρ 
∆1 ∆2 ∆1 ∆2 ∆

1 
∆2 

0.1 50 50 51 51 44 44 
0.2 48 48 51 51 44 44 
0.3 44 44 46 46 42 42 
0.4 39 39 43 43 38 38 
0.5 35 34 38 36 34 32 
0.6 30 29 32 29 29 26 
0.7 25 23 26 22 23 17 
0.8 20 17 19 13 16 11 
0.9 12   8   9   6   8   4 
∆1 = 100 * (MBS,B=1 - DJAH) /(MBS,B=1) 
∆2 = 100 * (MBS,B=opt  - DJAH) /(MBS,B=opt) 

 

The results in Table 3 indicate large improvements for 
DJAH in case of compound arrivals in comparison with 
MBS. Remarkably, the relative performance for DJAH 
improves from LS=1 to LS=1,2 for low and moderate 
traffic intensities, whereas it decreases for LS=1,2,3. 
Probably, the latter effect is due to reduction of decision 
options open to the controller, because of the fact that less 
arrivals take place as a consequence of the increased lot 
size. The lack of alternative decision options forces DJAH 
to make the same decision as MBS in more cases, which 
leaves less room for improvement.  

 
5.3 Number of Products 
 
By definition, products of different types cannot be 
processed together in one batch, since they require 
different processing conditions. This restriction on the use 
of a machine complicates the problem. Not only does one 
have to determine when to load a machine, also the type of 
product to be loaded has to be established. As a 
consequence of the larger product assortment which has to 
be handled, higher average waiting times are to be 
expected. These ideas are confirmed by a series of simu-
lations, in which the number of product types (N) is varied. 
The results of these simulations are depicted in Figure 6. 

Figure 6 shows the average waiting time in case DJAH 
is used as a control strategy. The results clearly indicate 
that the number of different products has a great influence 
on system performance. For example, the average waiting 
time for a system in which 10 types of products are 
handled is equal to about 4-10 times the average waiting 
time for a similar system, which handles only one type of 
product. Reduction of the number of products by forming 
product families for which processing conditions are 
uniform may therefore be very worthwhile in practical 
business situations. Of course, this implicates that product 
specifications may have to be adapted. On the other hand,  
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Figure 6: Number of Products 
 

the results point out that an enlargement of  the assortment 
should be carefully evaluated in view of its consequences 
on system performance. 

In Table 4, the relative differences in percentages 
between DJAH and MBSX are shown. MBSX equals the 
extended MBS rule (cf. Fowler 1992). The extension is 
needed because the MBS rule only covers the single 
product case. According to this rule preference is given to 
the product with the longest queue length. For the setting in 
which only a single product type (N=1) is handled, DJAH 
is compared with MBS with B=opt.  

 
Table 4: Relative Performance of 
DJAH compared with MBSX 

N=1 N=2 N=4 N=6 N=8 N=10 Ρ 
∆ ∆ ∆ ∆ ∆ ∆ 

0.1 50 30 16 11 10 7 
0.2 48 32 20 14 10 6 
0.3 44 28 18 12 8 5 
0.4 39 24 15 10 7 5 
0.5 34 21 14 8 6 4 
0.6 29 17 10 7 5 4 
0.7 23 15 8 5 4 3 
0.8 17 11 7 5 3 3 
0.9 8 8 5 4 3 2 

∆ = 100 * (MBSX,1 - DJAH) /MBSX 
 

The results in Table 4 clearly indicate that the relative 
performance of DJAH decreases with increasing number of 
product types. This is as expected, because less profit is to 
be gained by postponing the loading of the machine while 
other product(type)s have to wait. Another conclusion is 
that application of DJAH as a control strategy is profitable 
even at a high number of product types. 
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5.4 Number of Machines 
 
We will now discuss situations in which multiple machines 
are available. Figure 7 shows simulation results for settings 
where the number of machines (M) varies between 1 and 
10 and DJAH is adopted as a control strategy. Note that the 
addition of an extra machine is accompanied by an 
equivalent increase in traffic intensity. 

Figure 7: Number of Machines 
 
As expected, Figure 7 shows how an increase of the 

number of machines leads to a reduction of average 
waiting time. This effect is rather strong for a low number 
of machines (M=2, M=4). For higher numbers of machines 
an effect of decreasing marginal utility is observed. 

Some remarkable results are found if the performance 
of DJAH is compared with that of MBS (Table 5). A sharp 
distinction occurs between both MBS policies. Again this 
confirms that the proposition of Glassey (1991,1993) with 
regard to the near optimal performance of MBS with B=1 is 
not confirmed by our experiments. The simulation results 
indicate that relative  performance  of  DJAH,  in  
comparison  with  MBS  with B=1,  improves  if machine 
numbers go up. If performance of DJAH is compared with 
that of the best MBS policy, a quite different effect can be 
recognized. While at first relative performance of DJAH 
improves if the number of machines goes up, for higher 
numbers of machines relative performance of DJAH gets 
worse. The latter effect is rather strong for high traffic 
intensities. A likely explanation is that for higher numbers of 
machines the influence of the stochastic character of the 
arrival pattern on system performance decreases, while 
machine availability becomes more important. As might be 
expected, this effect is stronger for higher traffic intensities, 
where the limitations on machine capacity strengthen the 
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effect. As a consequence, less profit is to be gained by 
applying look-ahead strategies, which try to improve system 
performance mainly by their (limited) knowledge of the 
arrival pattern. Applying these strategies can even be 
counterproductive as is shown in Table 5 for a traffic 
intensity of 0.9 and a number of machines higher than 4. The 
good performance of the best MBS policy implies that in 
these cases it seems to be of more importance to balance 
machine use. This result suggests a limit for the use of look-
ahead strategies. However, a few remarks are in order for a 
correct interpretation of this conclusion. In the first place, 
knowledge of the right minimum batch size is required � 
performance of MBS is parameter dependent (compare 
Subsection 5.1). A wrong choice may result in a bad system 
performance (e.g. compare results for MBS with B=1 and 
MBS with B=opt). Establishing these batch sizes might not 
always be a trivial task. Secondly, as long as the number of 
machines is not too high, the effect is limited to high traffic 
intensities. Thirdly, it is questionable if the effect will be 
evenly strong for cases in which alternative types of 
machines are available (Cf. van der Zee et al. , 1999). After 
all, in these situations the fit between (static) machine and 
product characteristics becomes important. These 
characteristics are not included in the MBS(X) rule. 

 
Table 5: Relative Performance of DJAH compared with 
MBS 

M=1 M=2 M=4 M=6 M=8 M=10 Ρ 
∆1  ∆2 ∆1  ∆2 ∆1  ∆2 ∆1  ∆2 ∆1  ∆2 ∆1  ∆2 

0.1 50 50 53 53 56 56 57 57 58 58 58 58 
0.2 48 48 54 54 58 58 60 60 61 61 61 61 
0.3 44 44 52 52 58 51 59 51 60 47 61 45 
0.4 39 39 48 44 56 46 58 45 58 43 59 42 
0.5 35 34 44 40 53 42 55 41 56 40 57 38 
0.6 30 29 40 35 49 39 52 39 53 38 53 37 
0.7 25 23 36 30 45 31 47 29 49 28 50 27 
0.8 20 17 30 19 38 16 40 12 41 8 42 5 
0.9 12   8 19   7 25   1 30  -5 28 -11 29 -17 

∆1 = 100 * (MBS,B=1 - DJAH) /(MBS, B=1) 
∆2 = 100 * (MBS, B=opt - DJAH) /(MBS, B=opt) 
 

5.5 Involving Other Cost Factors � Set Up Costs 
 
In addition to the costs of waiting, logistical costs for 
operating batch processing systems often include other 
types of costs, like e.g. set up costs. DJAH allows for the 
inclusion of these types of costs, next to waiting costs. 
Here, we consider simulation results for situations where 
set up costs (S) equal fixed amounts 20 and 100 (see Figure 
8). The other experimental settings equal those of 
Subsection 5.1. 

Figure 8 indicates that the relative performance of 
DJAH is stronger for lower set up costs. This is as 
expected, as higher set up costs demand for a larger batch 
size. This leaves less room for optimization. A good 
calibration of the minimum batch size for MBS will 
therefore reduce performance differences between MBS 
and DJAH. 
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Figure 8: Logistical Costs per Item 
 
In Figure 9, it is shown how both types of costs 

influence the average cost price per product for S=60. The 
results indicate that if traffic intensity goes up set up costs 
per item approach S/C, i.e., the minimum set up costs per 
item. As such the part of average cost price made up of set 
up costs becomes, while waiting costs tend to rise due to 
the limitations set by machine capacity. Note how the 
curves in Figure 8 and 9 suggest optimal occupation rates 
at which a minimal average cost price is realized.  

 

Figure 9:  Logistical Costs per Item as a Function of 
Waiting and Setup Costs 
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6 CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE RESEARCH 
 
In this section we will summarize our main conclusions 
and give recommendations for future research. 
 
6.1 Comparison of Developed Strategies  
 
Our simulation study indicates that: 
 

• By making good use of just little information on 
future arrivals look-ahead strategies are able to 
improve system performance, i.e., average flow 
time and/or average cost price considerably. 

• Although look-ahead strategies outperform the 
local MBS rule performance differences among 
rules are relatively small. 

• In case N > 1 the DJAH rule shows better 
performance/robustness than other look-ahead 
strategies. 

 
6.2 Exploration – Practical Use  
 
An explorative simulation study into the practical use of 
look-ahead strategies showed that:  
 

• A higher workload reduces the profit to be gained 
by look-ahead strategies in comparison with 
MBS. This is due to the saturation effect (cf. 
Glassey et al. 1993). 

• For settings where compound arrivals take place, 
lower average waiting time is realized for low 
traffic intensities than for settings where products 
arrive individually. On the other hand, for 
moderate and high traffic intensities look-ahead 
strategies cannot avoid the higher average waiting 
time resulting from the higher irregularity of the 
arrival process. 

• A higher number of product types leaves less 
room for look-ahead strategies to improve system 
performance. This is due to the fact that less profit 
is to be gained by postponing the loading of the 
machine while other product(type)s have to wait.  

• The use of look-ahead strategies results in 
significant reductions of average waiting time for 
a higher number of machines with decreasing 
marginal reductions for higher machine numbers. 

• Look-ahead strategies help to find an optimal 
trade off between the costs of waiting and set up. 
For higher set up costs the advantage of look-
ahead strategies over MBS diminishes. This is a 
logical consequence of batch size becoming the 
important parameter to control. 
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6.3 Recommendations for Future Research

Several interesting suggestions for future research on look-
ahead strategies for batch shop control can be given, which
relate to:

• Different system characteristics, compare e.g.
Glassey et al. (1993) who study re-entry flows in
batch shop environments). Other extensions
relating to practical situations are the limitation of
buffer capacity, the possibility of machine
breakdowns, the forming of families of product
groups with different capacity requirements per
unit of product and quality constraints.

• Other cost structures/performance criteria. Other
types of costs are sequence-dependent set up costs
and penalty costs for late deliveries. Alternative
performance criteria may be based on due date
settings or possibilities to prioritize the processing
of certain products (for example because they are
needed urgently elsewhere).
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