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ABSTRACT  
 
This paper presents the development and simulation of a 
novel Genetic Algorithm (GA) based methodology applied 
to optimal tuning of a fuzzy dispatching system for a fleet 
of automated guided vehicles in a flexible manufacturing 
environment. The dispatching rules are further transformed 
into a continuously adaptive procedure to capitalize the on-
line information available from a shop floor at all times. 
The entire problem is simulated using MATLAB/ 
SIMULINK. The simulation results obtained show that GA 
is an efficient and effective tool to achieve optimal 
performance for the well-known NP-complete scheduling 
problem.  
 
1 INTRODUCTION 
 
Vehicle dispatching is a classical scheduling problem 
which has been addressed by many researchers over the 
years. It was first written on by Dantzig and Ramser 
(1956). An interesting overview of vehicle routing, 
scheduling and other relevant development can be found in 
(Bodin, 1981;1983). With the increasing proliferation in 
the development and applications of automated guided 
vehicle systems (AGVS) in various transportation and 
material handling industries, the nature of the problem has 
also become more interesting and challenging, since it is 
becoming more directly linked to many tangible economic 
performance issues. While scheduling inadequacies may 
usually be overcome with the commissioning of more 
vehicles, such practice inevitably leads to higher costs 
(absolute and opportunistic), and also  triggers additional 
problems such as increased congestion in the workplace. 
Thus, the requirement for an effective vehicle dispatching 
system cannot be under-emphasized. 

In this paper, we consider the simulation study of an 
AGVS in a manufacturing environment consisting of 
several workcenters performing different machining 
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functions, a typical part or unit load visits several centers 
before its machining requirements are satisfied. A unit load 
continues to circulate in the facility between workcenters, 
some of which may be visited more than once by the same 
load, until it receives its last service. This transition of unit 
loads or parts generates the operational problem of routing 
and scheduling the AGVs within the system. The complex 
interaction between material flows and processes requires 
an efficient vehicle dispatching procedure, and the manner 
by which these operational control problems are resolved 
determines the operational efficiency of the total system.  

In this paper, a simulation study will be conducted 
based on a flexible vehicle dispatching system developed, 
using a self-adapting fuzzy prioritizing approach for a fleet 
of AGVs operating in a multiple workcenters 
manufacturing environment. The dispatching rules thus 
designed are able to strike a compromise between the 
satisfaction of multiple operational criterion.. An important 
pre-requisite for the success and effectiveness of the fuzzy 
approach towards vehicle dispatching is the proper 
selection of scaling factors for the various operation 
criterion. It is difficult, with conventional analytical or 
numerical approaches, to obtain an optimal set of the 
scaling parameters, since the dispatching problem is NP-
complete in nature. Moreover, the performance index may 
not be �well-behaved� in the multi-modal multi-
dimensional search space. An effective search algorithm is 
thus necessary in optimizing these scaling parameters to 
achieve an automated dispatching system with optimal 
performance. To this end, GA will be useful as an 
optimisation tool to yield an optimal set of scaling factors 
for the fuzzy rules. The paper illustrates systematically the 
application of GA for this purpose.  

 
2 A FUZZY VEHICLE DISPATCHING SYSTEM 
 
The key idea in the fuzzy dispatching approach is to 
associate each vehicle in the system with two attributes, 
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PARTS_IN and PARTS_OUT with the extent of demand-
driven and source-driven needs of the workcenter with 
respect to the vehicle. These attributes are fuzzy variables 
(PARTS_IN, PARTS_OUT ∈ [0, 1]) computed from a 
fuzzy operation on a combination of variables which are 
expected to influence the extent of the demand and source-
driven needs of the workcenter. Decisions for material 
movement will be driven primarily by these attributes.  
 
2.1 Takagi and Sugeno�s Fuzzy Rules 
 
The two attributes, PARTS_IN and PARTS_OUT, are 
inferred from a Takagi and Sugeno type of fuzzy inference. 
Consider the following p rules governing the  PARTS_IN 
attribute of the kth workcenter: 
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scaling factor for rule i, reflecting the weight of the rule in 
determining the final outcome. The value of the 
PARTS_INk attribute is then evaluated as a weighted 
average of the uis: 
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premise of rule i for the input and is calculated as, 
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Similarly, the q rules for the PARTS_OUT attribute may 
be formulated as, 
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 is the crisp output for rule i, and βi is the scaling factor. 

In this case, ykj
i may be the linguistic variable 

WAITING_TIME and Gj
i  may be the fuzzy set LONG. 

The value of the PARTS_OUTk attribute is then evaluated 
as a weighted average of the vis: 
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With these attributes, the workcenters may be sorted in 

the order of their demand or source-driven needs. In a pull-
based situation, an idle vehicle searches for the highest-
inflow demand station from the PARTS_IN attribute. This 
station may then be paired off with a station having the 
highest PARTS_OUT attribute, identified from a set of 
stations supplying the parts to the station in demand. The 
converse is true for a push-based system. 
 
2.2 Push/Pull Switching 
 
Instead of rigidly commissioning a push or a pull-based 
concept in the vehicle dispatching system, it is proposed to 
view each of these concepts as being suited to different op-
erating conditions, and switch between them when crossing 
these different operating regions. Clearly, a mechanism is 
needed to trigger this switch between a pull and a push-
based environment, and has been formulated as follows: 

 
• Denote SCE(k) as the set of workcenters 

supplying to the input buffer of workcenter k, and 
DES(k) as the set of workcenters to which 
workcenter k supply parts. 

 
• The workcenters ku* and kv* are identified where  
 

∅⊄

∅⊄

 *)DES(k ),(PARTS_OUTmax =PARTS_OUT

 *)SCE(k , )(PARTS_INmax =PARTS_IN

vkk*kv
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• Based on these attributes, the current state system 

towards a push or a pull operation may be 
determined. For example, a simple formulation 
may be to compute the following ratio 

 

STRATEGY = 
*ku

*kv

PARTS_IN
PARTS_OUT

. 
40



Tan and Tang 
 If STRATEGY > γ (where suitable values for γ 
may be in the range 0.6 < γ < 0.7, depending on 
the desired level of PULL dominance), a PUSH 
operation may be initiated, otherwise a PULL 
operation will be initiated. 

 
2.3 Optimal Weight Selection Using 

an Enhanced GA 
 
As addressed in the Introduction, an important pre-requisite 
for the success of the fuzzy dispatching system is the 
selection of the scaling factors α�s and β�s. Manual trial-
and-error adjusting of these parameters can be very time 
consuming and the performance of the final dispatching 
system maybe far from the best. For this, genetic algorithm 
that emulates the Darwinian-Wallace principle in natural 
selection and genetics is employed to obtain an optimal set 
of the scaling parameters. The GA evaluates performances 
of candidate solutions at multiple points simultaneously and 
has been found to be very effective in searching poorly 
understood and complex space for optimization in 
engineering applications (Dasgupta 1997, Zalzala 1998, 
Goldberg 1989). 

Before this simulated evolution process begins, an 
initial population of multiple coded strings representing 
random scaling factors is first formed. Every such string is 
assigned a performance index calculated against the 
operational efficiency of the shop floor. At each generation 
of search, multiple candidates are evaluated and the search 
will be directed intelligently according to the Darwin�s 
�survival-of-the-fittest� principle. Then useful search 
information and co-ordinates are exchanged and altered for 
the next generation of candidate solutions. Supported by the 
Schema Theory, such an evolutionary search process is 
proved to offer an exponentially reduced search time 
compared with an exhaustive search. 

For faster convergence and better accuracy, individuals 
in each generation of the GA are further fine-tuned by going 
through a local hill-climbing process. This GA with 
improved local exploration has been successfully applied to 
solve engineering system identification and modeling 
problems. The enhanced GA was programmed in Matlab 
and compiled into stand-alone executable C++ source codes 
using Matcom to significantly reduce the program execution 
time. Here, integer coding with two-point crossover and 
tournament selection are employed for better convergence. 
 
3 CASE STUDIES 
 
3.1 Test Facility 
 
The simulation analysis is based on a hypothetical facility 
as given in Figure 1. The facility operating data is provided 
in Table 1. There are 9 workcenters or departments, and a 
warehouse for the raw materials and finished products. 
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3.2 Simulation Language 
 
The control simulation language Matlab was used for 
implementing the study. The language may be used for 
simulation of both continuous and discrete-time systems. 
In this case, it is applied to discrete event investigation, 
where the AGV guide path is modeled as a directed 
network consisting of nodes and arcs. Point locations in the 
network are uniquely identified by their Cartesian 
coordinates. Traffic conflicts at the load pickup/delivery 
points are explicitly modeled. 
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Figure 1:  Layout of a Test Facility 

 
Table 1:  The Facility Operating Data 

Work 
center 

Processing Time 
/Unit Load (min) 

Input 
Queue  
Size 

Output 
Queue Size 

1 1 3 5 
2 3 2 3 
3 3 2 3 
4 2 3 2 
5 1 1 4 
6 3 2 3 
7 3 2 3 
8 2 3 2 
9 3 4 4 

Job routing = WH, WC1, (WC2,WC3), WC4, WC5, WC6, 
(WC7,WC8), WC9, WH 
Load pickup/delivery time = 10 seconds 
Vehicle length = 3 ft 
Vehicle speed = 200 fpm 
Pickup and delivery spur capacity = 1 vehicle. 
 
3.3 Computation of Attributes 
 
In this simulation, the input variables chosen for the 
computation of the PARTS_IN attributes are: 
 

• Length of time before incoming queue is empty, 
LT_IN 
41
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• Shortest travel distance of vehicle to source 
workcenters, and to the workcenter concerned, 
STD_IN. 

• Shortest length of time before the outgoing queue 
of source workcenters is full, SLT_IN 

• Number of parts completed already by the 
workstation, PC_IN. 

 
The 4 rules formulated for the computation of the 
PARTS_IN attribute for the kth workcenter are: 
 

 IF LT_INk is SHORT, THEN uk = α1 

 IF STD_INk is SHORT, THEN uk = α2 

IF SLT_INk is SHORT, THEN uk = α3 

IF PC_INk is LOW, THEN uk = α4 
 
PARTS_IN is then computed as in (1). 

 
The input variables chosen for the computation of the 

PARTS_OUT attributes are: 
 

• Shortest length of time before outgoing queue of 
workcenter is full, SLT_OUT. 

• Shortest travel distance of vehicle to workcenter 
concerned, and to target workcenters, STD_OUT. 

• Length of time before the incoming queue of 
destination workcenter is empty, LT_OUT. 

• Number of parts completed already by the 
workstation, PC_OUT. 

 
Similarly, the 4 rules formulated for the computation of the 
PARTS_OUT attribute for the kth workcenter are: 

 
 IF SLT_OUTk is SHORT, THEN vk = β1 

 IF STD_OUTk is SHORT, THEN vk = β2 

IF LT_OUTk is SHORT, THEN vk = β3 

IF PC_OUTk is LOW, THEN vk = β4 
 

PARTS_OUT is then computed as in (2). 
 
Here, α1 � α4, β1�β4 are the scaling parameters for the 
fuzzy dispatching system, which will be tuned by the 
enhanced GA described in Section 2.3 to achieve an 
optimal shop floor productivity. The membership functions 
are made time varying according to the set of assigned 
tasks at any point in time. In our approach, a linear 
interpolation between the maximum and minimum values 
of the variables serves as the membership function. As an 
example, consider the following STD_IN variable: 
 

µSHORT(STD_INk) = 
)min(STD_IN-)max(STD_IN

)min(STD_IN - STD_INk . 
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3.4 Rule Comparison 
 
The performance of the proposed GA-Fuzzy dispatching 
system was compared with the demand driven (DEMD) 
rules and the fuzzy approach with scaling factors fine tuned 
via a trial and error approach. The rule comparison was 
carried out under the following three different cases.  
 
3.4.1 Case I   
 
Given an equal number of vehicles, the same facility 
scenario, and the same length of time or shift duration, how 
does the facility throughput compares between the two sets 
of rules? Throughput is defined as the total number of parts 
completed and removed from the facility shop floor during 
the shift. The following parameters were used for Case I 
analysis: 
 

1. The facility operates a two-hour shift. 
2. Three vehicles are in use. 
3. Infinite number of loads were available for 

processing at time, t = 0.  
 

3.4.2 Case II  
 
Given the same conditions as in Case I, how long does it 
take for the facility to produce a known number of parts 
under the two sets of rules? The analysis was done with 3 
vehicles and 30 parts or unit loads to be produced and 
centers on the determination of the length of time it will 
take the facility to produce the 100 parts under each of the 
dispatching methodology. The facility operating duration is 
a measure of the rule�s ability to accelerate the unit loads 
through the facility. 
 
3.4.3 Case III 
  
Given the same conditions as in Case I and a production 
target over a fixed time period, how many vehicles are 
required to meet the production target under the two sets of 
rules? The conditions for the analysis are the following: 
 

1. There are a fixed number (30) of unit loads to be 
produced. 

2. The production of the fixed number of unit loads 
must be satisfied within the time interval specified 
(2 hours). 

 
If all other factors remain the same, it seems that the 

number of vehicles required will be a function of the 
dispatching rule in force, since the rules act differently 
with the vehicles. 
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3.5 Simulation Results

The scaling parameters obtained via trial and error
approach is shown in the second row of Table 2. To
achieve an automated weights selection and to improve the
performance of the dispatching system, the enhanced GA
described in Section 2.3 has been run for 50 generations
with a population size of 50. The obtained weighting
parameters at the end of the evolution are given in the third
row of Table 2.

Table 2:  A Comparison of the Scaling Parameters
Scaling
factors

α1 α2 α3 α4 β1 β2 β3 β4

Manual
setting [1]

0.1 0.5 0.2 0.2 0.2 0.5 0.1 0.2

Enhanced
GA

0.02 0 0.71 0.27 0 0.03 0.96 0.01

Based on the scaling factors in Table 2, the performances
of the various dispatching methods were compared and
summarized in Table 3. It can be seen that the developed
GA-Fuzzy dispatching methodology has outperformed the
other two approaches for all the three cases under studied.

Table 3:  Comparison Results of Various Dispatching
Methods

DEMD Fuzzy GA
Fuzzy

% Improvement
(GA-Fuzzy vs

Fuzzy)
Case I:
Throughp

ut 16 27 32 18.52 %

Case II:
Production 2.99 2.14 1.89 12 %
Case III:

Vehicles 9 5 3 40 %

4 CONCLUSIONS

This paper considers the simulation study of a GA-tuned
fuzzy dispatching system for a fleet of automated guided
vehicles operating in a flexible manufacturing environment
with multiple workcenters. Dynamic and adaptive vehicle
dispatching strategy has been implemented to fully utilize
the on-line information available from the shop floor at all
times. Simulation results obtained show that the GA-fuzzy
dispatching system has outperformed other conventional
approaches for all the three different case studies.
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