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ABSTRACT  
 
We describe the design and implementation of a generic, 
real-time, in-line output analysis procedure for controlling 
simulations of discrete manufacturing environments. We 
implemented this capability in the commercial simulation 
software Extend®. The main issues we faced were (1) 
Specifying the products to evaluate, (2) Determining the 
batch sizes for output analysis, and (3) Defining the 
stopping conditions based on the confidence intervals.  We 
implemented a significance test for correlation and used 
this test to dynamically adjust the batch sizes used in 
confidence interval estimation done using batch means. 
When the stability conditions have been met, the 
simulation prompts the user to consider stopping the 
simulation. On the other hand, if at the end of the run 
length selected by the user, the statistical conditions were 
not satisfied, the tool notifies the user of that fact.  This 
capability enabled us to significantly reduce the simulation 
run lengths, and ensures, with little additional 
computational effort, that the results were reliable. We 
used this tool to control simulations of electronics, steel, 
automotive, and metal processing industries. In general, 
using this tool we realized a reduction of more than 40% in 
the time required for simulation. 
 
1 INTRODUCTION 
 
Simulation is a popular methodology for analyzing 
complex manufacturing environments. It is especially 
useful in the presence of many processes, multiple 
products, significant setup times, complicated routings, and 
randomness in capacities, processing times, lead times, and 
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yield. Often, simulation is the only available approach for 
answering questions such as: 
 

1. What is the effect of increasing the capacity at my 
bottleneck process? 

2. How does a change in product mix effect my 
revenues? 

3. Is it beneficial to invest in improving the yield at a 
process stage? 

 
These are issues that we encounter in our work at 

Maxager. Maxager is the leading business-to-business 
software solution that enables manufacturers to sell their 
capacity most profitably in both traditional offline markets 
and emerging online eMarkets.  

When attempting to answer these questions using 
simulation, one must take care to ensure that the results are 
statistically valid. Thus, there has been significant effort in 
developing sophisticated output analysis procedures and 
they are available in most commercial simulation packages 
such as Arena, ProModel, and Witness. Our work makes 
the following contributions: 

 
1. Provides an integrated output analysis procedure 

for simulations in Extend. The design and 
implementation of this capability is generic 
enough to be easily implemented in any other 
simulation software. 

2. Our procedure allows the user to select a 
performance measure (e.g., cycle time at a 
machine, cycle time through the factory, etc.) and 
specify independent stopping conditions based on 
the observations of a selected subset of products. 
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3. Many times, the analyst may be an expert in the 
manufacturing process, but may not be well 
versed in statistical analysis. Our procedure has 
the distinct advantage that the output analysis 
procedure requires little interaction from the 
analyst while maintaining rigor in statistical 
analysis. 

 
In order to provide this functionality, we developed a 

procedure that is well integrated into the simulation model, 
requires little interaction from the analyst, dynamically 
changes its parameters as the simulation proceeds, prompts 
the analyst when the statistical conditions have been met, 
or extends the run length if it is too short.  We 
implemented this tool in Extend®, a high quality 
commercially available, extensible, simulation software 
tool from ImagineThat Inc. However, the design and the 
algorithms are generic enough, so that they can be 
implemented in any simulation package. 

We used this procedure to control simulations of 
manufacturing processes in the steel, electronics, rubber, 
and metal processing industries. Having this capability 
enabled us to ensure that our analysts were using the 
results from long-enough simulations to make decisions. In 
addition, we realized significant reductions (more than 
40%) in the computational time required for simulation. 

The rest of this paper is organized as follows. In 
Section 2, we detail our analysis procedure. We present a 
case study from a steel manufacturer in Section 3, and 
conclude in Section 4. 

 
2 ANALYSIS PROCEDURE 
 
This procedure contains three main features. They are: 
 

1. Product Importance Table:  Lets the analyst 
specify a subset of products for which the 
simulation run should be long enough to provide 
reliable statistics.  

2. Significance Test for Correlation:  For any 
given batch size, we use a Student�s t-test to 
check the significance of correlation between the 
batches, use the Fishman�s test (Fishman 1978) to 
check for independence between batch means, and 
increase the batch size if necessary. 

3. Confidence Interval Estimation:  For each im-
portant product, we compute the 100(1-α )% 
confidence interval and ensure that it meets the 
tightness specified by the analyst.  

 
 We explain each of these features in the following 
subsections. 
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2.1 Product Importance Table 
 
In many situations, even if the manufacturing environment 
contains a large number of products, the analyst may be 
interested in the behavior of only a subset of products. 
Then, it is only necessary to ensure that the simulation is 
long enough to provide sufficient data for each of the 
products in the subset. We provide this ability by using a 
product importance table. In this table, for each product, 
the analyst enters a �1� in the importance column if the 
product is important or enters a �0� if it is not. Since the 
computational impact is low, we perform all the 
calculations for every product, but change the batch size 
only when necessitated by one of the important products.   
 
2.2 Significance Test for Correlation 
 
Since we are using the �Batch Means� method (see Law 
and Kelton, pp. 554-555) for computing the confidence 
interval, we must make sure that the batch size is large 
enough to make successive batches independent. To check 
the significance of the correlation, we use a t-test. Suppose 
we are using a batch size of B, then: 
 

1. Compute the correlation coefficient, r, between 
observations i and B+i for all the N available 
observations. 

2. Compute the t-statistic using the formula: 
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3. Test for significance by comparing this t-statistic to 

2,2 α−−BNt  for a test with confidence level 100(1-

α ). 
 
We perform this test for all the important products and if 
the test fails for any of them, we increase the batch size for 
all of them. We start with an initial batch size of 10 for all 
the important products and increase the batch size by 10 
every time the correlation coefficient is significantly 
different from zero. Once we have established that the 
successive batches are uncorrelated, we test for 
independence among batch means using Fishman�s test as 
detailed below. Assume that we have n batches of B 
observations in each batch. Let ijX  be the jth observation 
in the ith batch.  
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2. Compute the correlation, br , between successive 
batch means using the formula: 
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3. Compute the test statistic, nC , using the formula: 
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4. We conclude that the correlation is significantly 

different from zero if 2
12

−
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nC  is greater than 

2
αZ , where 

2
αZ is the standard normal variable 

with 2
α in the right tail.  

 
If the correlation is significantly different from zero, we 
increase the batch size by 10 for all the products and run 
the simulation longer to collect the necessary observations, 
and then retest. 

 
2.3 Confidence Interval Estimation 
 
We compute the confidence interval for the mean using the 
batch means method.  
 

1. Compute the standard deviation of the batch 

means, 
2
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2. Compute the 100(1-α )% confidence interval as:  

n
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We use 10 batches to compute the confidence interval 

and hold this number constant. This is to ensure that we   
use fewer batches and larger size as recommended in 
Schmeiser (1982). We start with a batch size of 10 and 
increase it gradually until the independence between 
batches has been demonstrated.  

Under very general conditions, as the batch size 
increases, the confidence interval for the mean gets tighter 
and we allow the analyst to specify a parameter, γ , such 
that the half-width of the confidence interval is less than 

Xγ  for the important products. After the simulation has 
run long enough to ensure independence between  
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successive batches, if the confidence intervals are not tight 
enough, we determine the batch size required to achieve 
this tightness in the confidence interval by setting it higher 

than 

2
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α where XS is the standard deviation 

of the individual observations. Note that we are using the 
approximation, 

B
S

X
XS = , in order to estimate the batch 

size. In most simulation runs, with positively correlated 
data, this approximation is likely to underestimate the 
actual batch size (see Law and Kelton, page 555) required 
to achieve the pre-specified precision. Thus we use this 
estimate as a starting point and increase the batch size as 
needed to achieve the required confidence interval 
tightness. 

The complete flowchart for our procedure is given in 
Figure 1. We start with an initial batch size of 10 and run 
the simulation until we have observed ten batches for all 
the important products. As we collect the final sample for 
the tenth batch of an important product, we test for 
independence between batches and the batch means and 
increase the batch size if necessary. Once the independence 
has been observed for all the important products, we 
compute the confidence intervals and check if they satisfy 
the tightness criterion specified by the analyst. If they do, 
we (optionally) prompt the user to consider stopping the 
simulation run since we have sufficient data to draw 
reliable conclusions. 

If the confidence intervals are not tight enough, we 
compute the batch size required to achieve the tightness 
and continue to run the simulation until we have ten 
batches of the new size for all the important products. If at 
any time, the simulation is about to stop since the run 
length selected by the analyst has been reached, we prompt 
the user to consider allowing the system to automatically 
increase the run length since the statistical requirements 
have not been met. 

The user interface that we developed in Extend® for 
this analysis is given in Figure 2. The analyst can specify 
the performance measure on which we should do this 
analysis. Currently we have two choices for the 
performance measure, (1) cycle time at a pre-specified 
bottleneck machine, or (2) cycle time though the whole 
factory. We analyze the results on a product-specific basis, 
but it is easy to add a feature that performs the analysis on 
machine-based results, such as utilization, downtime etc. 
There is also the ability to clear statistics after an analyst 
specified warm-up period, in order to avoid bias from an 
initial transient. 
2
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Figure 1:  The Flow Chart For The Output Analyzer 

 

 
Figure 2:  The User Interface for Specifying Stopping 
Conditions 
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The analyst can choose one of three possible values (5, 
10, or 20%) for confidence interval precision. There are 
three choices for confidence level (95, 97.5, or 99%) the 
analyst can choose from, for the interval estimation. It is 
worth noting that this confidence level is for each product  
separately. The resulting lower bound for confidence level 
for the system (based on the number of important products), 
computed using the Bonferroni inequality (Law and Kelton, 
pp. 568-569), is displayed right below it. The analyst must 
use this number to judge his/her decisions if they require a 
certain performance for all the products simultaneously.   

At the bottom right corner, the analyst specifies the 
important products and at the bottom left corner, he/she 
can choose a subset of these important products that may 
need some review. The results of this selected subset of 
products will be illustrated in histogram format at the end 
of the simulation.  

In the next section we detail a case study of a steel 
manufacturing facility and explain how we used this 
procedure to control its simulation and analysis. 

 
3 CASE STUDY: A STEEL PLANT 
 
We used this capability to control simulations of 
manufacturing environments in electronics, steel, metal 
processing, sheet metal fabrication, and rubber industries. 
In all the cases, the tool was instrumental in ensuring that 
the time for simulation and analysis was as short as 
possible and that the analysts were using reliable data to 
make important decisions about product mix, capacity 
planning, and pricing. In this section, we explain in detail 
our usage of this tool in controlling the simulation of a 
large steel plant. In order to not reveal any company 
sensitive information, we have kept the descriptions fuzzy 
and left out many details. The intention of this case study is 
to give the reader an idea of how this capability would be 
used in a general setting and describe the type of benefits 
one can expect. First we describe the manufacturing setting 
in terms of the products, processes, and the market 
conditions. Then we briefly describe the needs that moti-
vated the use of simulation. Later we present the results 
from using this tool and compare them to the results that 
would have been observed if this capability was absent.  
 
3.1 Products 
 
This steel plant manufactured and sold 31 different products 
from various stages of its manufacturing process.  Out of 
these 31 products, four of them accounted for 80% of the 
total revenue at the plant. Thus whenever strategic decisions 
were being made, it was necessary to understand in detail the 
effect those decisions will have on these four products. 
While the impact on the other twenty-seven products is also 
important, it is usually a secondary concern.  
3
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3.2 Processes 
 
This steel plant consists of six major process steps: Hot Mill, 
Pickling, Cold Rolling, Annealing, Tempering, and 
Galvanizing. At each step, there are varying degrees of 
setup, downtime and scrap. The steel starts as slabs, which 
go from the Caster to the Hot Rolling Mill. Some of the 
output of Hot Mill is sold directly as Hot Band. The rest of 
the coils go into Pickling. After Pickling, coils are routed to 
either Galvanize or Cold Rolling. After Galvanize, the 
product is sold as Galvanized Coils To Trade. The coils 
routed through Cold Rolling go to either Annealing and the 
Temper Mill, or Galvanize. The products sold after Temper 
Mill are Cold Rolled Coils To Trade. As can be seen, there 
is quite a bit of product diversity and routing.  
 
3.3 Market Conditions 
 
Recently, due to the drop in steel prices and stiff competition 
from smaller, more responsive mini-mills, major worldwide 
players have seen a significant drop in revenues and profits. 
Thus it was necessary to analyze their manufacturing 
process in detail to understand the profitability of the various 
products it markets. Once the profitable products have been 
identified, then the product mix must be altered to make sure 
that plant produces more of the high profit products and less 
of the low profit products. In addition, it may also be 
possible to change the pricing of these products and realize 
more profits. To understand these issues and the effect of 
these decisions, we built a simulation model (see Figure 3 
below) for a large steel company. The simulation models the 
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manufacturing process and the uncertainties that are present 
in it.  
 
3.4 Results 
 
In this section we report on the results we observed while 
using this output analyzer in the simulation of the steel plant 
described above.  We will discuss the impact of the three 
main features (product importance table, correlation signifi-
cance test, and confidence interval tightness) of the Output 
Analysis block.  
 
3.4.1 Effect of Product Importance Table 
 
If the analyst did not have this importance table, he/she may 
try to collect 2000 data points (industry standard of 10 
batches of 200 observations as recommended in Schmeiser 
(1982)) for each of the products. With the modeled product 
mix that would require a simulation run length of over 25 
years needing a computational time of about six hours. If the 
analyst were to specify a subset of important products, only 
for which we require 2000 observations, then the simulation 
run length as well as the simulation time will be much 
shorter. For example, when the analyst decided to concen-
trate only on the four high volume products (2, 3, 4, and 21) 
we observed that we needed only 100 days of simulation 
run length requiring a computation time of less than 5 
minutes. Thus the presence of the product importance table 
allows the analyst to focus on the products important to their 
study and drastically reduce the time required for simulation. 
 

 
Figure 3:  The Simulation Model of the Steel Plant 
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3.4.2 Effect of Correlation Significance Test 
 
The industry standard guidelines were defined in a way to 
ensure statistical stability given the usual amount of intra-
batch correlation. Often, these standards are very 
conservative and the correlation significance test helps us, 
if possible, use a smaller batch size. In this case, using the 
correlation significance test, we were able to dynamically 
change the batch size starting at 10 and increasing each 
time by 10. We observed that the independence between 
the batches was achieved at a batch size of 30 thus 
necessitating only 300 observations for each important 
product. This resulted in the simulation run length 
dropping from 100 days to 15 days, further saving 
computational effort.   
 
3.4.3 Effect of Confidence Interval Tightness 
 
When we simulated the system for 15 days and computed 
the confidence interval for the mean, we observed that the 
ratio of the half-width  to the mean ranged from 2.3 to 
14.2% for these four important products. Thus, if the 
analyst was looking for confidence interval tightness better 
than 20%, they would have been satisfied with the current 
results. However, if the analyst wanted a tightness of 5%, 
three of the products would have violated it, necessitating 
that the analyst run the simulation (of a longer length) at 
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least one more time. However, with the ability to specify 
the required tightness, the analyst, using our tool, can 
achieve these results using just one simulation run.  If the 
analyst specified the tightness at 5%, we found that with 
the existing variance in the cycletime, the tool would 
automatically compute that it would need a batch size of 
150. The simulation would then be run until the necessary 
observations have been recorded.  The resulting confidence 
intervals had tightness ranging from 1.7% to 4.7% 
satisfying the restriction specified by the analyst. Thus, 
with this capability we have removed the need for repeat 
simulations.   

If necessary, the analyst can take a closer look at the 
observations for a specific product using a histogram 
format. For example, the histogram representing the data 
for product 21 is given in Figure 4 below. We observed 
that this product was behaving as expected and it is not 
necessary to perform additional analysis. However, if there 
were anomalies, the histogram would have helped us 
discover them. 

We have found that by encapsulating the decisions 
about batch size, numbers of batches, and most 
significantly run control, into the internals of the block, 
while having a few controls available in the user interface, 
our users have adapted to it quite easily. 
 
Figure 4:  Histogram Representing Data for Product 21. 
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4 CONCLUSIONS 
 
We implemented an integrated, real-time, in-line, dynamic 
output analysis procedure for controlling simulations of 
discrete manufacturing environments. We implemented 
this generic capability in Extend®, a commercially 
available simulation software from ImagineThat, Inc. We 
used this methodology to ensure that (1) time required for 
simulation and analysis was kept to a minimum, and (2) the 
analysts had an easy-to�use, relatively hands-off approach 
for ensuring that the results were statistically reliable.  We 
are using this tool every day to effectively control 
simulations in electronics, steel, metal processing, and 
rubber industries.  
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