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ABSTRACT 
 
We compare the performance of five well-known 
truncation heuristics for mitigating the effects of 
initialization bias in the output analysis of steady-state 
simulations.  Two of these rules are variants of the MSER 
heuristic studied by White (1997); the remaining rules are 
adaptations of bias-detection tests based on the seminal 
work of Schruben (1982).  Each heuristic was tested in 
each of a 168 different experiments.  Each experiment 
comprised multiple tests on different realizations of the 
sample path of a second-order autoregressive process with 
known (deterministic) bias function.  Different experiments 
employed alternative process parameters, generating a 
range of damped and underdamped stochastic responses.  
These were combined with alternative damped, 
underdamped, and mean shift bias functions.  The 
performance of each rule was evaluated based on the 
ability of the rule to remove bias from the mean estimator 
for the steady-state process.  Results confirmed that four of 
the five rules were effective and reliable, consistently 
yielding truncated sequences with reduced bias.  In 
general, the MSER heuristics outperformed the three rules 
based on bias detection, with Spratt�s (1998) MSER-5 the 
most effective and robust choice for a general-purpose 
method.  
 
1 BACKGROUND 
 
Much has been written about the start-up or warm-up 
problem in steady-state, discrete-event simulation.  The 
problem arises because a steady-state operating regime 
offers no natural boundary conditions for starting or 
stopping simulation runs.  Instead, initial conditions 
typically are chosen to convenience the analyst and 
terminating conditions are sought which provide 
satisfactory interval estimates.  It is well known that 
arbitrary initialization introduces bias in estimators for 
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output statistics such as the steady-state mean.  
Uncontrolled, the start-up problem yields seemingly 
precise, but none-the-less inaccurate results.   

Researchers and practitioners alike have employed 
many different techniques to solve this problem.  Space 
does not permit a discussion of the full compliment of 
these techniques and the interested reader is referred to 
Wilson and Pritsker (1978), Cash, et al. (1992), Goldsman, 
et al. (1994), White (1997) and such excellent standard 
works as Law and Kelton (2000).  Instead, we focus solely 
on truncation procedures, which seek to eliminate 
initialization bias in the estimated steady-state mean by 
discarding an initial subsequence of the sample path judged 
to be unrepresentative of normal steady-state behavior.  
Truncation is the technique most commonly used in 
practice and many simulation languages include run 
control features to facilitate its application. 

In Section 2 we review the five truncation rules 
selected for testing.  Section 3 describes the experimental 
methodology and Section 4 summarizes the test results.  
Conclusions are presented in the final section. 

 
2 TRUNCATION RULES 
 
Truncation rules are among the techniques first given 
serious attention in the literature and remain a standard for 
reducing initialization bias in practice.  Given the sample 
path {Yi : i = 1,2,...,n}, truncation removes the first d<<n 
observations from the series and computes the truncated 
mean as 
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The challenge is to determine the observation d* at which 
to truncate, which preserves as much of the original 
sequence as is consistent with the objective of minimizing 
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bias.  The implied assumptions are that (i) the sample 
output reaches a unique stochastic steady state regardless 
of the selection of initial condition, Y1, and (ii) the 
truncated run length, n-d*, is adequate to yield desired 
estimation precision using some standard analysis 
procedure (such as batch means). 
 
2.1 Marginal Standard Error Rules 

(MSER and MSER-5) 
 
The MSER (White 1997) and MSER-5 (Spratt 1998) rules 
determine the truncation point as the value of d that best 
balances the tradeoff between improved accuracy 
(elimination of bias) and decreased precision (reduction in 
the sample size) for the reserved series {Yi : i = d*+1, 
d*+2,...,n}.  These methods select a truncation point that 
minimizes the width of the marginal confidence interval 
about the truncated sample mean. (Note that, because the 
series of reserved observations is sequentially correlated, 
the marginal confidence interval is not a valid estimator of 
the truncated mean.  As used here, the marginal confidence 
interval is a measure of the homogeneity of the truncated 
series reserved for analysis.) 

Stated formally, given a finite output series {Yi : i = 
1,2,...,n}, the optimal  truncation point for the sequence is 
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While the MSER heuristic applies equation (2) to the raw 
output series {Yi}, MSER-m instead uses the series of 
b=n/m batch averages {Zj}, where . is the maximum 
integer function, and  
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2.2 Bias Detection Tests 
 
Cash, et al. (1992), Nelson (1992), and Goldsman, et al. 
(1994), propose a family of related tests for detecting the 
presence of bias in an output series.  These tests generalize 
and extend the earlier work Schruben (1982) and Schruben, 
et al. (1983).  All of these tests follow the following 
general procedure. 

The output series {Yi : i = 1,2,...,n} is divided into 
b=n/m equal batches, each batch comprising a non-
overlapping subseries of m successive observations 
{{Ym(j-1)+p : p = 1,2,...,m}: j=1,2,�,b}.  These b batches are 
then grouped into two (not necessarily equal) sets of b� and 
b-b� successive batches, respectively.  Estimates of the mean 
and variance of the mean for each subset are computed and a 
test statistic is formed from the variance estimators.  The test 
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statistic is then compared to the critical value of an 
appropriate F distribution and the null hypothesis of no bias 
is either accepted or rejected on this basis. 

Different versions of this test differ in the form of the 
variance estimator and test statistic employed.  The 
following three versions where chosen for this study: 

 
2.2.1 The Batch Means Test (BM) 
 
This is the test described in Goldsman, Schruben, and 
Swain (1994) as earlier presented in Cash, et al. (1992). 
The mean Zj of each batch is estimated from equation (3) 
and the variance of the batch means is estimated from 
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where s=1, a=0, and c=b� for the first set of batches and 
s=2, a=b�, and c=b for the second set of batches.  The test 
statistic is computed as the ratio V1

BM /V2
BM  and the critical 

value of the test is F1-α,b�-1,b-b�-1.  Following the 
recommendation of Cash, et al. (1992), the batching 
parameters were set at b=16 and b�=8. 
 
2.2.2 The Maximum Test (MAX) 
 
This is a second test reported in Goldsman, Schruben, and 
Swain (1994) and earlier presented in Cash, et al. (1992). 
The cumulative batch means for each observation 
p=1,2,�,m within each batch j=1,2,..,b are computed 
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and standardized as 
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Within each batch, the index Kj of the maximum 
cumulative sum Sj = Kj Sj,p is determined 
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and the variance of the cumulative sums is estimated from 
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where s=1, a=0, and c=b� for the first set of batches and 
s=2, a=b�, and c=b for the second set of batches.  The test 
56
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statistic is computed as the ratio V1
MAX /V2

MAX  and the 
critical value of the test is F1-α,3b�,3b-3b�.  Following the 
recommendation of Cash, et al. (1992), the batching 
parameters were set at b=8 and b�=6. 

Note that the MAX test as stated assumes that the 
initialization bias is negative.  If the bias is positive, then 
the minimum cumulative sum is required instead of the 
maximum.  This is achieved replacing argmax with argmin 
in equation (7). 

 
2.2.3 Schruben�s Alternative Method (IE) 
 
This is the version of the alternative test proposed 
Schruben (1982) that appears in the Handbook of 
Industrial Engineering (Nelson, 1992). This procedure is 
the same as MAX, with the restriction that b�=b/2.  
Following Schruben�s recommendation, the batching 
parameters where set at b=n/5. 
 
3 METHODOLOGY 
 
3.1 Implementing the Heuristics 
 
For the MSER and MSER-5 rules, equation (2) is 
evaluated over the initial half of the test sequences for 
candidate truncation points d=1,�,n/2.   If the argument 
is nonincreasing, resulting in d*=n/2, then it is concluded 
that the sample size n is inadequate.  Otherwise, any ties 
are resolved by selecting the earliest truncation point. 

Unlike the MSER rules, as the detection tests do not 
eliminate bias directly, but simply indicate if bias is present in 
the current sequence of data.  To determine the optimal 
truncation point d*, the tests are applied sequentially for 
candidate truncation points d=1,�,n/2 until the first instance 
in which the null hypothesis of no bias is not rejected.  If all of 
the candidate truncation points are rejected, then it is 
concluded that the sample size n is inadequate. 

The MAX and IE rules require additional care in 
implementation.  Note that if the batch mean Zj is greater 
than all of the cumulative means Zj,p in batch j, then the 
index Kj=m in equation (7) for that batch. The difference 
m-Kj=0 for the corresponding term in the sum in equation. 
(8) and therefore Vs

VM  is undefined.  Nelson (1992) 
suggests that if V1

VM is undefined (based on data from the 
first set of batches), then a test for the opposite (positive) 
bias needs to be applied; if V2

VM is undefined (based on 
data from the second set of batches), then the sample size n 
is inadequate.  Extensive testing was conducted as a part of 
this study and Nelson�s suggestions appear to be sound. 

However, testing also revealed that a significant 
opposite bias can exist when V1

VM  is defined.  The 
implication is that one cannot rely on a one-sided test to 
indicate whether a test for the opposite bias is warranted. 
Therefore, truncation heuristics based on tests that use the 
maximum variance estimator (MAX and IE) must test for 
7

 
both positive and negative bias at each iteration. The 
iterative hypothesis testing ceases when one of the 
following conditions is met:  (i) no significant positive bias 
and no significant negative bias are detected, (ii) no 
significant positive (negative) bias is detected and Vs

VM is 
undefined in the test for opposite bias, or (iii) Vs

VM is 
undefined for both tests.  If the rule terminates on the 
condition (iii), then the rule is inconclusive and fails to 
recommend a truncation point. 

 
3.2 Data Sets 
 
The zero-mean, second-order autoregressive process  
 
 iiii aXXX +Φ+Φ= −− 2211   (9) 
 
with initial conditions Y1=Y2=0, was used to generate a 
time series representing sample path of a steady-state 
distribution. The coefficients and corresponding 
characteristic roots of the difference equation (9) used in 
the study are given in Table 1. For all of the models con-
sidered, the impulse function ai was standard normal noise. 

Table 1:  Model Parameters and Characteristic Roots 
Model 

Number ΦΦΦΦ1 ΦΦΦΦ2 Characteristic Roots 
1 0.9 0.0 (0, 0.9) 
2 -0.9 0.0 (0, -0.9) 
3 0.25 0.5 (-0.59307, 0.84307) 
4 -0.25 0.5 (-0.84307, 0.59307) 
5 0.75 -0.5 0.375 ±  0.59948 i 
6 -0.75 -0.5 -0.375 ±  0.59948 i 

 
Three bias functions were selected to exhibit desired 

behaviors: exponential (equation 10), mean shift (equation 
11), and underdamped oscillations (equation 12).  
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These functions are based on the bias functions used by 
Cash, et al (1992). Three values for the bias coefficient, 
C=5, 10, and 15, were employed for each of the three 
functional forms, for a total of nine different instances of 
the bias function.  Bias terms were incorporated into the 
57
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sample paths both by superposition (adding the bias 
function to the autonomous process output) 
 
 iii BXY +=   (13) 
 
and injection (adding the bias function as a forcing term in 
the equation of state) 
 
 iiiii BaYYY ++Φ+Φ= −− 2211   (14) 
 
3.3 Experiments 
 
Each individual experiment generated performance 
measures for the truncated series determined by each of the 
five of the truncation heuristics�MSER, MSER5, BM, 
MAX, and IE�when applied to each of 35 independent 
time series derived from the simulation of a given 
combination of model and biasing condition.  Each sample 
path comprised 10,000 serial observations.  The length of the 
sample path was selected so that approximately 90% of the 
observations would be unbiased; the number of replications 
was selected to insure the desired statistical precision of the 
performance measures across replicationa. 

Each experiment also generated performance measures 
for three controls applied to each of the 35 replications.  The 
NULL control is simply the raw time series {Yi: i = 
1,2,...,n} from either equation (13) or (14), without 
truncation.  The SS control is simply the raw time series {Xi: 
i = 1,2,...,n} from equation (9), with no bias introduced.  The 
FIXED control is the series {Yi : i = d+1,...,n} truncated at 
the observation d at which 99% of the effects of the bias 
function are no longer present in the observations.  (For 
experiments with bias, the fixed d was typically on the range 
of 1000 to 1050 observations, as determined from the known 
zeroing of the bias function for i>1000, together with the 
known autocorrelation of the process.)   

 
3.4 Experiment Sets 
 
Three sets of experiments were used to evaluate the rules.  
Experiment Set 1 comprised six individual experiments 
(one for each model) in which the bias function was set to 
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zero for all observations.  The purpose of the unbiased data 
set is to evaluate whether or not a rule would truncate when 
no bias was present.  Although there may be some minimal 
truncation due to the stochastic nature of the data, the mean 
distribution of the heuristics should not differ significantly 
from the distribution of the unbiased sample mean. 

Experiment Set 2 tested all of the heuristics against all 
combinations of time series and biasing conditions. This 
experiment set consisted of 108 experiments all (6 models 
together with each of the 18 biasing conditions). 

Experiment Set 3 tested each of the rules on variety of 
capacitated data sets with nonnegative output values.  This 
set was considered because it is representative of data 
typical in simulation output, including wait in queue and 
number in system. The time series were generated in the 
same manner as the previous experiments, except that any 
negative value for Yi was immediately set equal to zero 
before generating the next observation.  The experiment set 
considered all of the models, bias functions, and 
magnitudes of bias with the injection biasing method only.  
This experiment set consisted of 54 experiments. 

 
3.5 Performance Measures 
 
Summary output from a representative experiment is shown 
in Table 2.  For each heuristic and each control, the output 
includes statistics for the sample means, as well as an 
estimate of the absolute bias. The bias estimate is calculated 
as the absolute difference between the grand mean of the 
sequence reserved by the corresponding method (over all 
replications) and the grand mean of the unbiased data (SS).  

In addition, the p-value from a two-sample t-test is 
given.  The null hypothesis is that the mean estimated for 
the corresponding heuristic or control is not significantly 
different from the mean estimated by the SS control. The 
test statistic is the probability p of a Type I error (the 
probability of rejecting a true null hypothesis).  Typically, 
if p<0.05 then the null hypothesis is rejected at the 95% 
level, indicating there is a significant difference between 
the means of the two distributions. 

 

 

Table 2:  Example Summary Table 
  SAMPLE MEAN | BIAS | t-test AVG TRUNCATION POINT 

METHOD Inc. low 95% mean up 95% Stdev est. p CT min mean max stdev 

NULL - 0.9439 0.9791 1.0143 0.1063 0.9957 < 0.0001 - 0 0 0 0 
BM - 0.0534 0.0954 0.1374 0.1268 0.1121 0.0002 133 295 455 655 87 

MAX 11 0.1038 0.1836 0.2635 0.1995 0.2003 < 0.0001 273 0 425 1075 208 
IE 0 0.0388 0.0882 0.1376 0.1492 0.1049 0.0012 177 265 513 2155 304 

MSER 0 -0.0174 0.0225 0.0624 0.1204 0.0392 0.1536 309 470 609 945 95 
MSER-5 0 -0.0227 0.0165 0.0557 0.1184 0.0332 0.2215 59 470 634 945 105 
FIXED - -0.0631 -0.0242 0.0147 0.1175 0.0075 0.7790 - 1045 1045 1045 0 

SS - -0.0519 -0.0167 0.0185 0.1063 - - - - - - - 
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The next column reports the computation times (in 
hundredths of a second) for each of the truncation rules.  
Average computation times are not given for the NULL, 
FIXED, and SS controls since these times are negligible. 
The rules were coded in FORTRAN and run on an IBM 
RS/6000 with multiple users. The average computation 
times provide a crude relative comparison of the speed of 
the algorithms on the specific experimental data for which 
they are given.  No general statements are made about the 
computational effort.  The speed of the IE, MAX, and BM 
rules are dependent on the character of data to which they 
are applied and will take significantly longer to execute if 
there is a large amount of sufficiently biased data. In 
contrast, the speed of the MSER and MSER-5 depend 
solely on the number of observations in the data set under 
consideration.  

The final columns in the table report the mean, 
minimum, maximum, and standard deviation of the 
truncation points for each method.  No truncation point 
summaries are given for the unbiased (SS) method since its 
estimates are based on unbiased sample paths.  These 
statistics provide a measure of the efficiency of the 
corresponding rule.  Clearly, one prefers a heuristic that 
reserves as much unbiased data as possible to preserve 
confidence in the estimate.   

The second column in Table 2 (labeled �Inc.�) records 
the number of inconclusive runs for the corresponding rule 
or control.  As described in Section 3.1, any of the tests is 
reported inconclusive on a given sample path if it 
concludes that the run length n is inadequate.  In addition, 
an inconclusive run for the MAX and IE rules results if 
variance estimator is undefined in both the positive and 
negative tests for initialization bias.  Given the design of 
this study, inadequate runs lengths were never reported and 
only the MAX rule yielded inconclusive results.   

 
4 RESULTS 
 
Spratt (1998) provides detailed summaries for all 168 
experiments.  In this section we summarize these results.  
All of the rules exhibited satisfactory performance on the 
unbiased series in Experiment Set 1, although the IE rule 
tended to overestimate the optimal truncation point and 
discard more unbiased data.   

Experiment Set 2 assessed the robustness and 
characterized the performance of the rules.  The breadth 
of experiments demonstrated that, overall, the MSER-5 
was the most effective rule in mitigating bias. The BM 
rule was the least effective. The performance of the other 
rules generally fell somewhere between that of BM and 
MSER-5.  

None of the rules successfully truncated all of the 
exponential bias function injected into data models 2, 5,and 
6 (those with oscillating autocorrelation functions).  In 
these cases the bias disappeared into the process noise and 
75
was undetectable, although still present.  Although the t-
test indicated dissimilarity with the unbiased sample 
means, enough of the biased data was discarded to reduce 
the estimated bias by up to 97%--a desirable improvement. 

Although the BM rule consistently outperformed the 
NULL control, it was consistently outperformed by the 
other heuristics.  The BM rules appeared to have 
(relatively) low sensitivity in detecting bias and rarely 
truncated enough of the biased series. It is noteworthy, 
however, that the BM rule also never truncated beyond d* 
and its computation time was generally faster than that of 
the other rules, except the MSER-5. 

The principle shortcoming of the MAX rule is that it 
was often inconclusive, particularly on models where 
Φ1>0. In those experiments in which the MAX rule is 
inconclusive on one or more replications, the standard 
deviation of the sample means is larger, because of the 
reduced sample size, resulting in a wider confidence 
interval and a deceptively large t-test probability. The 
MAX rule did perform well on data sets containing 
damped oscillating bias, however, and was generally 
efficient in its selection of truncation points. 

The IE rule was effective in removing damped 
oscillating bias and mean shift bias, but was generally 
unsuccessful in dealing with exponential bias, except in the 
most extreme cases.  A major concern with respect to the 
IE rule is that it occasionally removed an excessive amount 
of unbiased data relative to the other heuristics. 

The MSER consistently outperformed the BM, MAX, 
and IE rules on models that contained exponential and 
mean shift bias, but was not as effective in dealing with 
damped oscillating bias.  The rule was highly accurate in 
locating the optimal truncation point in the former 
instances.  However, MSER occasionally was inconsistent 
in detecting damped oscillating bias. The performance of 
the MSER rule decreased as the average bias increased (as 
indicated by the estimated bias of the NULL method), 
contrary to what one would expect and desire.  This is 
likely an artifact of the sensitivity of the MSER to 
individual observations, since this behavior was not 
observed when the data was batched (MSER-5). 

The MSER-5 rule was the most robust rule in 
removing bias on all models.  It was particularly effective 
in mitigating exponential and mean shift bias.  There was 
not an experiment where another rule truncated effectively 
and the MSER-5 did not perform either better, or almost as 
well.  Furthermore, MSER-5 did not suffer the 
inconsistency of the exhibited by MSER: if the bias 
increased, then the effectiveness of MSER-5 in reducing or 
removing the bias also increased.  In addition to being the 
most effective rule in the experiment set, the computation 
time of the MSER-5 was significantly less than that of the 
other rules, particularly on data sets with significant bias.  

In Experiment Set 3, the relative effectiveness of the 
rules on the capacitated data sets was similar to that 
9
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reported for Experiment Set 2, with the following 
exceptions.  The MAX and IE rules were not effective in 
detecting the capacitated damped oscillating bias.  The 
MSER was more effective in detecting mean shift bias. 

 
5 CONCLUSIONS 
 
The purpose of this research was to evaluate the 
performance of five well-known truncation heuristics on 
data generated from systems with a variety of behaviors 
symptomatic of the startup problem.  The rules were 
automated and applied to data in 168 different experiments, 
with each consisting of 35 replications of a 10,000-
observation sample path.  The results of each experiment 
were analyzed and the performance of each rule was 
evaluated on the basis of the ability of the rule to remove 
bias from the mean estimator.  Based on this research, the 
following conclusions are offered. 
 

• The MAX rule is unreliable because the test 
statistic on which it is based is frequently 
undefined, yielding an inconclusive result. 

• The BM, IE, MSER, and MSER-5 heuristics 
consistently outperformed the NULL control and, 
in general, were effective, reliable, and conclusive 
in mitigating the effects of the start-up problem. 

• In general, the truncation rules based on the test 
for initialization bias were not as effective as the 
rules based on the MSER. 

• The performance of the MSER can be greatly 
enhanced by batching the observations prior to 
application, as is evidenced by the MSER-5 
heuristic. 

• The MSER-5 is the most attractive general-
purpose heuristic for mitigating the effects of the 
startup problem evaluated in this research.  It is 
the most sensitive rule in detecting bias and the 
most consistent rule in mitigating its effects. 
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