
Proceedings of the 2000 Winter Simulation Conference 
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds. 
 
 
 

IMPROVED DECISION PROCESSES THROUGH SIMULTANEOUS 
SIMULATION AND TIME DILATION 

 
 

Paul Hyden 
 

School of Operations Research and Industrial Engineering 
Cornell University 
206 Rhodes Hall 

Ithaca, NY 14853, U.S.A 
 

Lee Schruben  
 

Department of Industrial Engineering  
and Operations Research 

University of California at Berkeley 
4135 Etcheverry Hall 

Berkeley, CA 94720-1777, U.S.A 
 
 
 

ABSTRACT 
 
Simulation models are often not used to their full potential in 
the decision-making process.  The default simulation 
strategy of simple serial replication of fixed length runs 
means that we often waste time generating information 
about uninteresting models and we only provide a decision 
at the very end of our study.  New simulation techniques 
such as simultaneous simulation and time dilation have been 
developed to produce improved decisions at any time with 
limited or even reduced demands on analysts.  Furthermore, 
we have the tools to determine whether a study should be 
terminated early or extended based on the demands of the 
decision-responsible managers and the time-crunched 
analysts. By collecting information from multiple models at 
the same time and using this information to continuously 
update the allocation of finite computational resources, we 
are able to more effectively leverage every minute of 
calendar time toward making the best choice. Strategies and 
tactics are discussed and highlighted through the 
implementation and analysis of a job shop model.  Target 
success probabilities are achieved faster while achieving 
goals in study length flexibility at low cost to analyst time.  
 
1 INTRODUCTION AND BACKGROUND 
 
Simulation study design often focuses on the serial 
allocation of a predetermined computer budget, such as the 
sequential efforts of Chick and Inoue (1998) and Chen, 
Yücesan, and Dai (1998). In addition, these approaches 
focus on output that is independent and identically 
distributed.  As in Schruben (1997) and Hyden and 
Schruben (1999), we want to exploit some of the 
advantages of simultaneously replicating different models 
with continuously variable allocations of effort to each 
model. Note that this work appears as part of a broader 
context in Hyden (2000).   
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The motivations for such an approach are numerous.  
For one, simulation experiment budgets can include more 
than computing resources. For example, a study deadline 
or constraints on the analysts� time may be more critical 
than computer time. Furthermore, the exact amount of 
computing resources available until the study deadline is 
reached may not be known - particularly for important 
studies where extending deadlines may be preferred to 
making the wrong decision. Automation of experimental 
design decisions may be critical to efficiently using 
analysts� time or maximizing the use of available 
computing resources before a deadline is reached.  

This is further complicated by the fact that when an 
experiment is halted may depend on the results obtained - 
budgets may not be set a priori but are negotiable as the 
study proceeds. A study may end sooner than anticipated 
when the early results suggest a clear answer, allowing 
attention to be directed toward other studies or other aspects 
of the same project. Conversely, more information may be 
desired when the performances of competing alternatives are 
close and the project will require further resources. An 
analyst may realize that a marginal increase in effort will 
result in a significantly improved answer. Not uncommonly, 
a reformulated study objective may be dictated to support a 
failing �pet� option or to invalidate the current best choice, 
requiring the study to continue.  For these, and other, reasons 
it makes sense that simulation studies be designed to give 
the best possible answers at any time during the study. 

To make this discussion explicit, we lay out several 
key assumptions about our decision process. 

 
1. We have a limited time horizon for our decision 

and/or the value of our decision decreases with 
time. 

2. We have a limit on computing power per unit of 
time. 

3. Analyst time is a bottleneck 
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If 1 or 2 do not hold, we have virtually unlimited 
computing budget and hence do not need to be careful 
about where we spend our time.    If 3 does not hold our 
analysis is still relevant, but it means that we do not really 
need to automate our decisions about resource allocations.  

Schruben first introduced time dilation as a vehicle for 
model selection in 1997.  The idea is to execute several sim-
ulation models simultaneously by varying their local clock 
speeds.  Just as in physics where time slows down for ob-
jects moving at high rates of speed relative to objects which 
move more slowly, the local clock speeds for less interesting 
models will be slowed and faster clock speeds will be 
allocated to more interesting models.  The net effect is that 
we spend more time simulating more interesting models.   

To aid the reader, the term �model� will be consis-
tently used to refer to one complete specification from the 
design region or search space.  They may have identical, 
unrelated, or similar structure and parameter values 
(continuous or discrete).  They may have independent or 
related initial conditions and random variates.   However, 
they share a comparable metric on performance.  Experi-
ments will refer to a simultaneous simulation of a subset of 
the models from the search space, where the result is a 
decision on which of the models are preferred. Studies will 
refer to a collection of experiments, which taken together 
with a decision rule, will provide the decision prescribed 
by the total of the experiments. 

 
2 METHODOLOGY 
 
First of all, we lay out the necessary steps for our study.  
 1. Design individual simulation models.  The first thing 
we need is a model with which to experiment.  This is not 
the best place to begin in the larger context of a decision 
process, but it is where we will start our story. We will 
presume that a space of potential models has been defined 
and suitably refined to the point that simulation is necessary. 
 2. Determine surrogate for measuring simulation effort.  
Since a central notion of time dilation is the dynamic 
adjustment of simulation resources, we must have a measure 
for the consumption of those resources.  We chose events as 
a reasonable surrogate for measuring simulation effort. This 
is advantageous because state variables only change at event 
executions and events represent the real processing that the 
CPU must face.  It also makes management of simulation 
effort transparent.  Simulation time is less useful because 
effort can only be affected indirectly by adjusting the 
relative clock speed of each simulation. Although not 
implemented in this example, it is certainly possible to adjust 
the relative costs of event execution for each simulation 
during the run, allowing the surrogates to more closely 
match the true costs to the CPU.   
 3. Modify existing model for simultaneous simulation.  
Fortunately, this potentially daunting task is rather 
straightforward.  The key step is to add an additional index 
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to all state variables local to each model to indicate which 
model each state variable is associated.  This will allow 
each model to exist in the same simulation environment 
simultaneously.  As an alternative, the models can be 
launched as independent but manageable threads, as done 
by Biles and Kleijnen (1999) using Silk.  Note that values 
that are shared across models do not need to be indexed by 
model and instead can stored in one memory location, 
leading to savings in memory and lower overhead in 
loading values.  This can be a significant savings for large 
models.  In addition, slower memory locations can be used 
for relatively inactive models. 

The other key step is to modify the simulation 
structure to allow for different resource usage rates for 
each model.  Since we have chosen events to be our 
surrogate for simulation effort, the �time unit� in the 
experiment space becomes number of event executions.   
After ai event executions, our experiment will select which 
model to be simulated for the next ai+1 time units, when a 
new model will be selected for simulation, where ai may be 
a fixed parameter or it may be a function of the output. In 
multiple processor environments, each processor can take 
on a portion of the experiment, or each processor can take 
on an experiment wholly on its own. Alternatively, we may 
take a decentralized view where all models are running at 
the same time, but a central authority determines their 
relative rate of event execution.   Further analyst effort can 
be employed to incorporate independent efforts to speed up 
simulation times, such as distributed or parallel computing 
techniques.  (In fact, our decisions about which models are 
more important to study could be used to make decisions 
on which models are worth spending the development time 
on speeding up.) 

In our implementation, we employ a simple structure 
that restricts us to simulating one model at a time.  This was 
done to make the procedure transparent and easy to analyze. 
However, all models are active and can be executed at any 
time.   For this example, the number of event executions 
between model switches was fixed at 1, but this could easily 
be a function of the output.   For example, highly serially 
dependent output may not change significantly for several 
hundred events, necessitating less frequent switches. 

4. Remove the analyst as much as possible.  This 
refers to our commitment to limiting the analyst�s 
involvement in the details of simulation experiment design.  
Of course, the judgment of the analyst will be necessary to 
direct higher-level strategies.  In addition, the complex 
behavior of simulated systems will require the analyst to 
monitor any automated decisions. 

At a closer level, the shell algorithm for time dilation 
has several key parts: 

 
A. Choose a subset of n models from the set of 

possible model configurations (search space) 
B. Warm up the models 
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C. Warm up the experiment 
D. Assign probabilities {pj} that the next {ai,t} units 

of effort will be allocated to model i, i=1,2,�,n 
for experiment step t. 

E.  Reassign {pi} and select {ai,t+1}. 
 

On top of our system, we will generally need to 
employ some sort of optimization methodology to select 
which models in our search space are suitable for 
simulation.  For our example, the search space is small 
enough to be simulated in its entirety. 

Warming up the models refers to the typical warm up 
process required for discrete event simulation.  In fact, time 
dilation and simultaneous simulation can make this process 
more efficient as well, but this is beyond the scope of this 
paper.  The warm up of the experiment refers to the fact that 
the time dilation process must warm up as well.   In our 
example, the experiments executed 2000 events before 
models were scored and time dilation was applied.  Further 
work is necessary to study the impact of experiment warm up. 

Note that units of effort are assigned to models 
randomly to account for the following problem.  Any 
scheme that allocates effort deterministically will necessarily 
remain fixed for the duration of the deterministic schedule 
on that particular allocation, overemphasizing the accuracy 
of the current allocation.  In addition, small relative 
apportionments of effort will require longer schedules, 
making this problem worse.  To maintain our focus on using 
all of our available information, we propose random 
allocations, which will necessarily allocate the appropriate 
amount of effort in the long run.   This eliminates the need 
for bookkeeping schemes, simplifies implementations and 
also provides for short-term deviations from the strict 
allocations prescribed by the scoring system.  However, the 
authors have developed deterministic allocation methods, 
which will not be covered here. 

Probability assignment and their subsequent update 
throughout the experiment get to the heart of the 
procedure.  Considerations that make a model more or less 
informative include the mean and variance of the output 
measure.  For individual models, serial correlation as well 
as trends in mean and variance of the output will be 
important as well.  Furthermore, inter-model relationships 
such as cross correlation and continuity in output measure 
will affect information value.  Finally, the cost of execution 
across models will also affect the relative information 
value of a model 

Finally, various parameters appear as we begin to 
implement our simultaneous environment.  For example, 
the frequency of probability update as well as the 
sensitivity of this update to new data needs to be 
considered.  These parameters will be highlighted as they 
appear in our example. 
 

74
3 RESULTS WITH JOBSHOP MODEL 
 
To provide a tangible example to experimentally test some 
of our intuition, we study a job shop model given by Law 
and Kelton (2000).  A job shop consists of multiple product 
types, each having a different routing through a network of 
job stations. Each job station has multiple machines. 

For our example, there are 5 machine groups 
numbered 1,2�5 consisting of 3,2,4,3 and 1 machine(s) 
respectively.  There are three job types occurring with 
probability 0.3, 0.5, and 0.2.  Their routings are (3,1,2,5), 
(4,1,3), and (2,5,1,4,3) and their mean service times are 
(along routing, in hours) (0.50,0.60,0.85,0.50), 
(1.10,0.80,0.75), and (1.20,0.25,0.70,0.90,1.00).  All 
service times at stations are 2-Erlang random variables.  
Job interarrival times are exponential random variables 
with mean 0.25 hours.  Our performance measure is mean 
time in system per job. 

Our decision problem is the following.  We can add 1 
machine for the same price at any of the five machine 
groups.  Where should be add this machine?  This gives us 
five natural models, each only differing in the number of 
machines at each station.  The ith model will correspond to 
adding a machine at station i.  Note that all other model 
definitions can be shared across models.  Values such as 
number of served available at each station will need to be 
indexed by model during execution. 

We will be seeking to choose the model with the 
lowest mean time in system in a sustained operation, i.e. 
the model with the lowest asymptotic mean time in system.  
Note that, by this definition, the correct model selection for 
every experiment and every study is the same.  The authors 
were able to determine that model 2 is the correct selection.   
Of course, since every experiment is necessarily finite, the 
actual model selected will vary.   This methodology seeks 
to make the usage of resources more effectively so that the 
ultimate decision of the experiment and the overall study is 
correct more often.    

Inspired by intuition and simplicity, we will use a very 
simple scoring mechanism for determining the probability 
that a model will be selected for execution.  First, we 
compute the distance between each models mean 
performance and its best competitor and call this D.  The 
best competitor is the best performing model that is not 
itself.  If we are allowing ourselves to select a subset of the 
models at the termination of our experiment, we may instead 
define the best competitor as the best performing model that 
is not in its current indifference set.  Indifference sets are 
formed by placing the best performing model in a set S and 
adding all other models that perform within α units of the 
best performing model, where α is the indifference zone.  
Further sets are formed similarly by adding the best 
performing model not already in a set and adding all models 
within α units of that model.  Next we compute the sample 
variance of the mean performance measure for each model 
5
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and call this V.   In our implementation, a naïve estimation 
procedure was used, but efforts to account for inherent serial 
correlation should only improve the results.  Each model is 
scored with V/D2.   Hence, we will be interested in 
simulating models that are more variable or more preferred 
with a greater portion of our simulation effort.  Note that this 
scoring mechanism requires little analyst effort to construct, 
but it is certainly open to enrichment.   A similar asymptotic 
allocation by Chen et al. (1999) was implemented by the 
authors with less successful results.  The results will show 
improved decisions at all times during the study.  

Note that two systems could be eliminated from the 
study without simulation after a bottleneck analysis of the 
initial model.  However, our analysis will study our ability 
to select from all five models, since analyst time may not 
be available in a real study.  However, we should expect 
our method to quickly be able to pick out the correct model 
with at least a probability of 33%.  For further comparison, 
we also solve the case where those two models have 
already been eliminated from our search space. 

The form of our study will, at least initially, consist of 
one experiment.  This experiment will consist of all five 
models being run concurrently, with the probabilities of 
model selection corresponding to the score of the model 
divided by the sum over all scores.  Model reselection will 
occur after every event execution.  Probability reassignment 
will occur every 100 events.  Note that all of these choices 
correspond to parameters that are open to alternative 
choices. Clearly, many alternative scoring mechanisms and 
translations of those scores to probabilities exist. A score 
based on weighing new and old data differently is just one 
example.  Furthermore, a model could be executed for any 
number of events before a new model is selected, perhaps 
even as a function of the score. For example, we may wish 
to implement scores of (a1,�,ak) by executing ai events of 
model i with probability 1/k rather than 1 event of model i 
with probability ai / (a1+�+ak).  Finally, probability 
reassignment could occur more or less frequently, or update 
frequency could be a function of the experiment itself. 

Our decision rule for each experiment will be the 
natural one: the model with the lowest mean service time at 
the conclusion of our experiment will be selected as 
preferred.  Our study will select the model that is preferred 
by our single experiment. One way we will be judging the 
effectiveness of our studies by looking at the probability 
that we select model 2.  Note that this judgment becomes a 
multi-objective optimization problem very quickly if we 
consider that we might only slightly prefer the optimal 
model choice to the others, so that the probabilities of 
choosing sub optimal systems become important as well. 
Here we are thinking of the case where we only value the 
optimal choice. For example, suppose if we choose 
incorrectly we will be out of business because some 
competitor can be assured to make the winning choice.  
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However, this method can be applied to other ways of 
weighing outcomes. 

First, we considered studies with a single experiment 
where the number of events is capped at 100,000.  Four 
cases are considered.  Two cases will employ common 
random numbers (CRN) and two will not.  CRN is 
implemented to insure that each of the five models will 
always see the same stream of arrivals and jobs types, and 
service times at each station for each of the models within 
any experiment. Two of the cases will allocate exactly 
20,000 events to each model in the experiment.  While this 
experiment is still more robust that a serially conducted 
experiment since it can provide an answer at any time, the 
resource allocation is typical of a serial study.  The other two 
cases will employ time dilation, utilizing the scoring method 
described earlier. 

The study was repeated with independent seeds 1,000 
times for the two cases without CRN, and with 10,000 
seeds for the two cases with CRN.   The probability of 
selecting model 2 for each study is given below. 
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Figure 1:  Probability of Correctly Selecting 
Model 2 without CRN. 
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Figure 2:  Probability of Correctly Selecting 
Model 2 with CRN. 
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For further comparison, we consider the case where we 
allow ourselves to eliminate two models without 
simulation effort.  Models 3 and 5 can be removed from 
consideration due to a simple bottleneck analysis of the 
current configuration.  A study consisting of a single 
experiment was conducted 1,000 times with and without 
time dilation and using CRN in both cases. 
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Figure 3:  Probability of Selecting Model 2 from 
3 Choices using CRN. 
 
In all cases, we see that dynamic allocation of our 

simulation resources through time dilation significantly 
improved our capability of choosing the optimal model for 
all experiment lengths. 

Next, 1,000 studies with a single experiment capped at 
2,000,000 events was executed for both CRN cases.  The 
following figure shows the probability of selecting model 2 
as a function of the number of events executed.  
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Figure 4:  Probability of Selecting Model 2 with 
Longer Experiments using CRN. 
 
Time dilation had superior performance throughout the 

range of potential stopping times.  This is somewhat 
surprising, since the use of CRN may limit our ability to 
successfully vary the amount of effort on any model.  This 
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is because good or bad performance on additional 
observations of that model may unduly bias our results, 
since another model may have performed similarly good or 
bad if we had only observed it.  Nonetheless, these results 
our encouraging.  If we were aiming for a study design 
guaranteeing 95% probability of correct selection, our time 
dilation method requires a minimum of 600,000 events.  
Without time dilation, we would require 1,200,000 events. 

One source of this improvement can be seen from two 
effects.  First, time dilation helps us arrive at correct 
decisions earlier and hold on to those decisions upon further 
simulation.  Second, time dilation keeps from holding onto 
as many incorrect decisions, and delays our choice on those 
decision which turn out to be incorrect longer.  To see this 
effect, we consider the following graph.  For each of the 
10,000 replicated studies which utilized CRN in choosing 
between all 5 models, we compared the decision made after 
100,000 events with the decision made after less than 
100,000 events.  Cases where these choices were the same 
were counted and summed across correct and incorrect 
decisions.  Fractions do not sum to 1 since some decisions 
change during the course of the experiment. 
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Figure 5:  Fraction of Decisions That Match the Ulti-
mate Decision of the Experiment for All Study Lengths. 

 
The use of time dilation clearly shows improvement at 

keeping correct decisions and finding them earlier.  At the 
same time, fewer incorrect decisions are kept and those 
that are made are not committed to until later in the 
experiment.  For example, at the halfway point of the 
experiment, the case using time dilation has fixed on the 
wrong choice 50% fewer times.  At the same time, time 
dilation has fixed on the correct decision 20% more often. 
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