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ABSTRACT incorporate first-stage sample mean information in deter-
mining the number of additional replications. They suggest
This paper discusses implementation of a two-stage proce- that an average case analysis may lead to a significant
dure to determine the simulation run length for selecting reduction in computing effort, relative to indifference-zone-
the best ofk designs. We purpose d&nhanced Two-Stage  selection procedures. For an overview of existing methods
Selection(ETSS) procedure. The number of additional of ranking and selection see Law and Kelton (2000), or
replications at the second stage for each design is deter- Bechhofer, Santner, and Goldsman (1995).
mined by both the variances of the sample means and the Generally speaking, we can improve the efficiency of
differences of the sample means of alternative designs. We R&S procedures with pre-selectiof{Goldsman et al. 1999).
show that the ETSS procedure gives valid selections with The pre-selection approach is a screening device that at-
significantly reduced simulation replications compared to tempts to select a (random-size) subset ofitadternative
Rinott's procedure. An experimental performance evalua- designs that contains the best one. The inferior designs

tion demonstrates the validity of the ETSS procedure. will be excluded from further consideration, reducing the
overall simulation time. After we cut down a large number
1 INTRODUCTION of alternatives into a more manageable number, we then

carry out a higher accuracy selection to make the fine-tuned

Discrete event simulations are widely used to compare alter- choice of the best. In some extreme cases, the subset
native system designs or operating policies. When evaluating may contain only one design, i.e., we select outright the
k alternative system designs, we would like to select the best design. We propose an Enhanced Two-Stage Selection
best of these& designs and to control the probability that (ETSS) procedure that is efficient in allocating the required
the selected design really is the best one. jLetlenote the simulation replications at the second stage.
expected response of designOur goal is to find the design This paper derives an enhanced two-stage selection pro-
with the smallest expected respopse= min;=1.2 .. x(u;). cedure that utilizes the information of both the means and
If the goal is to select a design with the biggest expected variances obtained from the first stage to determine the num-
response, the procedure can be modified easily to accommo-ber of additional replications. In Section 2 we recall Rinott’s
date that. We achieve this goal by using a class of ranking (1978) procedure that serves as reference for comparison.
and selection (R&S) procedures. We provide background necessary to understand our pro-

Many R&S procedures are directly or indirectly based on  posed procedure. In Section 3 we present our methodologies
Dudewicz and Dalal (1975) or Rinott’'s (1978) indifference- and proposed procedure for the ranking and selection. In
zone-selection procedure. Unfortunately, their procedures Section 4, we show our empirical-experiment results. The
require the simulation output sequence to be independent new procedure compares favorably with Rinott's (1978)
and normally distributed. When the simulation output are procedure. In Section 5, we give concluding remarks.
sample averages, by the Central Limit Theorem (CLT), the
normality assumption is typically valid provided that the 2 BACKGROUND
sample size is large enough. The independence assump-
tion, though, requires more attention. Moreover, many To facilitate what follows we define some notation:
indifference-zone-selection procedures determine the num-

ber of additional replications based on a conservdeast N;:  the number of replications (or batches) for
favorable configurationLFC) assumption (Rinott 1978); designi,
see Section 2.5. Some new approaches (Chen et al. 1999) al.z: the variance of desigh
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the average of the observations from jtfe
replication of the’" design, or thg’" batch
mean of the’” design of a terminating or
steady-state simulation.

the mean performance measure for design
i, i.e.,,l,Li = E(X[j),

the sample mean performance measure for
designi, i.e., Z;.V;l Xij/Ni,

the sample variance of designwith N;
replications.

S2(N;):

2.1 Indifference-Zone-Selection Procedure

Let u;, be thel’™ smallest of theu;’s, so thatu;, < i, <

. < ui,. Our goal is to select a design with the small-
est expected response;,. Let “CS” denote this event of
“correct selection.” In stochastic simulation, CS typically
cannot be guaranteed with certainty. Furthermorey;if
and u;, are very close together, we might not care if we
mistakenly choose design, whose expected response is
Wi, This “practically significant” difference* (a positive
real number) is called thmdifference zonén the statisti-
cal literature. Therefore, we want a procedure that avoids
making a large number of replications to resolve this unim-
portant difference. That is, we want P(CS)P* provided
that u;, — pi, > d*, where the minimal CS probability*
and the “indifference” amount* are both specified by the
user.

2.2 Two-Stage Rinott Procedure

The two-stage procedure of Rinott (1978) has been widely
applied. Letng be the number of initial replications
from each design. The first-stage sample meaps=

?0:1 Xij/no, and marginal sample variances

YL (Xij — i)?

,fori=1,2,....k
no—1

S(no) =

are computed. Based on the number of initial replicatigns
and the sample variance estima.sgésno) obtained from the
first stage, the number of additional simulation replications
for each design in the second stageVis— ng, where

N; = max(no, [(hS;(ng)/d*)?]), fori =1,2,....k (1)

where[z] is the smallest integer that is greater than or equal
to the real numbet, andiz (which depends o#, P*, and
no) is a constant that solves Rinott's (1978) integéaktén
also be found from the tables in Wilcox, 1984). We then
compute the overall sample meajs = Z?’;l Xij/Ni,

and select the design with the smalléstas the best one.
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Basically, the computing budget is allocated proportional
to the estimated sample variances.

2.3 Subset Selection

Goldsman et al. (1999) describe a procedure to pre-select
the subset of designs so that inferior designs can be excluded
from further simulation.

Designi;, whose sample meaiy, = min;=1.2,. (L),
is automatically included in the subset. For al i, let

t=t 1

1-(P¥)F-T po—1’

Y (Xij = Xy — (i — fi))?
no—1

§?, =

i,i;

)

and

Wi, = t8ii,//no.

Then desigti will be included in the subset only if; — 1;, <
(Wii, —d*)*, where(a)™ = max(0, a), and1_, , is the
1—« quantile of the distribution withn degrees of freedom

(df).
2.4 Optimal Computing Budget Allocation (OCBA)

Chen et al. (1999) point out that a drawback of Rinott’s
procedure is that only the information of variances is used
when determining the additional replications at the second
stage. They propose an OCBA that utilizes the information
of both the means and variances obtained from the first
stage. Their procedure is based on a fixed total computing
budgetT = Zf-‘zl N; and attempts to maximize P(CS).
They use theApproximate Probability of Correct Se-

lection(APCS) as a lower bound on the P(CS). That is

k

P(CS)> 1) P(iiy > fli).
=2

The right hand side of the above equation is thBCS.
They show that for a fixed number of replications, heCS
can be asymptotically maximized when

~ 1/2
> |z

A2 9
=2 81'1,1'1

N; i /8ivi
[N 1/0i.ia
Ni, Oiy/8is,in

Ni1 Uil

)

Oi,

2
) forl =3,4,...,k, 3)

whereS,-l,il = [;, — fii;, ando; is the standard deviation
of the response of design However, in reality the value
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of o; is unknown, so the standard deviation of the sample
responsess; (ng) will be used.

2.5 Motivation

Rinott's procedure is a conservative procedure that obtains
P(CS)> P* by assuming;, = u;,+d*forl =2,3,... k,

i.e., the LFC. In reality, we rarely encounter the LFC. The
OCBA modifies Rinott’s procedure and takes into considera-
tion the difference between mean estimadgrg = /i, — i

forl =2,3,...,k. However, OCBA is a fixed-sample-size
procedure; it attempts to maximize the P(CS) with a fixed
total computing budget. Moreover, the achieved P(CS)
cannot be estimated until the end of the procedure. If the
achieved P(CS) is less than desired then the simulation
needs to be restarted with a bigger simulation budget. We
propose an ETSS procedure, which also takes into con-
sideration the difference between mean estimatpys for

1 =2,3,..., kwhen estimating the required replications at
the second stage. However, the ETSS attempts to minimize
the total number of second-stage replications with a given
P*. The approach of the OCBA and the ETSS are com-
pletely different. However, the final allocation strategies
are very similar. The ETSS provides some insights into the
optimization results of the OCBA.

3 METHODOLOGIES

In this section we introduce the methodologies we used in
our procedures. To meet the i.i.d. samples requirement in

the case of steady-state simulation , one can use the popular

output-analysis methodbatch meansfor example Chen
and Kelton (2000a,b). We incorporate subset pre-selection
and the two-stage Rinott procedure to form the Enhanced
Two-Stage Selection (ETSS) procedure.

3.1 Enhanced Two-Stage Selection Procedure

Using the QI procedure, we will simulatey replications
for each design at the first stage. We then perform the

subset pre-selection at the end of the first stage. Therefore,

stage two will evaluate only’ < k designs, wheré’ is the
number of designs included in the subset.

In Rinott’s procedure, only one positive real number
is used to estimate additional simulation replications at the

is based on the LFC, Ri, < [l +d* = i) =
(P*V&=D for 1 = 2,3..., k, see Law and Kelton (2000),
pp. 575-576. However, we seldom encounter the LFC in
practice, i.e.,u;; +d* < w; for somei;. Thus, with all
other things being equal
P(Riy < Qi lpiy +d* < i) > (PHYED,

Because the computation of; is based on the LFC, it is
larger than necessary when, + d* < u;, for somei;.

To eliminate this deficiency, we propose an enhanced
simulation replications allocation algorithm. Based on the
equation

P(CS)= TT\_,P(fi, < fuylpiy +d* < wi)),

it can be shown that

o k Mip — MKiy
P(CS)= My ,F|——= +1¢ t)dt. 5
)= [ mior (Mo rn i) roa 6
Forl =23, ...,k we will set

P(fiiy < fuiglipin = miy — piy) = (PHYED,
then
P* = TI_p P(fliy < Qi|8iy.iy = i) — iy)-
Note that in contrast to the LFG;, ;, may be larger than

d*. In essence, we propose using differéntvalues for
different designs. Let

second stage, see Section (2.2). That is, only one variable Therefore

h is used in Rinott’s integral for akt designs based on the
LFC. Without loss of generality, assuming, — w;; > d*,
for iy # i1. If we let f and F denote the density and
distribution function, respectively, of thedistribution with

no — 1 df, the equation

[.9]

F (h+ 01 f)de (4)
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P(CS)> P* = /

ri = max(:ul - Mi17 d*)/d*v (6)
and
hi =h/r;, (7)
then equation (5) becomes
P(CS)= / - T5_,F (ryyhy, + 1) f(t)dt.
P(CS) = / - F(h+ 0" f@)dr. (8)

Hereh is the same as Rinott’s procedure. We would like to
point out that this integral is an approximation suggested
in Rinott (1978), which includes some comparison between
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the integral he proposed with this approximation. Sdive
from the above equation with P(CS) setRd, and let

N; =max(no, [(h; Si(no)/d*)?7),fori =1,2,...,k. (9)

In practice, however, exact value ofcannot be computed
becauseu; is unknown, so

Fi = max(ii; — iy, d*)/d*
will be used.

The difference between equations (9) and (1) is that
instead off is used. The information of the difference of

simulation budget, while we try to minimize total simulation
budget with givenP*. If the user is not able to provide
the indifference amount®, thend* = Siz,,-l will be used

in the ETSS procedure. Therefore, if the user attempts
to maximize P(CS) with a given simulation budget then
OCBA can be used. On the hand, the ETSS can be used
not only when the user attempts to minimize simulation
budget with a givenP*, but also when the user attempts
to maximize P(CS) with a given simulation budget. For
example, if ETSS determines the total number of simula-
tion replicationsT = Y"'=% N; and the available budget is
A < T, then we will useN; = N; x A/T replications for
designi.

the sample means between alternative designs is embedded

in the value ofs; throughr; of equation (6), thus, equation
(9) utilizes the information of both the means and variances.
We would like to point out that the derivation of thig is
based entirely on equalities, thus, it is optimal. However,
the true value of; is unknown and; will be used. Because

7; is a random variable, P(CSPZ may be not true for this
heuristic approach. To be conservative, a constaniO< 1

can be used so that = max(c(f;, — fti,), d*)/d*, or the

(1 — &) confidence limits ofu; can be used to compufe,

i.e., 7, = max(L(fx;) — iy, d*)/d*, whereL(f;) are the

1 — « lower confidence limits oft;. On the LFC equation
(4) becomes P(CS} P*, therefore, theV;’s determined by
equation (9) will be exactly the same as if they are obtained
from Rinott's procedure. However, fi;, + d* < fi;, then
less computational budget will be allocated for design

than that allocated according to Rinott’s procedure, because

hi < h. In cases thafi;,; +d* > f;, 7, = 1 is used

The ETSS algorithm:

1. Simulateng replications.

2. Perform subset pre-selection according to proce-
dures developed by Goldsman et al. (1999), see
Section (2.3).

3. If there is only one element in the subset, go to
step 6.

4. For each desighin the subset, compute the needed
additional replicationsV; — ng. Here N; will be
computed according to equation (9).

5. SimulateN; — ng additional replications for each
designi in the subset.

6. Return the values andfi;, .

Because the information of the means is used in com-
puting additional replications, ETSS has better performance

because the difference between these two sample means ighan the performance of Rinott procedure.

less than the indifference amount; it will be considered as
correct selection if thige; is selected. Therefore, it is not

necessary to make a large number of replications to resolve

this insignificant difference.

Interestingly enough, if we compute the rafig, /N;,
with N; estimated from equation (9) and assum‘fl;uzg-l >
d*, we get

N,

N,

Y (n0)/8i.iy
Siz (HO)/Siz,il
This is the same as equation (3) in Section (2.4). Therefore,

forl =2,3,...,k, the ratioN;,/N;, will be the same as
that in OCBA. On the other hand, the ratio

2
) foril=2,3,...,k.

Ny

N = Th(53(10)/Sip (1),

This is different from that of OCBA, i.e., equation(2), be-
cause OCBA does not use the indifference parameéter
and OCBA attempts to maximize P(CS) with a fixed total
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3.2 Properties of ETSS

Goldsman and Schmeiser (1997) list some properties that
a good estimator should posses. We use these properties
to assess the desirability of our algorithm. The follow-
ings describe the performance of our algorithm under each

property.

e Statistical performance. If we obtain reasonably
accurate estimates of the differences of the mean
responses and variances from the first stage, then
the P(CS) from our ETSS should be close to the
pre-specified levelP*.

» Ease of computation. Our algorithm involves only
little more thanO (N) operations)N is the number
of observations. The enhancement, calculation of
r;, added to Two-Stage Rinott procedure is com-
putationally inexpensive.

« Parsimonious storage requirements. Our data stor-
age isk, one for the each sample means.



Chen and Kelton

» Ease of understanding. Our algorithm is a straight- The results of our experiment 1 are summarized in
forward enhancement of Rinott's procedure. Table 1. TheP(CS)column lists the percentage of correct

e Numerical stability. The limits of machine preci-  selection. Thevg s.r. column lists the average of the total
sion is the limits of our algorithm precision. simulation repIicationsX:le N;) used in each procedure.

» User-specified parameters. We require only two The Rinott(20)row lists the results of Rinott's procedure
parameters: the desired probability of correct se- with initial replicationsng = 20. TheETSS(20yow lists
lection P*, and the indifference amouanf*. the results of ETSS procedure with initial replications=

* Amenability for use in algorithms. Our algorithm  20. The Reductionrow lists the reduction of simulation
can be incorporated with other procedures easily. replications achieved by the ETSS procedure. Note that the

P(CS) are all larger than the specifiéé = 0.90 andP* =
4 EMPIRICAL EXPERIMENTS 0.95. This is an indication that both selection procedures

are conservative, which is expected for Rinott's procedure
In this section we present some empirical results obtained because it is based on the LFC. On the other hand, this is
from simulations using Rinott’s procedure and the ETSS a nice result for the ETSS procedure because its derivation
procedure proposed in this paper. The purpose of the is not based on the LFC. ETSS is more efficient than
experiments was not so much to test the methods thoroughly, Rinott’s procedure because when determining additional
but rather to demonstrate the interdependence between thesimulation replications, ETSS exploits the information of
variances and the differences of the sample means andboththe sample means and variances. The sample means can
simulation run lengths, and the validity of our methods. provide valuable information of relative differences among

In this experiment, we focus on the validity and perfor-  different designs.

mance of the ETSS at the second stage. Therefore, step 2  Table 2 lists the detailed simulation replications used
of the ETSS was skipped. Moreover, we assume that there for each design under different selection procedures with
is more than one element in the subset. Furthermore, the P* = 0.95 andng = 20. TheRinott column lists the aver-

input dataX;; for step 4 will be i.i.d. normal because they age simulation replications for each design under Rinott’s

are batch means, and the differenceXgf; and X;, ; will procedure. Th&eTSScolumn lists the average simulation

be small because they are in the pre-selection subset. replications for each design under ETSS procedure. The
Reductioncolumn lists the reduction of simulation repli-

4.1 Experiment 1: Equal Variances cations, and theR% column lists the percentage of the

reduction of the number of simulation replications. We
There are ten alternative designs in the pre-selection subset.would like to point that Rinott's procedure will be the same
Suppose;; ~ N (i, 6%),i =1,2,...,10, where\ (u, 62) as equal allocation for additional simulation replications in
denotes the normal distribution with meanand variance this settings, i.e., the variances are equal for all designs.
o2. We want to select a design with the minimum mean. Our experimental results confirm that. On the other hand, in
It is obvious that design 1 is the actual best design. The the ETSS the number of additional simulation replications
indifference amount* is set to 090 for all cases. We decreases as the differendgg increase. This makes good
compare the required simulation replications of Rinott's sense because as the difference.pf- u;, (> 0) increases,
procedure and our ETSS. Furthermore, 10,000 independentit is more likely thati; > f;,. In another words, as the
experiments are performed to obtain the actual P(CS), we observeds; ;, = i; — i, (> 0) increases, it is less likely
count the number of times we successfully selected the that u; < u;;. The ratio of the average number of sim-
true best design (design 1 in this example) in those 10,000 ulation replications allocated for design 10 and design 1
independent experiments. P(CS) isthen obtained by dividing ) i
this number by 10,000 representing the correct selection ~ 1aPle 2: Detailed Sample Sizes fér = 0.95 and
percentage. We use two different initial replications= no = 20 of Experiment 1

20. and 30. Design | Rinott | ETSS | Reduction R%
1 706 700 6| 0.85%

Table 1: P(CS) and Sample Sizes for Experiment 1 2 664 437 227 | 34.19%
P* =0.90 P*=0.95 3 669 313 356 | 53.21%

Procedure| P(CS) | avg s.r.| P(CS) | avg s.r. 4 672 199 473 | 70.39%
Rinott(20) | 98.94% | 4284 | 99.73%| 6720 5 666 112 554 | 83.18%
ETSS(20)| 98.08% | 1335| 98.91%| 1929 6 672 61 611 | 90.92%
Reduction 2949 4791 7 670 36 634 | 94.63%
Rinott(30) | 99.45%| 5020 | 99.69% | 6343 8 666 25 641 | 96.26%
ETSS(30)| 98.94%| 1433 99.27%| 1760 9 664 21 643 | 96.84%
Reduction 3587 4583 10 665 20 645 | 96.99%
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of Rinott’s procedure is 0.942 (665/706), which is close to Table 4: Detailed Sample Sizes f&* = 0.95 and

the theoretical value 1(S10(no)/S1(no))? = (6/6)%). On no = 20 of Experiment 2
the other hand, this ratio is only 0.0286 (20/700) under Design | Rinott | ETSS | Reduction R%
the ETSS procedure. This is where ETSS can significantly 1 738 736 2| 0.27%
improve the efficiency of Two-Stage Rinott procedure. 2 780 508 272 | 34.87%
3 900 | 428 472 | 52.44%
4.2 Experiment 2: Increasing Variances 4 1039 | 333 706 | 67.95%
5 1176 | 243 933 | 79.34%
This is a variation of experiment 1. All settings are preserved 6 1333 162 1171 | 87.85%
except that the variance of each design increases as the 7 1505 | 112 1393 | 92.56%
mean increases. Namely;; ~ N(, (6 + i/2)?), i = 8 1670 78 1592 | 95.33%
1,2,...,10. 9 1842 53 1789 | 97.12%
The results are listed in Tables 3 and 4. Because most 10 2042 42 2000 | 97.94%

designs have larger variances than those in experiment 1,

the tOta| number Of Simu|ati0n I’ep|icati0ns iS more than in experiment 1. We are more confident of the best selection
experimentl. We are less confident of the best selection with with these Settings_ Therefore, fewer simulation rep"ca_
these settings. Therefore, more simulation replications are tions are needed to obtain the desired confidence. Rinott's
needed to obtain the desired confidence. Rinott's procedure procedure allocates fewer additional simulation replications
will allocate more additional simulation replications for o designs with inferior designs in this setting, i.e., as the
deSignS W|th Iarger Variances and the Simu|a'[i0n I’eplications samp|e means increase the variances decrease. The ratio
allocation is based entirely on the variances, tijs> N; of the average number of simulation replications allocated
when §; > §;. Even though ETSS also allocates more for design 10 and design 1 of Rinott's procedure is 0.0623
additional simulation replications for designs with larger (43/690), which is larger than the theoretical value 0.027
variances, it takes into account the difference of the sample ((1/6)3). This ratio is 0.029 (20/686) under the ETSS
means. Therefore, it is not always true that> N; when procedure. ETSS achieves less improvement in this set-

Si > S;. Infact, 8., has such a big influence in thatthe  ting. However, the percentage reduction of the number of
additional simulation replications decrease as the variances sjmulation replications is still about 50%.

increase. The ratio of the average simulation replications
allocated for design 10 and design 1 of Rinott’s procedure is Table 5: P(CS) and Sample Sizes for Experiment 3
2.77 (2042/738), which is smaller than the theoretical value P*=0.90 P*=0.95

3.36((11/6)2). This ratio is only 0.057 (42/736) under the Procedure| P(CS) | avg s.r.| P(CS) | avg s.I.
ETSS procedure. ETSS is most effective in this setting, Rinott(20) | 99.41% 2386 | 99.71% 3033
achieving about 80% reduction in the number of simulation ETSS(20)| 98.64% 1232 | 98.95% 1525

replications. Reduction 1154 1508
Rinott(30) | 99.34%| 2269 | 99.78%| 3018
4.3 Experiment 3: Decreasing Variances ETSS(30)| 98.79% 1200 | 99.38% 1459
Reduction 1069 1559

This is another variation of experiment 1. All settings are
preserved except that the variance of each design decreases Taple 6: Detailed Sample Sizes f&r = 0.95 and

as the mean increases. NameX; ~ N (i, (6 — i/2)?), no = 20 of Experiment 3

i=12...,10. Design | Rinott | ETSS]| Reduction R%

The results are listed in Tables 5 and 6. Because most 1 690 686 4| 0.58%

designs have smaller variances than those in experiment 1, 2 565 369 196 | 34.69%

the total number of simulation replications is less than in 3 463 216 247 | 53.35%

4 376 102 274 | 72.87%

Table 3: P(CS) and Sample Sizes for Eperiment 2 5 208 44 254 | 85.23%

P =0.90 P* =095 6 231| 24 207 | 89.61%

Procedure| P(CS) | avg s.r.| P(CS) | avg s.r. 7 169 20 149 | 88.17%

Rinott(20) | 99.46% | 10300| 99.70% | 13031 8 117 20 97 | 82.91%

ETSS(20)| 98.28%| 2108 | 98.73%| 2701 9 76 20 56 | 73.68%

Reduction 8192 10330 10 43 20 23 | 53.49%
Rinott(30) | 99.42%| 9754 | 99.81% | 12287
ETSS(30)| 98.62%| 1835| 99.08% | 2279
Reduction 7919 10008
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4.4 Experiment4: Dependent Data and Equal Variances

This is another variation of experiment 1 and is designed to

checkthe robustness of both procedures when the assumption
ofindependence s violated. All settings are preserved except

that data are correlated. THest-order auto-regressive
(AR(1)) process, generated by the recurrence relation

Xij=mi +oXjj_1— i) +eforj=12...,
where

o2 if j=k ,

E(ej) =0, E(ejer) = { 0 otherwise

O<gp<1,

andX;o is specified to some random variatg drawn from

the steady-state distribution. The AR(1) process shares many
characteristics observed in simulation output processes, in-

cluding first- and second-order nonstationarity and autocor-
relations that decline exponentially with increasing lag. If
we make the additional assumption that #és are nor-
mally distributed, since we have already assumed that they
are uncorrelated, they will now be independent as well, i.e.,
thee;’s are i.i.d. N'(0, o2). It can be shown thak;; has

asymptotically aV (u;, %z) distribution.

If we setu; = i, ¢ = 05, ando = 57 then
Xij ~ N(i,100/3), i = 1,2,...,10. Table 7 contains
the simulation results for the two selection procedures. We

can see that the relative performances of different procedures

are very similar with what we saw in previous experiments,

Table 7: P(CS) and Sample Sizes for Experiment 4

P* =0.90 P* =0.95
Procedure| P(CS) | avg s.r.| P(CS) | avg s.r.
Rinott(20) | 92.06% 4568 | 94.43% 5804
ETSS(20) | 90.49% 1499 | 92.75% 1858
Reduction 3069 3946
Rinott(30) | 91.39% 4342 | 93.83% 5474
ETSS(30)| 89.50% 1429 | 92.29% 1759
Reduction 2913 3715

Table 8: Detailed Sample Sizes fér* = 0.95 and
no = 20 of Experiment 4

Design | Rinott | ETSS | Reduction R%
1 591 593 -2 | -0.34%
2 577 | 366 211 | 36.57%
3 580 | 289 291 | 50.17%
4 580 | 209 371 | 63.97%
5 580 137 443 | 76.38%
6 578 93 485 | 83.91%
7 581 59 522 | 89.85%
8 577 42 535 | 92.72%
9 577 34 543 | 94.11%

10 578 31 547 | 94.64%

achieved P(CS) cannot be computed until the end of the
procedure. On the other hand, ETSS attempts to minimize
the computing budget with a given minimal probability
of correct selectionP*. Moreover, ETSS provides some
insight into the computing budget allocation strategy of
OCBA.

At the end of the first stage of the ETSS, inferior designs
are excluded from further consideration. Therefore, little

except that, in general, smaller sample sizes are used in this oot is expended on simulating inferior designs. Instead,

experiment. This is due to a smaller variance (10& 62)
of the input sequencg;;’s and most probably dependence
within alternatives. Both procedures underestimated the

most effort will be allocated to achieve higher accuracy of
more promising designs. The second stage of our ETSS is
a straightforward enhancement to Rinott’s procedure and is

variance when data are not independent, so the simulation very easy to implement. The required number of replications

replications are not large enough and the P(CS) is not as
good as that in previous experiments. However, ETSS is
still more efficient than Rinott's procedure in term of sim-
ulation replications. Table 8 lists the detailed simulation
replications used for each design under different selection
procedures withP* = 0.95 andng = 20.

5 CONCLUDING REMARKS

Many two-stage indifference-selection procedures ignore a
large amount of first-stage sampling information. We have
presented a simulation-replication-allocation algorithm that
utilizes both the means and variances from the first stage.
Even though the approach of OCBA and ETSS are different,
the computing budget allocation strategy are very similar.
However, OCBA is a fixed-sample-size procedure and the
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at the second stage for each design is computed based on
both the variances of sample means among the same design
and the differences of sample means between alternative
designs. The marginal computation effort required for our
ETSS is minimal, yet the achieved efficiency improvement is
significant. This simulation-replication-allocation technique
can also be applied to other ranking-and-selection criteria
such as selecting tha best ofk designs, see Koenig and
Law (1985), or multiple comparison with the best, see
Matejcik and Nelson (1995).

The results from our empirical experiments show that
the ETSS procedure is a powerful tool for selecting the
best design out ok alternatives. The main advantage of
the ETSS is that the algorithm determines the number of
additional simulation replications based on both the means
and variances and thus significantly improves the efficiency



Chen and

of R&S procedures. The simplicity of this method should
make it attractive to simulation practitioners or software
developers.

We are not able to give a definitive recommendation on
the choice of the number of initial replications at the first
stage. The “optimal” choice ofy depends on the variances
of X;;'s, which are unknown. Ifig is chosen too small,

overestimated variances from the first stage might result
in excessively large second-stage replications. Moreover,
inaccurate mean estimates in the first stage may cause the
final P(CS) to be smaller than desired. Because the ETSS
procedure relies heavily on the accuracy of the variance
estimates and the mean estimates from the first stage to

compute the required simulation replications. In general
we would recommend thaty be large enough to obtain
reasonable variance estimates. Especially wkgeis much
larger thanug, there is little to lose with a largeryp.

To avoid the risk of relying too much on the variance
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