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ABSTRACT process, are stochastic. Ignoring the effect of variability, for
instance in process times, would largely limit the practical
Discrete-event simulation is widely used to analyse and use of the outcome of a simulation (this is also stressed
improve the performance of manufacturing systems. The by Hopp and Spearman (1996)). Thirdly, the analysis of
related optimization problem often includes integer design a design can be computationally expensive, especially for
variables and is defined by objective function and constraints more complicated models.
that are expected values of stochastic functions. These Seeking help in designing complex industrial systems,
stochastic functions have to be evaluated via the simulation we need a design optimization strategy that can deal with
model at the discrete levels of the integer design parameters. all three of these characteristics. Fu (1994) and Carson
For such a simulation optimization problem with integer and Maria (1997) reviewed techniques for simulation opti-
variables we have developed an optimization strategy that mization of stochastic systems. They identify gradient-based
is based on a series of linear approximate subproblems. methods, genetic algorithms and statistical methods, mainly
Each subproblem is built from the outcomes of simulation for continuous design variables. Fu concludes that the state
experiments. A D-optimal design of experiments is used to of the art is far from satisfactory. Practical implementations
plan the simulation experiments. Stochasticity in constraint have not attacked large problems, because of rising compu-
and objective functions is dealt with explicitly using safety tational costs as the number of design variables increases.
indices. Two test problems will be presented to illustrate In the field of structural optimisation, Thanedar and
the optimization strategy. This includes a simulation based Vanderplaats (1995) and Arora, Huang, and Hsieh (1994)
four-station production flow line problem. reviewed methods for optimizing deterministic non-linear
problems that have discrete design variables. Thanedar and
1 INTRODUCTION Vanderplaats (1995) state that if function evaluations are
expensive, approximation methods can be used; however
Industrial systems are becoming increasingly complex. De- they do not guarantee a discrete optimum. Approximation
mands for flexibility, greater variety of products and ad- methods (reviewed by Barthelemy and Haftka (1993)) have
vanced production processes, complicate the design of man-proved to be useful in finding practical solutions for struc-
ufacturing systems. Within the Systems Engineering group, tural optimization problems which involve computationally
we use simulation models to estimate the behaviour and expensive analysis.
performance of manufacturing systems such as in semicon- In this paper, we present a strategy using elements
ductor industry (e.g. Lemmen et al. 1999 and Rulkens et of both structural optimization and simulation optimiza-
al. 1998). tion. An approximation concept, based on response surface
Design optimization problems involving manufacturing methodology, avoids a direct coupling between simulation
systems have three characteristic properties which make model and integer programming solver. Special attention is
them difficult to solve. Firstly, the design variables often given to the combined treatment of integer design variables
have to be integer, for example: the number of machines in and stochastic response variables.
a work centre or the size of a batch. Secondly, performance We implemented our optimization strategy using the
measurements, such as lead time, throughput and work in numerical package Matlab and an external mixed integer
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programming solver. Two production flow line problems
are used to illustrate the approach. The first is analytic and
has two design variables. The second is simulation-based
with four design variables.

2 OPTIMIZATION PROBLEM

A mathematical formulation of the optimization problem
treated in this paper is given below:

Problem P

Minimize: E[F(X, w)]

subject to: E[G;(X,@)] <cj, j=1,...,m,
x| <x <,
x; € Z, i=1...,n.

The objective is to find the design variable valuahat
will minimize the expected value of the stochastic objective
functionF (x, @), subject to expected value constraints on the
stochastic function& ; (x, @). An expected value constraint,
E[G (X, )] < c;, requires the expected value Gf; to be
less than or equal to the bouig.

In the remainder of this paper, we assume that function
evaluations ofFF and G; are the results of a simulation
experiment which is computationally expensive. Repeating
a simulation experiment for the same desigmvill yield
different values forF and G ;, because of the stochasticity
in the simulation model (denoted hy). For simulation
models of industrial systems, the distributions®@f and
F are often unknown, can be not normal and can depend
on the design variables valugs

3 OPTIMIZATION STRATEGY

We have developed a sequential optimization strategy that

to this design of experiments. Response surfaces, consisting
of linear closed form terms, are built using the results of the
simulation experiments. These response surfaces together
form a linear deterministic approximation of the original
stochastic optimization problen®, which is only valid
within the search region.

Design pointx?-9 denotes the starting point of the
p-th cycle. The approximate optimum of tipeth cycle for
the ¢-th iteration is denoted by(”-9). So, if two iterations
are needed to find an improved design in cygledesign
x(P-2) pecomes the start design for the next cyolg*t1.9.
Using this notation, the approximate subproblem can be
formulated as follows:

Problem BP9
n
Minimize: P9 = af"? + 3" alP? . x;,
i=1
n
subject to: gj.”’q’ = bé’]’.'q) + Zb}f’@ - xi, < 5;”"’)
i=1
xl{(p,q) <x < xly(p,q)’
j=1...,m, i=1...,n.

3.2 Move Limit Strategy

Upper and lower bounds/(?%) and x“»-4), called move
limits, define the search region. In each cycle and iteration,
the objective function value of the approximate optimum
is compared with the previous designs. If it has improved,
the approximate optimum becomes the starting point for the
next cycle. If the approximate optimum has not improved,
the search region is repositioned or reduced by the move
limit strategy.

The move limit strategy uses two directional methods

uses a series of subproblems which are linear approximations for positioning the search region. Directional method 1 (see

of the original optimization problem. Starting from an initial
design, in each cycle a linear approximate subproblem is
created and solved. |If its solution, called approximate
optimum, improves the objective function value compared
with the previous cycle, it becomes the next cycle’s starting
point.

3.1 Approximate Subproblem

Each subproblem consists of linear response surfaces for
constraints and objective function. Since optimization prob-
lem P can behave non-linearly as a function of the design
variables, the response surfaces only approxinfatand
G; well in a small region — called search region — within
the design space.

Within this search region, a design of experiments is
created. Simulation experiments are carried out according
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Figure 1) uses the cycle start desigf-? as a corner of

the search region. The opposing corner is placed in the
direction of the previous search direction, which is defined
as the vector between the current cycle start design and the
cycle start design of the previous cycle. Upper and lower
limits on the design variable values for this method are
calculated as follows:

1 . _ 1

X! (P xl.(p’o) + > -mg‘"’q) . SIgI’l(sl.(p l)) -3 ~m§‘”’q),
1 . _ 1

L) xi(p,O) > .mlgp,q) .S|gn(s,.(” 1)) > .mlgp,q)7

s _ xl_(p,O) _ xi(p—l,O)’

i=1...,n.

Parametern”? defines the size of the search region in
scale units in direction.
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Figure 1: Directional Method 1

Directional method 2 (See Figure 2) makes the current
cycle start design the centre of the search region. Upper-
and lower bounds on the search region for this method are
calculated as follows:
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Figure 2: Directional Method 2

Search region bounds, calculated by both methods,
can violate the bounds of the original design spﬁféé’q)
and xl.”(”””. In that case, the search region is moved to
lie entirely within the design space. Furthermore, if the
calculatedx! ”? or x”? values are not integex, "%’
is decreased and'”"?’ is increased to the first integer.

3.3 Design of Experiments

To calculate the approximate subproblen, simulation

experiments are planned within the search region. A D-
optimal design for a linear model, without interaction, is used
to plan these simulation experiments. Contrary to factorial
and fractional factorial designs, a D-optimal design can be
created for any number of experiments, that is larger than or
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equal to the number of parameters in the model. Therefore,
a linear relation between the number of design variables
and the number of experiments exists. This helps to keep
the number of simulation experiments at a manageable level
for increasing numbers of design variables.

3.4 Accepting Designs

An approximate optimum desigx(”? is accepted as the
start design for the next cycles, if the following conditions
hold:

x(P-9) is feasible.

x(7-9) was not previously found.

Objective function valueF (x(7-9)) has not in-
creased compared with(x(?-9)),

3.4.1 Stochastic Constraints

If the constraint functiorG ; is deterministic, the feasi-
bility of a designx can be determined comparing constraint
value G (x) with constraint boundary;. However, this
approach is not applicable, if the constraints are stochastic.

Consider a stochastic constraint functign. Carrying
out M simulation experiments for the same design variable

(p.q)

valuesx P9 results inM different constraint valueg,j X

with (k =1, ..., M), varying around the mean valge 2
This sample mean will be an unbiased estimate of the
expected constraint value for sufficiently large numbers of
M. If the mean constraint value is close to the constraint
boundary, the constraint values will be both bigger and
smaller than the constraint boundary. Therefore, the same
design can be considered infeasible or feasible, because of
the stochasticity.

The feasibility ofx(7-4) for constraintE(G;) < c;

depends on the difference betw@jﬁ’q) and the constraint
boundc;. Since, the constraint values are stochastic, this
difference is stochastic as well. We consider a design
feasible if it is statistically likely to be feasible.

For normally distributed constraint values, a statistical
hypothesis test shows with which probability the expected
constraint valueE (G ) is smaller than the constraint value.
The difference between mean constraint value and boundary
divided by the standard deviation of the constraint values
follows a student-t distribution. We call this quotient the
safety index for constraints, and compare it with the student-
t distribution to find the probability with which the design
is feasible. The safety index for constrai@t in cycle p
and iterationg is defined as follows:

=(p,q)
v _8i "% .
B =——-+ j=1....m Q)
8j sé(,‘;."q)/ /_M
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where the meag”%) and the standard deviatioé;f”” are
given by:

M

=(p.q) _ (r.q)

g =2 e’ M,
k=1

P9 _

s¢) — P2/ - 1).

M
> (e
k=1

The numerator in (1) is the difference between mean
and constraint bound. The denominator is the error with
which the mearg(.p”’) is known. This error depends on the

Therefore, the standard deviation which is used to correct the
constraint boundaries should be equal to the standard devia-
tion in the approximate optimum solutiot-). Since this
solution is still unknown, the standard deviation calculated
for the previous solutiox”¢~D is used as an estimate.

3.4.3 Stochastic Objective Functions

Stochastic objective functions are treated similarly to
stochastic constraint functions. Stochasticity prevents im-
provements in the objective function value to be calculated
from the difference between the current and the previous
value. The current mean objective function valiige is

standard deviation of the constraint values and the number compared with the previous mean objective function value

of replicationsM. For larger M, the estimate ofgv;”’q)
becomes more accurate.

For each solution”-9) of the approximate optimization
problem,M simulation experiments are carried out to calcu-

late the constraint values and the safety index. We consider

the constraintE(G;) < c;, inactive if the safety index is

smaller than some specified margi@j&f’q) < —Bg% Sim-

ilarly, the constraint is considered vioIatecBEf;"’) > BereC

In the remaining case; fg"° < A" < —p"° we con-

sider the constraint active. A design is thus considered
feasible, if 7" < —pe*°%j € {1.....m).

We assumed the constraint valugs to be symmetri-
cally distributed. If the distribution is not symmetrical, the
left and right margins on the safety index should be chosen
to be unequal. Furthermore, the value 83f°° should be

f1 instead. Therefore, we define the following safety index
for objective functions:

_ h-A
spv/ /M)’

2 2
o Sf1+sf2
sp= o

M
Sfia = Z(fl,z K — f1.2)2/(M —1).

k=1

Br 7))

with

Mean objective function valuesf{ and f>) and corre-
sponding standard deviationss{ ands ) are both based

chosen in accordance with the distribution of the constraint
function G ;, and the probability with which feasibility is
required. For sufficient larga/ and a normal distributed
constraint valuegz" = 2 yields a probability of 5% or

less thatE(G;) < c; is not satisfied.

on theM experiments carried out in each of the two design
points.

We consider the objective function decreased /if<
—,B?Pec. If —ﬂj.pecg B < ﬁ‘;‘.pec, the objective function
value is considered unchanged. The objective function value
is considered increased ff; > B3>

If the objective function valuesf; and f2, are normally
distributed, the indexg; follows a student-t distribution.

When solving the approximate optimization problem, |n that case,8; is related to the probability with which
the objective is to find a solution as close to the constraint the mean objective function values are different, given the
boundaries as possible. However, because of the safety number of replications\. For large enough and an
index, a certain distance between the design and the con-jndex value smaller than -2, the probability with which the
straint boundaries is needed for feasibility. To increase the objective function has not decreased is less th&a#t2 For
probability of finding feasible designs, the constraint bound- 3 value between -2 and 2, the objective function values have
ariesc in the approximated optimization probleAi”¢) are to be considered equal, with a 5% probability of error. If
tightened with a correction factor. The corrected constraint the index value is larger than 2, the probability with which
bound is defined as follows: the objective function has not increased is less th&f62
Similarly to selectingg;", care should be taken, since the
condition of normality may not hold.

3.4.2 Correcting Constraints

Gj=cj— B s, PV VM, =1

, m.

The correction factor on the constraint boundaries equals
the specified margin on the safety index multiplied by the
standard deviation of the mean. We assume that this stan-
dard deviation can depend on the design variable values.

718



Abspoel, Etman, Vervoort, and Rooda

3.4.4 Using Safety Indices to Accept Designs

Combining the safety indices for both objective func-
tion and constraints, a design is accepted if the following
conditions hold:

. max;—i, ..., m(lg(gq)) < maXj=1,..m (,ngec)
» the design was not previously found
° IB}PJI) < ﬂ;pec_

If the initial design is infeasible, the approximate op-
timization problem may not have a feasible solution in the
search region. Slack variables then relax the constraint
bounds until the design closest to the feasible domain is
found. This (still infeasible) approximate optimum design
will be accepted, if the following conditions are satisfied.

0
o maxi—y (B < maxizywn(BYY)

..........

» the design was not previously found
3.5 Stopping Rules

Optimization should stop once the optimum solution has
been found. Since the true optimum is often unknown, opti-
mization stops when it is unlikely that further improvement
will be found. Concretely, optimization stopsxf’4) has
been accepted and one of the following stopping criteria is
met:

e maxm®9) < 2 and directional methoe: 2
spec spec spec ,0
. ﬂ p ﬂ(fp .q) < ﬂfp IB p ﬂ(fp ) <

,B;pec andx(”-9) is feasible.

The move limits are reduced, if the search region is
positioned according to directional method 2. If the move
limit parametersm”4) become smaller than 2, the plan
points of the experimental design cannot be placed with the

start design as the centre any more. The boundaries of the

search region then lay between two integer points. So, we
assume that further improvement of the current design is
not possible and the optimization stops.

Secondly, optimization is stopped if the objective func-

tion value does not significantly decreases or increases. We

assume this is the case if the indic@{”’” of the cycle

optimum andﬁ(”’o) of the cycle start design, both lay in
the range< —g7°°, B;*°°>. Precondition is thax-) is

feasible and has been accepted.
4 TEST PROBLEMS

We will illustrate the optimization approach, described in
the previous sections, using two small production line prob-
lems: one analytic example with two design variables and
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one simulation-based example with four variables. The op-
timization problems contain stochastic constraint functions.
The objective function is in both cases deterministic.

For stochastic problems, the optimization strategy may
find multiple solutions to be optimal. To analyse these solu-
tions, the following definitions from Loh and Papalambros
(1991) for a deterministic discrete non linear programming
problem are helpful. For the stochastic case, the expres-
sions ‘feasible’ and ‘smaller than or equal to’ should be
interpreted in the sense of subsection Accepting Designs.

Definition 1~ The discrete neighbourhood of a point
x is defined as the set of all pointg whose discrete
components differ +1, 0, or -1 discrete units from the
corresponding components &f, x itself being excluded
from its own discrete neighbourhood. Formally, this set is
then defined as

DN(X) ={y : |y; —x;| = 1 or O discrete units
i=1...,ny #X}
Definition 2 The pointx is said to be a local opti-

mum for a problemDDNLP, if x is feasible for problem
DDNLP and f(x) < f(y) for all feasibley contained in
DN(X).

4.1 Two-Station Flow Line (Analytic)

A production flow line consists of two workstatiori&;

and W,. See Figure 3. Workstatiof/; hasx; identical
machines with a mean process timergf= 0.12 hour and

a squared coefficient of variation of, = 4.0. The second
workstationW» hasx, machines withy,, = 0.18 hour and

2, = 2.25. Each workstation has a single infinite buffer
to temporarily store jobs that need to be processed. Jobs
arrive at the first workstation with a mean inter arrival time
of 1, = 0.05 hour and a squared coefficient of variation of
¢2 = 0.25 hour.

Figure 3: Two-Station Flow Line

The optimization problem is defined as:

Minimize f =50+ 1. 6x1 + x2

subjectto E(G1) <
E(G2) <2 (3
X1, X2 € N+,

x1> 2.4, xp > 3.6,
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with  G1 = ¢ror + €1,
Go = w2 + e,
€1 € N(0, 0.05¢;,,),

€2 € N(0O, 0.05w2).

Herein, objective functiorf represents the installation costs
being the sum of fixed and variable cost. The first constraint
function constrains the average total throughput time to a
maximum of 0.5 hour. The second constraint limits the
maximum average number of jobs waiting in the queue of
the second workstation. Both the total throughput tipne

and mean queue-lengtty are computed using Little’s Law
and the following two relations from Hopp and Spearman
(1996) for a G/G/m-queueing system:

2+ 2 u V2m+D—1)
2 m(l—u)

¢q=

le,

2
u
¢q =1+ @)~ D+ —=(cZ - D),

N

with m being the number of machines in a statianthe
utilization, andc; the departure coefficient of variation.
Stochastic respons&$; and G2 are obtained by adding a
normally distributed error term t¢,,, andw,. The standard
deviations are 5% of the deterministig,;, and w2 values,
which means that the standard deviations depeng.on
The deterministic optimization problem is visualized
in Figure 4. The feasible domain is the upper right part of
the plot. The optimum design is (4,5). This deterministic
problem is solved starting from each discrete point in the
design space X x1 < 13 4 < x1 < 14, with initial size of
the search regiom&?’zo) = 4. The number of experiments
N to build to linear approximations is four, which gives an

Figure 4: Deterministic Two-Station Flow Line
Problem forz,; = 0.12 hour

Figure 5: Deterministic Two-Station Flow Line
Problem forz,; = 0.14 hour

proach starting from the same grid of initial designs gives

experiment in each corner. About 88% of the runs converged for 32% of the runs optimum (4,6), 44% gives (4,7), 12%
to (4,5), the other runs stopped in (4,6). Ending in (4,6) design (4,8), and the other 12% ends in (4,9), (4,10), (4,11),
instead of (4,5) is explained by the local inaccuracy of (4,12), or (4,13). An optimization run that has one of these
the multipoint linear constraint approximations and the fact points as intermediate approximate optimum solution will
that (4,5) lies close to the bound of the second constraint. probably end there because, according to the linear ap-
Depending on the position of (the corners of) the search proximation of the throughput time constraint, the point is

region the linear constraint approximations may exclude
(4,5) from the feasible domain.
The local inaccuracy of the multipoint linear approx-

infeasible, while it is actually feasible.
Stochastic optimization problem (4.1) witly = 0.12
hour has been solved for several values Mfand M.

imations becomes worse when the functions behave more Twenty optimization runs are started from the previously

non-linearly. This influences the optimization performance
of the sequential linearization approach. This can be illus-
trated using the two-station problem by taking the mean
process time of the first work station equal to 0.14 hour in-
stead of 0.12 hour. Then the discrete value 0= 3 comes
much closer to the bound af, > 2.8 where the utilization

of W1 approaches one and the curve of the throughput time
increases in a highly nonlinear fashion. For this slightly
different problem the true optimum solution becomes (4,6)
(see Figure 5). Running the sequential linearization ap-
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mentioned grid of initial designs. Paramefdf“ is set to

2; the objective function is deterministic. The initial size
of the search region is 4. The outcome of the optimization
runs is summarized in Table 1.

IncreasingN improves the linear approximation. By
increasingN the frequency with which the true optimum
(4,5) is found instead of its neighbor (4,6) increases. For
N = 32 andM = 25 the results compare with the outcome
of the deterministic experiment. Paramefdr has main
influence on the number of designs other than (4,5) and (4,6)
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Table 1: Results Stochastic Two-Station
Problem (4.1).

No. No. replicationsM

points  Design 5 10 25

N [%] [%] [%]

4 (45 66.2 79.7 81.6
(4,6) 228 171 173
other 11.0 3.2 1.1

8 (4,5) 730 845 86.8
(4,6) 183 136 12.8
other 87 1.9 04

32 (45) 779 873 884
(46) 130 116 115
other 9.1 1.1 0.1

that is found. Increasing/ decreases the number of other
designs found. For highe¥ the standard deviations are

better estimated, and the required safety margins decrease.

4.2 Four-Station Production Line (Simulation)

We consider a four-station production flow line (see Figure
6) with a negative exponential arrival pattern of 2.5 jobs an
hour. Each work centre consists gf identical machines
with single infinite buffers. Objective is to determine the
number of machines in each work centre that yields the
minimum cost solution and a maximum average throughput
time of 6.0 hours.

For each work centre the following is given (see Table
2): fixed costsFC;, unit costsUC;, mean process times
M PT; and their coefficients of variancgeCV;.

Table 2: Data of the Line Design Problem (taken
from Hopp and Spearman (1996))

Station Fixed cost Unit cost MPT SCV
[$1,000] [$1,000] [hrs] [-]
1 225 100 1.50 1.00
2 150 155 0.78 1.00
3 200 90 1.10 3.14
4 250 130 1.60 0.10

Utilization of each work centre should remain below 1
to avoid stock piling. Thus, the installed machine capacity
x;i/M PT; should be larger than the arrival ratg = 2.5
jobs/hour. This leads to the constraint:

raMPT;

Xi

<1Vie{l,2 3,4

u; =

Using this constraint, the minimum number of machines
needed at each work centre can be calculated. This minimum
cost utilization feasible solution is presented in Table 3.
However, this solution may not satisfy the throughput time
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Table 3: Minimum Cost Utilization Feasible Config-

uration
Station Machines Utilization Cost [$1,000]
1 4 0.94 625
2 2 0.98 460
3 3 0.92 470
4 5 0.80 900
Total 2,455

constraint. The optimization problem can now be formulated
as follows:

4 4
Minimize: F =Y FCi+» UCxi x €Z*
i=1 i=1

subjectto: E(THT) <6.0

x1>4, x2>2, ,x3>3, ,x4>5

A simulation model is used to estimate the expected
value of the throughput time& (T HT). In this model,
gamma distributions, with means and variances in accor-
dance with Table 2, model the process times.

An estimate of the mean throughput time is made by
calculating the average throughput after running the sim-
ulation model for a sufficient length of time. The effect
of simulation run length on the average throughput time
is studied using only two design variables. We introduce
the following variables:x] = x1 = x2 andxj; = x3 = x4.
Figure 7 shows the contour lines of the average throughput
time as a function of; andx; for run lengths of: 1,000,
10,000 and 50,000 jobs.

Contour lines in Figure 7 are lines of constant average
throughput time. A constraint that requires the average
throughput time to be smaller than some constant value
looks like a contour line. Comparing Figures 7(a), 7(b) and
7(c), we see the contour lines and the constraints become
smoother as the run length increases. For the optimization
we chose a run length of 50,000 jobs.

Fifty optimization runs were carried out, starting from
the minimum cost utilization feasible desigh= (4, 2, 3, 5)
with initial move limit parametern ®® = 4. Both the
number of experiment® and the number of replications
M were taken equal to 15. The margin on the safety index

o Cwas set to 2.

Table 4 shows the solutions that resulted from these op-
timization runs. On average, the optimization run converges
within four to five cycles. Nine different solutions have
been found. The design variable values of these solutions
and their frequencies of occurrence are shown in Table 5.

Combining the most frequently occurring design vari-
able values (Table 5), the optimum solution ¥ =
(6,3,6,6). This is also the most often found solution
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-v— Station 1 -v— Station 2 -v— Station 3 -v— Station 4 [

Figure 6: Four Station Production Flow Line
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(b) Run length = 10,000 jobs
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design variable x1

(c) Run length = 50,000 jobs

Figure 7: Contour Lines of the Calculated Mean Cycle Time of the Four-Station Production Flow Line
with x] = x1 = x2 andx, = x3 = x4 for Several Simulation Run Lengths.

Table 4: Calculated Optimum De-
signs for the Four-Station Flow Line

Design Frequency

X1 X2 X3 X4
6 3 6 6 18
6 4 5 5 10
7 3 5 6 6
6 4 5 7 4
7 5 6 5 4
7 3 6 5 3
5 3 6 6 2
5 4 5 6 2
6 4 6 5 1

Table 5: Frequencies of Design
Variable Values.

Value Frequency
X1 X2 X3 X4
3 0 29 0 O
4 0 17 0 O
5 4 4 22 18
6 33 0 28 28
7 13 0 0 4

according to Table 4. Nearly all other solutions, that were
found, are members of its discrete neighbourhood.

5 CONCLUSIONS

We have presented an optimization strategy to solve
simulation-based optimization problems, using a series of
approximate subproblems. Optimal design of experiments
is used to plan the simulation experiments, carried out at
the discrete points of the search region. Safety indices for
constraints and the objective function deal with the stochas-
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ticity present in simulation models. A move limit strategy
redefines the size and position of the search region during
the optimization.

The number of experimentg planned in the search re-
gion controls the accuracy of the approximations. However,
linear approximations of objective and constraint functions
are used, and the experiments are limited to integer values
for the design variables. Therefore the approximations are
unable to follow the local curvature of non-linear objec-
tive and constraint functions. As a result, an optimization
run can end at a non-optimal point in the deterministic
case, because of the limited accuracy of the approximation.
Stochasticity also causes multiple solutions to be found.

Optimization results of two test problems have been
presented. The analytical two-station flow line shows the
effect of the linear approximations and the role of parameters
N and M. The four-station production line is a successful
application of the optimization strategy to a simple (stochas-
tic) simulation model. In about thirty six per cent of the
optimization runs, the same final optimum solution is found;
almost all other solutions found are discrete neighbors. For
this problem it can be shown that variance changes as a
function of the design variable values. This underlines
the importance of recalculating the safety indices for each
approximate optimum solution.

REFERENCES

Arora, J. S., M. W. Huang, and C. C. Hsieh. 1994. Methods
for optimization of nonlinear problems with discrete
design variables: a revievBtructural OptimizatiorB:
69-85.

Barthelemy, J. -F. M., and R. T. Haftka. 1993. Approxima-
tion concepts for optimum structural desigdtructural
Optimization5: 129-144.



Abspoel, Etman, Vervoort, and Rooda

Carson, Y., and A. Maria. 1997. Simulation optimization:
methods and applications. Proceedings of the 1997
Winter Simulation Conferenceed. S. Andradéttir, K.

J. Healy, D. H. Withers, and B. L. Nelson, 118-126.
Institute of Electrical and Electronics Engineers, Pis-
cataway, New Yersey.

Fu, M. C. 1994. Optimization via simulation: a review.
Annals of Operations Researé3: 199-247.

Hopp, W. J., and M. L. Spearman. 199%actory Physics -
Foundations of Manufacturing Managemehicago:
[rwin.

Lemmen, B., E. J. J. van Campen, H. Roede, and J.
E. Rooda. 1999. Clustertool optimization through
scheduling rules. IrProceedings of the Eight Inter-
national Symposium on Semiconductor Manufactyring
ed. B. Sohn et al., 89-92.

Loh, H. T., and P. Y. Papalambros. 1991. A sequential lin-
earization approach for solving mixed discrete nonlinear
design optimization problemslournal of Mechanical
Design113: 325-334.

Rulkens, H. J. A, E. J. J. van Campen, J. van Herk, and J.

E. Rooda. 1998. Batch size optimization of a furnace
and pre-clean area by using dynamic simulations. In
Proceedings of the 1998 SEMI/IEEE Advanced Semi-
conductor Manufacturing Conferenced. S. McClure,
J. Goodman, and K. Conway, 439-444.

Thanedar, P. B. and G. N. Vanderplaats. 1995. Survey
of discrete variable optimization for structural design.
Journal of Structural Desigri21: 301-306.

AUTHOR BIOGRAPHIES

S.J.ABSPOELcurrently is atrainee of the International Pro-
gram in Logistics Management Systems at Eindhoven Uni-
versity of Technology. He received a M.S. degree in mechan-
ical engineering from Eindhoven University of Technology.
His email address iss.j.abspoel@tm.tue.nl>

L.F.P. ETMAN (corresponding author) is assistant pro-
fessor in the Department of Mechanical Engineering

at Eindhoven University of Technology. He received
M.S. and Ph.D. degrees in mechanical engineering
from Eindhoven University of Technology. His email

and web addresses afd.f.p.etman@tue.nl> and

<se.wtb.tue.nl/"pascal/>.

J. VERVOORT is a graduate student with the Systems
Engineering Group in the Department of Mechanical Engi-
neering at Eindhoven University of Technology. His email
and web addresses argvervoort@stud.tue.nl>

and <se.wtb.tue.nl/"vervoort/>.

J.E. ROODA is professor in Systems Engineering in the
Department of Mechanical Engineering at Eindhoven Uni-

723

versity of Technology. He received a M.S. degree in food

processing technology from Wageningen University of Agri-

culture, and a Ph.D. degree in mechanical engineering
from Twente University. His email and web addresses are
<j.e.rooda@tue.nl> and <se.wtb.tue.nl/>.



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

