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ABSTRACT

Discrete-event simulation is widely used to analyse a
improve the performance of manufacturing systems. T
related optimization problem often includes integer desi
variables and is defined by objective function and constrai
that are expected values of stochastic functions. The
stochastic functions have to be evaluated via the simulat
model at the discrete levels of the integer design paramet
For such a simulation optimization problem with intege
variables we have developed an optimization strategy t
is based on a series of linear approximate subproblem
Each subproblem is built from the outcomes of simulatio
experiments. A D-optimal design of experiments is used
plan the simulation experiments. Stochasticity in constra
and objective functions is dealt with explicitly using safet
indices. Two test problems will be presented to illustra
the optimization strategy. This includes a simulation bas
four-station production flow line problem.

1 INTRODUCTION

Industrial systems are becoming increasingly complex. D
mands for flexibility, greater variety of products and ad
vanced production processes, complicate the design of m
ufacturing systems. Within the Systems Engineering grou
we use simulation models to estimate the behaviour a
performance of manufacturing systems such as in semic
ductor industry (e.g. Lemmen et al. 1999 and Rulkens
al. 1998).

Design optimization problems involving manufacturin
systems have three characteristic properties which m
them difficult to solve. Firstly, the design variables ofte
have to be integer, for example: the number of machines
a work centre or the size of a batch. Secondly, performan
measurements, such as lead time, throughput and work
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process, are stochastic. Ignoring the effect of variability, f
instance in process times, would largely limit the practic
use of the outcome of a simulation (this is also stress
by Hopp and Spearman (1996)). Thirdly, the analysis
a design can be computationally expensive, especially
more complicated models.

Seeking help in designing complex industrial system
we need a design optimization strategy that can deal w
all three of these characteristics. Fu (1994) and Cars
and Maria (1997) reviewed techniques for simulation op
mization of stochastic systems. They identify gradient-bas
methods, genetic algorithms and statistical methods, mai
for continuous design variables. Fu concludes that the st
of the art is far from satisfactory. Practical implementation
have not attacked large problems, because of rising com
tational costs as the number of design variables increas

In the field of structural optimisation, Thanedar an
Vanderplaats (1995) and Arora, Huang, and Hsieh (199
reviewed methods for optimizing deterministic non-linea
problems that have discrete design variables. Thanedar
Vanderplaats (1995) state that if function evaluations a
expensive, approximation methods can be used; howe
they do not guarantee a discrete optimum. Approximati
methods (reviewed by Barthelemy and Haftka (1993)) ha
proved to be useful in finding practical solutions for struc
tural optimization problems which involve computationall
expensive analysis.

In this paper, we present a strategy using eleme
of both structural optimization and simulation optimiza
tion. An approximation concept, based on response surf
methodology, avoids a direct coupling between simulatio
model and integer programming solver. Special attention
given to the combined treatment of integer design variab
and stochastic response variables.

We implemented our optimization strategy using th
numerical package Matlab and an external mixed integ
5



Abspoel, Etman, Vervoort, and Rooda

s
n
se

e
e

,

o

n

n

h
o
l

te
d

ng

f
b
gn

n

is
in

ing
e
her
l

e

n,

,
e
,
ve

s
e

he
d
the
r

e

programming solver. Two production flow line problem
are used to illustrate the approach. The first is analytic a
has two design variables. The second is simulation-ba
with four design variables.

2 OPTIMIZATION PROBLEM

A mathematical formulation of the optimization problem
treated in this paper is given below:

Problem P

Minimize: E[F(x,ω)]
subject to: E[Gj(x,ω)] ≤ cj , j = 1, . . . , m,

xli ≤ xi ≤ xui ,
xi ∈ Z, i = 1, . . . , n.

The objective is to find the design variable valuesx that
will minimize the expected value of the stochastic objectiv
functionF(x,ω), subject to expected value constraints on th
stochastic functionsGj(x,ω). An expected value constraint
E[Gj(x,ω)] ≤ cj , requires the expected value ofGj to be
less than or equal to the boundcj .

In the remainder of this paper, we assume that functi
evaluations ofF andGj are the results of a simulation
experiment which is computationally expensive. Repeati
a simulation experiment for the same designx will yield
different values forF andGj , because of the stochasticity
in the simulation model (denoted byω). For simulation
models of industrial systems, the distributions ofGj and
F are often unknown, can be not normal and can depe
on the design variables valuesx.

3 OPTIMIZATION STRATEGY

We have developed a sequential optimization strategy t
uses a series of subproblems which are linear approximati
of the original optimization problem. Starting from an initia
design, in each cycle a linear approximate subproblem
created and solved. If its solution, called approxima
optimum, improves the objective function value compare
with the previous cycle, it becomes the next cycle’s starti
point.

3.1 Approximate Subproblem

Each subproblem consists of linear response surfaces
constraints and objective function. Since optimization pro
lem P can behave non-linearly as a function of the desi
variables, the response surfaces only approximateF and
Gj well in a small region – called search region – withi
the design space.

Within this search region, a design of experiments
created. Simulation experiments are carried out accord
71
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to this design of experiments. Response surfaces, consist
of linear closed form terms, are built using the results of th
simulation experiments. These response surfaces toget
form a linear deterministic approximation of the origina
stochastic optimization problemP , which is only valid
within the search region.

Design pointx(p,0) denotes the starting point of the
p-th cycle. The approximate optimum of thep-th cycle for
theq-th iteration is denoted byx(p,q). So, if two iterations
are needed to find an improved design in cyclep, design
x(p,2) becomes the start design for the next cycle:x(p+1,0).
Using this notation, the approximate subproblem can b
formulated as follows:

Problem P̃
(p,q)

Minimize: f̃ (p,q) = a(p,q)0 +
n∑
i=1

a
(p,q)
i · xi,

subject to: g̃
(p,q)
j = b(p,q)0j +

n∑
i=1

b
(p,q)
ij · xi,6 c̃(p,q)j

x
l(p,q)
i 6 xi 6 xu(p,q)i ,

j = 1, . . . , m, i = 1, . . . , n.

3.2 Move Limit Strategy

Upper and lower boundsxl(p,q) and xu(p,q), called move
limits, define the search region. In each cycle and iteratio
the objective function value of the approximate optimum
is compared with the previous designs. If it has improved
the approximate optimum becomes the starting point for th
next cycle. If the approximate optimum has not improved
the search region is repositioned or reduced by the mo
limit strategy.

The move limit strategy uses two directional method
for positioning the search region. Directional method 1 (se
Figure 1) uses the cycle start designx(p,0) as a corner of
the search region. The opposing corner is placed in t
direction of the previous search direction, which is define
as the vector between the current cycle start design and
cycle start design of the previous cycle. Upper and lowe
limits on the design variable values for this method ar
calculated as follows:

x
l(p,q)
i = x(p,0)i + 1

2
·m(p,q)i · sign

(
s
(p−1)
i

)
− 1

2
·m(p,q)i ,

x
u(p,q)
i = x(p,0)i + 1

2
·m(p,q)i · sign

(
s
(p−1)
i

)
+ 1

2
·m(p,q)i ,

s
(p−1)
i = x(p,0)i − x(p−1,0)

i ,

i = 1, . . . , n.

Parameterm(p,q)i defines the size of the search region in
scale units in directioni.
6
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Figure 1: Directional Method 1

Directional method 2 (See Figure 2) makes the curren
cycle start design the centre of the search region. Uppe
and lower bounds on the search region for this method a
calculated as follows:

x
l(p,q)
i = x(p,0)i − 1

2
m
(p,q)
i ,

x
u(p,q)
i = x(p,0)i + 1

2
m
(p,q)
i .
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Figure 2: Directional Method 2

Search region bounds, calculated by both method
can violate the bounds of the original design spacex

l(p,q)
i

and xu(p,q)i . In that case, the search region is moved to
lie entirely within the design space. Furthermore, if the
calculatedxl(p,q)i or xu(p,q)i values are not integer,xl(p,q)i

is decreased andxu(p,q)i is increased to the first integer.

3.3 Design of Experiments

To calculate the approximate subproblem,N simulation
experiments are planned within the search region. A D
optimal design for a linear model, without interaction, is used
to plan these simulation experiments. Contrary to factoria
and fractional factorial designs, a D-optimal design can b
created for any number of experiments, that is larger than o
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equal to the number of parameters in the model. Therefor
a linear relation between the number of design variable
and the number of experiments exists. This helps to kee
the number of simulation experiments at a manageable lev
for increasing numbers of design variables.

3.4 Accepting Designs

An approximate optimum designx(p,q) is accepted as the
start design for the next cycles, if the following conditions
hold:

• x(p,q) is feasible.
• x(p,q) was not previously found.
• Objective function valueF(x(p,q)) has not in-

creased compared withF(x(p,0)).

3.4.1 Stochastic Constraints

If the constraint functionGj is deterministic, the feasi-
bility of a designx can be determined comparing constrain
valueGj(x) with constraint boundarycj . However, this
approach is not applicable, if the constraints are stochast

Consider a stochastic constraint functionGj . Carrying
outM simulation experiments for the same design variabl
valuesx(p,q) results inM different constraint values,g(p,q)j k

with (k = 1, . . . ,M), varying around the mean valueḡ(p,q)j .
This sample mean will be an unbiased estimate of th
expected constraint value for sufficiently large numbers o
M. If the mean constraint value is close to the constrain
boundary, the constraint values will be both bigger an
smaller than the constraint boundary. Therefore, the sam
design can be considered infeasible or feasible, because
the stochasticity.

The feasibility of x(p,q) for constraintE(Gj ) 6 cj

depends on the difference betweenḡ(p,q)j and the constraint
boundcj . Since, the constraint values are stochastic, th
difference is stochastic as well. We consider a desig
feasible if it is statistically likely to be feasible.

For normally distributed constraint values, a statistica
hypothesis test shows with which probability the expecte
constraint valueE(Gj ) is smaller than the constraint value.
The difference between mean constraint value and bounda
divided by the standard deviation of the constraint value
follows a student-t distribution. We call this quotient the
safety index for constraints, and compare it with the studen
t distribution to find the probability with which the design
is feasible. The safety index for constraintGj in cycle p
and iterationq is defined as follows:

β
(p,q)
gj = ḡ

(p,q)
j − cj
s
(p,q)
gj /

√
M

j = 1, . . . , m (1)
7
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where the mean̄g(p,q) and the standard deviations(p,q)gj are
given by:

ḡ
(p,q)
j =

M∑
k=1

g
(p,q)
jk /M,

s
(p,q)
gj =

√√√√ M∑
k=1

(g
(p,q)
jk − ḡ(p,q)j )2/(M − 1).

The numerator in (1) is the difference between mea
and constraint bound. The denominator is the error wi
which the mean̄g(p,q)j is known. This error depends on the
standard deviation of the constraint values and the numb
of replicationsM. For largerM, the estimate ofḡ(p,q)j

becomes more accurate.
For each solutionx(p,q) of the approximate optimization

problem,M simulation experiments are carried out to calcu
late the constraint values and the safety index. We consi
the constraint,E(Gj ) 6 cj , inactive if the safety index is

smaller than some specified margin:β(p,q)gj < −βspec
g . Sim-

ilarly, the constraint is considered violated ifβ(p,q)gj > β
spec
g .

In the remaining case,−βspec
g ≤ β(p,q)gj ≤ −βspec

g , we con-
sider the constraint active. A design is thus consider
feasible, ifβ(p,q)gj 6 −βspec

g ∀j ∈ {1, . . . , m}.
We assumed the constraint valuesgjk to be symmetri-

cally distributed. If the distribution is not symmetrical, the
left and right margins on the safety index should be chos
to be unequal. Furthermore, the value ofβspec

g should be
chosen in accordance with the distribution of the constra
functionGj , and the probability with which feasibility is
required. For sufficient largeM and a normal distributed
constraint value,βspec

g = 2 yields a probability of 2.5% or
less thatE(Gj ) 6 cj is not satisfied.

3.4.2 Correcting Constraints

When solving the approximate optimization problem
the objective is to find a solution as close to the constra
boundaries as possible. However, because of the saf
index, a certain distance between the design and the c
straint boundaries is needed for feasibility. To increase t
probability of finding feasible designs, the constraint boun
ariesc in the approximated optimization problem̃P (p,q) are
tightened with a correction factor. The corrected constra
bound is defined as follows:

c̃j = cj − βspec
g · sgj (x(p,q−1))/

√
M, j = 1, . . . , m.

The correction factor on the constraint boundaries equ
the specified margin on the safety index multiplied by th
standard deviation of the mean. We assume that this st
dard deviation can depend on the design variable valu
71
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Therefore, the standard deviation which is used to correct t
constraint boundaries should be equal to the standard dev
tion in the approximate optimum solutionx(p,q). Since this
solution is still unknown, the standard deviation calculate
for the previous solutionx(p,q−1) is used as an estimate.

3.4.3 Stochastic Objective Functions

Stochastic objective functions are treated similarly to
stochastic constraint functions. Stochasticity prevents im
provements in the objective function value to be calculate
from the difference between the current and the previou
value. The current mean objective function valuef̄2 is
compared with the previous mean objective function valu
f̄1 instead. Therefore, we define the following safety inde
for objective functions:

βf = f̄2− f̄1

sf
√
(2/M)

, (2)

with

sf =
√
s2
f1
+ s2

f2

2
,

sf1,2 =
√√√√ M∑
k=1

(f1,2 k − f̄1,2)2/(M − 1).

Mean objective function values (f̄1 and f̄2) and corre-
sponding standard deviations (sf 1 andsf 2) are both based
on theM experiments carried out in each of the two desig
points.

We consider the objective function decreased, ifβf <

−βspec
f . If −βspec

f 6 βf 6 β
spec
f , the objective function

value is considered unchanged. The objective function valu
is considered increased ifβf > β

spec
f .

If the objective function values,f1 andf2, are normally
distributed, the indexβf follows a student-t distribution.
In that case,βf is related to the probability with which
the mean objective function values are different, given th
number of replicationsM. For large enoughM and an
index value smaller than -2, the probability with which the
objective function has not decreased is less than 2.5%. For
a value between -2 and 2, the objective function values ha
to be considered equal, with a 5% probability of error. I
the index value is larger than 2, the probability with which
the objective function has not increased is less than 2.5%.
Similarly to selectingβspec

g , care should be taken, since the
condition of normality may not hold.
8
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3.4.4 Using Safety Indices to Accept Designs

Combining the safety indices for both objective func-
tion and constraints, a design is accepted if the following
conditions hold:

• maxj=1,...,m(β
(p,q)
gj ) < maxj=1,...,m(β

spec
g )

• the design was not previously found
• β

(p,q)
f < β

spec
f .

If the initial design is infeasible, the approximate op-
timization problem may not have a feasible solution in the
search region. Slack variables then relax the constrain
bounds until the design closest to the feasible domain
found. This (still infeasible) approximate optimum design
will be accepted, if the following conditions are satisfied.

• maxj=1,...,m(β
(p,q)
gj ) < maxj=1,...,m(β

(p,0)
gj )

• the design was not previously found.

3.5 Stopping Rules

Optimization should stop once the optimum solution ha
been found. Since the true optimum is often unknown, opti
mization stops when it is unlikely that further improvement
will be found. Concretely, optimization stops, ifx(p,q) has
been accepted and one of the following stopping criteria i
met:

• max(m(p,q)) < 2 and directional method= 2
• −βspec

f < β
(p,q)
f < β

spec
f , −βspec

f < β
(p,0)
f <

β
spec
f andx(p,q) is feasible.

The move limits are reduced, if the search region is
positioned according to directional method 2. If the move
limit parametersm(p,q) become smaller than 2, the plan
points of the experimental design cannot be placed with th
start design as the centre any more. The boundaries of t
search region then lay between two integer points. So, w
assume that further improvement of the current design i
not possible and the optimization stops.

Secondly, optimization is stopped if the objective func-
tion value does not significantly decreases or increases. W
assume this is the case if the indices,β

(p,q)
f of the cycle

optimum andβ(p,0)f of the cycle start design, both lay in

the range< −βspec
f , β

spec
f >. Precondition is thatx(p,q) is

feasible and has been accepted.

4 TEST PROBLEMS

We will illustrate the optimization approach, described in
the previous sections, using two small production line prob
lems: one analytic example with two design variables an
71
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one simulation-based example with four variables. The op
timization problems contain stochastic constraint functions
The objective function is in both cases deterministic.

For stochastic problems, the optimization strategy ma
find multiple solutions to be optimal. To analyse these solu
tions, the following definitions from Loh and Papalambros
(1991) for a deterministic discrete non linear programming
problem are helpful. For the stochastic case, the expre
sions ‘feasible’ and ‘smaller than or equal to’ should be
interpreted in the sense of subsection Accepting Designs

Definition 1 The discrete neighbourhood of a point
x is defined as the set of all pointsy, whose discrete
components differ +1, 0, or -1 discrete units from the
corresponding components ofx , x itself being excluded
from its own discrete neighbourhood. Formally, this set is
then defined as

DN(x) = {y : |yi − xi | = 1 or 0 discrete units,

i = 1, . . . , n; y 6= x}

Definition 2 The pointx is said to be a local opti-
mum for a problemDDNLP , if x is feasible for problem
DDNLP andf (x) 6 f (y) for all feasibley contained in
DN(x).

4.1 Two-Station Flow Line (Analytic)

A production flow line consists of two workstationsW1
andW2. See Figure 3. WorkstationW1 hasx1 identical
machines with a mean process time ofte1 = 0.12 hour and
a squared coefficient of variation ofc2

e1 = 4.0. The second
workstationW2 hasx2 machines withte2 = 0.18 hour and
c2
e2 = 2.25. Each workstation has a single infinite buffer

to temporarily store jobs that need to be processed. Jo
arrive at the first workstation with a mean inter arrival time
of ta = 0.05 hour and a squared coefficient of variation of
c2
a = 0.25 hour.

W W1 2

Figure 3: Two-Station Flow Line

The optimization problem is defined as:

Minimize f = 5.0+ 1.6x1+ x2

subject to E(G1) 6 0.5,

E(G2) 6 2.0,

x1, x2 ∈ N+,
x1 > 2.4, x2 > 3.6,

(3)
9
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,6)
with G1 = φtot + ε1,
G2 = w2+ ε2,
ε1 ∈ N(0,0.05φtot ),

ε2 ∈ N(0,0.05w2).

Herein, objective functionf represents the installation costs
being the sum of fixed and variable cost. The first constrai
function constrains the average total throughput time to
maximum of 0.5 hour. The second constraint limits th
maximum average number of jobs waiting in the queue o
the second workstation. Both the total throughput timeφtot
and mean queue-lengthw2 are computed using Little’s Law
and the following two relations from Hopp and Spearma
(1996) for a G/G/m-queueing system:

φq = c2
a + c2

e

2

u(
√

2(m+1)−1)

m(1− u) te,

c2
d = 1+ (1− u2)(c2

a − 1)+ u2

√
m
(c2
e − 1),

with m being the number of machines in a station,u the
utilization, andcd the departure coefficient of variation.
Stochastic responsesG1 andG2 are obtained by adding a
normally distributed error term toφtot andw2. The standard
deviations are 5% of the deterministicφtot andw2 values,
which means that the standard deviations depend onx.

The deterministic optimization problem is visualized
in Figure 4. The feasible domain is the upper right part o
the plot. The optimum design is (4,5). This deterministic
problem is solved starting from each discrete point in th
design space 36 x1 6 13,46 x1 6 14, with initial size of
the search regionm(0,0)1,2 = 4. The number of experiments
N to build to linear approximations is four, which gives an
experiment in each corner. About 88% of the runs converge
to (4,5), the other runs stopped in (4,6). Ending in (4,6
instead of (4,5) is explained by the local inaccuracy o
the multipoint linear constraint approximations and the fac
that (4,5) lies close to the bound of the second constrain
Depending on the position of (the corners of) the searc
region the linear constraint approximations may exclud
(4,5) from the feasible domain.

The local inaccuracy of the multipoint linear approx-
imations becomes worse when the functions behave mo
non-linearly. This influences the optimization performanc
of the sequential linearization approach. This can be illu
trated using the two-station problem by taking the mea
process time of the first work station equal to 0.14 hour in
stead of 0.12 hour. Then the discrete value ofx1 = 3 comes
much closer to the bound ofx1 > 2.8 where the utilization
of W1 approaches one and the curve of the throughput tim
increases in a highly nonlinear fashion. For this slightly
different problem the true optimum solution becomes (4,6
(see Figure 5). Running the sequential linearization a
720
.
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4

5

6

7

8

9

10

x
1

x 2

Figure 4: Deterministic Two-Station Flow Line
Problem forte1 = 0.12 hour
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Figure 5: Deterministic Two-Station Flow Line
Problem forte1 = 0.14 hour

proach starting from the same grid of initial designs give
for 32% of the runs optimum (4,6), 44% gives (4,7), 12%
design (4,8), and the other 12% ends in (4,9), (4,10), (4,1
(4,12), or (4,13). An optimization run that has one of thes
points as intermediate approximate optimum solution w
probably end there because, according to the linear a
proximation of the throughput time constraint, the point i
infeasible, while it is actually feasible.

Stochastic optimization problem (4.1) withte1 = 0.12
hour has been solved for several values ofN and M.
Twenty optimization runs are started from the previous
mentioned grid of initial designs. Parameterβspecg is set to
2; the objective function is deterministic. The initial size
of the search region is 4. The outcome of the optimizatio
runs is summarized in Table 1.

IncreasingN improves the linear approximation. By
increasingN the frequency with which the true optimum
(4,5) is found instead of its neighbor (4,6) increases. F
N = 32 andM = 25 the results compare with the outcom
of the deterministic experiment. ParameterM has main
influence on the number of designs other than (4,5) and (4
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Table 1: Results Stochastic Two-Station
Problem (4.1).

No. No. replicationsM
points Design 5 10 25
N [%] [%] [%]
4 (4,5) 66.2 79.7 81.6

(4,6) 22.8 17.1 17.3
other 11.0 3.2 1.1

8 (4,5) 73.0 84.5 86.8
(4,6) 18.3 13.6 12.8
other 8.7 1.9 0.4

32 (4,5) 77.9 87.3 88.4
(4,6) 13.0 11.6 11.5
other 9.1 1.1 0.1

that is found. IncreasingM decreases the number of other
designs found. For higherM the standard deviations are
better estimated, and the required safety margins decrea

4.2 Four-Station Production Line (Simulation)

We consider a four-station production flow line (see Figur
6) with a negative exponential arrival pattern of 2.5 jobs a
hour. Each work centre consists ofxi identical machines
with single infinite buffers. Objective is to determine the
number of machines in each work centre that yields th
minimum cost solution and a maximum average throughpu
time of 6.0 hours.

For each work centre the following is given (see Table
2): fixed costsFCi , unit costsUCi , mean process times
MPTi and their coefficients of varianceSCVi .

Table 2: Data of the Line Design Problem (taken
from Hopp and Spearman (1996))

Station Fixed cost Unit cost MPT SCV
[$1,000] [$1,000] [hrs] [-]

1 225 100 1.50 1.00
2 150 155 0.78 1.00
3 200 90 1.10 3.14
4 250 130 1.60 0.10

Utilization of each work centre should remain below 1
to avoid stock piling. Thus, the installed machine capacit
xi/MPTi should be larger than the arrival ratera = 2.5
jobs/hour. This leads to the constraint:

ui = raMPTi

xi
< 1 ∀ i ∈ {1,2,3,4}

Using this constraint, the minimum number of machine
needed at each work centre can be calculated. This minimu
cost utilization feasible solution is presented in Table 3
However, this solution may not satisfy the throughput time
72
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Table 3: Minimum Cost Utilization Feasible Config-
uration

Station Machines Utilization Cost [$1,000]
1 4 0.94 625
2 2 0.98 460
3 3 0.92 470
4 5 0.80 900

Total 2,455

constraint. The optimization problem can now be formulate
as follows:

Minimize: F =
4∑
i=1

FCi +
4∑
i=1

UCixi xi ∈ Z+

subject to: E(THT ) ≤ 6.0

x1 ≥ 4, x2 ≥ 2, , x3 ≥ 3, , x4 ≥ 5.

A simulation model is used to estimate the expect
value of the throughput timeE(THT ). In this model,
gamma distributions, with means and variances in acc
dance with Table 2, model the process times.

An estimate of the mean throughput time is made b
calculating the average throughput after running the si
ulation model for a sufficient length of time. The effec
of simulation run length on the average throughput tim
is studied using only two design variables. We introduc
the following variables:x′1 = x1 = x2 and x′2 = x3 = x4.
Figure 7 shows the contour lines of the average through
time as a function ofx′1 andx′2 for run lengths of: 1,000,
10,000 and 50,000 jobs.

Contour lines in Figure 7 are lines of constant avera
throughput time. A constraint that requires the avera
throughput time to be smaller than some constant va
looks like a contour line. Comparing Figures 7(a), 7(b) an
7(c), we see the contour lines and the constraints beco
smoother as the run length increases. For the optimizat
we chose a run length of 50,000 jobs.

Fifty optimization runs were carried out, starting from
the minimum cost utilization feasible designx0 = (4,2,3,5)
with initial move limit parameterm(0,0)i = 4. Both the
number of experimentsN and the number of replications
M were taken equal to 15. The margin on the safety ind
β

spec
g was set to 2.

Table 4 shows the solutions that resulted from these o
timization runs. On average, the optimization run converg
within four to five cycles. Nine different solutions have
been found. The design variable values of these solutio
and their frequencies of occurrence are shown in Table

Combining the most frequently occurring design var
able values (Table 5), the optimum solution isx =
(6,3,6,6). This is also the most often found solution
1
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Figure 6: Four Station Production Flow Line
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(a) Run length = 1,000 jobs
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(b) Run length = 10,000 jobs
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(c) Run length = 50,000 jobs

Figure 7: Contour Lines of the Calculated Mean Cycle Time of the Four-Station Production Flow
with x′1 = x1 = x2 andx′2 = x3 = x4 for Several Simulation Run Lengths.
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Table 4: Calculated Optimum De-
signs for the Four-Station Flow Line

Design Frequency
x1 x2 x3 x4

6 3 6 6 18
6 4 5 5 10
7 3 5 6 6
6 4 5 7 4
7 5 6 5 4
7 3 6 5 3
5 3 6 6 2
5 4 5 6 2
6 4 6 5 1

Table 5: Frequencies of Design
Variable Values.

Value Frequency
x1 x2 x3 x4

3 0 29 0 0
4 0 17 0 0
5 4 4 22 18
6 33 0 28 28
7 13 0 0 4

according to Table 4. Nearly all other solutions, that wer
found, are members of its discrete neighbourhood.

5 CONCLUSIONS

We have presented an optimization strategy to solv
simulation-based optimization problems, using a series o
approximate subproblems. Optimal design of experimen
is used to plan the simulation experiments, carried out a
the discrete points of the search region. Safety indices fo
constraints and the objective function deal with the stocha
72
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ticity present in simulation models. A move limit strategy
redefines the size and position of the search region dur
the optimization.

The number of experimentsN planned in the search re-
gion controls the accuracy of the approximations. Howeve
linear approximations of objective and constraint function
are used, and the experiments are limited to integer valu
for the design variables. Therefore the approximations a
unable to follow the local curvature of non-linear objec
tive and constraint functions. As a result, an optimizatio
run can end at a non-optimal point in the determinist
case, because of the limited accuracy of the approximatio
Stochasticity also causes multiple solutions to be found.

Optimization results of two test problems have bee
presented. The analytical two-station flow line shows th
effect of the linear approximations and the role of paramete
N andM. The four-station production line is a successfu
application of the optimization strategy to a simple (stocha
tic) simulation model. In about thirty six per cent of the
optimization runs, the same final optimum solution is found
almost all other solutions found are discrete neighbors. F
this problem it can be shown that variance changes as
function of the design variable values. This underline
the importance of recalculating the safety indices for ea
approximate optimum solution.
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