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ABSTRACT

We propose �low cost response surface methods� (LCRSM)
that typically require half the experimental runs of standard
response surface methods based on central composite and
Box Behnken designs but yield comparable or lower
modeling errors under realistic assumptions.  In addition, the
LCRSM methods have substantially lower modeling errors
and greater expected savings compared with alternatives
with comparable numbers of runs, including small compo-
site designs and computer-generated designs based on popu-
lar criteria such as D-optimality.  Therefore, when simula-
tion runs are expensive, low cost response surface methods
can be used to create regression meta-models for queuing or
other system optimization.  The LCRSM procedures are also
apparently the first experimental design methods derived as
the solution to a simulation optimization problem.  For these
reasons, we say that LCRSM are �for and from� simulation
optimization.  We compare the proposed LCRSM methods
with a large number of alternatives based on six criteria.  We
conclude that the proposed methods offer attractive
alternative to current methods in many relevant situations.

1 INTRODUCTION

Many engineers and scientists use design of experiments
techniques to construct empirical regression or �response
surface� models.  An important application of response
surface models is meta-models for optimizing a simulated
system.  When simulation runs are expensive, e.g., if a
system with a large number of queues is being modeled
with a high degree of realism, response surface methods
(RSM) permit the user to develop an inexpensive surrogate
or �meta-model� to facilitate the understanding and
optimization of the system being studied.  Kelton (1999)
provides a recent tutorial on applications of RSM to
simulation meta-modeling.

Popular choices for experimental designs include Box
Behnken (1960), central composite, and small central
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composite designs, e.g., see Draper and Lin (1996).  These
designs have several important justifications but are only
available for numbers of experimental runs that may, for
many relevant applications, be considered too large.  In the
common situation in which the experimenter has only a
fixed budget, he or she must simply drop factors until the
corresponding number of runs meets the budget.  Because
these procedures clearly can result in models of limited
scope and poor engineering results, there has been
considerable interest in alternative methods with fewer
runs for a given number of factors.  For reviews of some of
this research, see Box and Draper (1987), and Draper and
Lin (1996 and 1990), and Myers and Montgomery (1995).

This paper proposes low cost response surface meth-
ods (LCRSM), which provide simple-to-use alternatives to
standard response surface methods with approximately half
the runs of Box Behnken and central composite designs
and substantially fewer runs than small composite designs
in most situations.  The proposed methods derive from
design criteria based on assumptions, model selection
techniques, and diagnostic methods that have recently
become possible to implement because of improvements in
optimization methods and computing power. The main
justifications of the methods are that (1) the expected
accuracy of the empirical models derived using LCRSM is
comparable to the accuracy derived from more expensive
methods under realistic assumptions about the experi-
mental conditions, and (2) the methods are simple to use,
requiring no special software and limited training.  The
importance of this second justification is established by the
widely cited fact, e.g., Myers and Montgomery (1995), that
simple, mechanical methods based on central composite
and Box Behnken (1960) designs are used much more than
any other response surface methods.

In the next section, we formally propose the LCRSM
methods and illustrate their application to an automotive
design problem.  We present and illustrate the LCRSM
methods first in order to highlight their ease of application
before we discuss their derivation and justifications.  Next,
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we review recent related progress in the areas of
experimental design criteria and optimization methods.
Then, we present justifications for the chosen candidate
model selection and regression diagnostics, and we
compare LCRSM methods with alternative methods based
on cost, final empirical model accuracy, and the remaining
Draper and Lin (1996) �value for money� criteria.
Finally, we summarize the contributions.

2 LOW COST RESPONSE SURFACE METHODS

The application of low cost response surface methods
(LCRSM) is very similar to that of ordinary response
surface methods except multiple models are fit instead of
one and the diagnostic test is different.  The four major
steps in the application of any response surface methodolo-
gy are: 1) experimental setup and testing, 2) modeling, 3)
diagnosing whether the model is sufficiently accurate, and
4) additional testing, if needed.  We use the application of
LCRSM to aid in decision-making aimed at increasing
profits and reducing customer lead-times of a fictitious
facility to illustrate the methods.  Example applications of
LCRSM in engineering design contexts include Allen, Yu,
and Bernshteyn (2000) and Koc, Allen, Jiratheranat, and
Altan (2000).  In the example we use in this paper, the goal
is to allocate engineering resources to reduce processing
times at various machine centers in a production facility.
Imagine that each simulation run requires greater than 1
hour of computer time and nontrivial preparation time and
that there is time pressure on the allocation decision.
Therefore, we only have enough time for 14 simulation
runs.  We have four factors which correspond to possible
centers to invest in and the correspondence between
processing time distribution and expenditure is built into
the simulation.  Since four factors are of interest to the
engineers, we choose to use LCRSM rather than to drop a
factor, as would be required using methods based on Box
Behnken (1960) or central composite designs.

2.1 The LCRSM Procedure

The precise procedure is defined as follows.

Step 1: (Setup and Experimentation) Choose the
experimental factors.  Set up the experiment by taking the
experimental design from an appropriate table, either Table
1(a) or Table 2(a) for three and four factors respectively
and perform the specified tests.  These experimental arrays
are derived in Section 3 by minimizing the expected
integrated means squared modeling error, proposed in
Allen and Yu (2000), as evaluated through a simplified
simulation of the multi-model, potentially sequential
analysis process described in Steps 2-4.  In our example,
we use the design in Table 2(a).  Table 3 also shows the
inputs in thousands of dollars along with the data from the
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14 distinct simulation runs for the two responses, which are
profits in thousands of dollars/shift and lead-time in hours.

Step 2: (Model Selection) Create the regression
model(s) of each response by fitting the appropriate set of
candidate model forms.  For the 3 factor design in Table
1(a), this is the set in Table 1(b).  Similarly, see Table 2 for
4 factors.  Select the fit model form with the lowest sum of
squares error.  Scaled (-1,1) units are used until the last
stage when the chosen model forms are fit in the
engineering units.  The primary justification of these
choices of fit models, as described below, relates to the
pragmatic need to keep the number of candidate models
small in order to maintain reasonable computation times
for the practitioners during analysis and for us during
design generation.  Also, while LCRSM procedures have
so far only been characterized formally for the specific sets
of models described in the tables, we have used linear
combinations of fit models for prediction following
engineering judgment in specific cases.  In our example,
we fit the four model forms in Table 2(b) to each of the
responses and selected the one with the lowest sum of
squares error.  The selected models are: y1,est=72.0 + 9.0A
+ 14.1B + 13.4C + 11.8D + 8.52A2 - 6.15B2 + 0.86C2 +
3.95AB - 0.462AC - 0.744BC and y2,est = 14.63 + 0.821A +
1.49B - 0.302C - 3.66D - 0.453A2 - 1.666C2 + 7.89D2 -
2.221AC - 0.307AD + 1.36CD.

Table 1:  LCRSM with 3 Factors: (a) the Start-up Design in
Scaled (-1,1) Units, Referred to as ξξξξ1, (b) the Model Forms,
and (c) the Optional Follow-up Runs, ξξξξ2

(a)
Run A B C

1 1 -1 0
2 0 -1 1
3 1 1 1
4 -1 -1 -1
5 -1 0 0.5
6 0 0 0
7 -0.5 1 -0.5
8 0.5 0.5 -1
9 0.5 0.5 -1

                (b) (c)
Form #1: β 0 + β A A + β B B + β C C + Run A B C

β A 2 A 2 + β B 2 B 2 + β A B A B A1 1 -0.5 1
A2 1 1 -0.5

Form #2: β 0 + β A A + β B B + β C C + A3 -0.5 1 1
β A 2 A 2 + β C 2 C 2 + β A C A C

Form #3: β 0 + β A A + β B B + β C C
β B 2 B 2 + β C 2 C 2 + β B C B C

Step 3: (The Least Squares Coefficient Based
Diagnostic) Calculate

( ) ( ) 2/12/12
,, 1 −−= ∑ qq

i estiestq ββ
 (1)

where β i ,est are the least squares estimates of the q second
order coefficients in the model chosen in Step 2.  Include
coefficients of terms like A2 and BC, but not first order
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terms such as A and D. Estimate the maximum acceptable
standard error of prediction or �plus or minus� accuracy
goal, σprediction.  If βq,est ≤    1.0σprediction, refit the model form
in the engineering units.  Stop.  Otherwise, or if there is
any special concern with the accuracy, continue to Step 4.
Special concerns might include mid-experiment changes to
the experimental design.  The primary justification for this
rule is that, by permitting the same degrees of freedom to
be used for both diagnosis and model fitting, the LSCB
diagnostic is able to achieve substantially lower expected
modeling errors than the standard regression diagnostics
which perform poorly in this context.  Also, the fact that
βq,est provides an approximate, conservative estimate of the
prediction errors is established below through examination
of the quartiles of the distribution of the integrated mean
squared error conditioned on βq,est. The default assumption
for σprediction is that it equals 2.0 times the estimated
standard error, because then the achieved expected �plus or
minus� accuracy approximately equals the error that would
be expected if the experimenter applied substantially more
expensive methods based on composite designs.  The
standard error can be estimated in practice using s/c4,
where s is the standard deviation of data from the repeated
runs and c4 is the bias correction (=0.80 when 2 repeated
points are used, e.g., Table 1, and 0.89 when 3 points are
used, e.g., Table 2).

Table 2:  LCRSM with 4 Factors: (a) the Start-up Design in
Scaled (-1,1) Units, Referred to as ξξξξ1, (b) the Model Forms,
and (c) the Optional Follow-up Funs, ξξξξ2

(a)
Run A B C D

1 -0.5 -1 -0.5 1
2 1 1 -1 1
3 -1 1 1 1
4 1 -1 -0.5 -0.5
5 0 0 -1 0
6 0 1 0 0
7 -0.5 -1 1 -0.5
8 -1 0 0 0
9 1 1 1 -1
10 -1 1 -1 -1
11 0 0 0 -1
12 0.5 -0.5 0.5 0.5
13 0.5 -0.5 0.5 0.5
14 0.5 -0.5 0.5 0.5

(b) (c)
Form #1: β 0 + β A A + β B B + β C C + β D D + Run A B C D

β A 2 A 2 + β B 2 B 2 + β C 2 C 2 + A1 -1 1 -1 1
β A B A B + β A C A C + β B C B C A2 -1 -1 -1 -1

Form #2: β 0 + β A A + β B B + β C C + β D D + A3 -1 1 1 -1
β A 2 A 2 + β B 2 B 2 + β D 2 D 2 + A4 1 1 -1 -1
β A B A B + β A D A D + β B D B D

Form #3: β 0 + β A A + β B B + β C C + β D D +
β A 2 A 2 + β C 2 C 2 + β D 2 D 2 +
β A C A C + β A D A D + β C D C D

Form #4: β 0 + β A A + β B B + β C C + β D D +
β B 2 B 2 + β C 2 C 2 + β D 2 D 2 +
β B C B C + β B D B D + β C D C D
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Table 3:  Example � The Left shows the
Inputs which are Investments in $K to
Reduce Times at the Four Machine Centers
Labeled A-D, and the Right Shows the
Estimated Profits in Dollars and Lead
Times in Hours

Run A B C D y1 y2
1 1.25 1.7 12.5 10.00 55.95 15.39
2 2.00 2.1 10.0 10.00 101.76 19.92
3 1.00 2.1 20.0 10.00 101.23 21.02
4 2.00 1.7 12.5 6.25 52.93 18.55
5 1.50 1.9 10.0 7.50 59.93 13.42
6 1.50 2.1 15.0 7.50 80.54 15.90
7 1.25 1.7 20.0 6.25 60.87 14.70
8 1.00 1.9 15.0 7.50 72.02 13.51
9 2.00 2.1 20.0 5.00 102.70 22.81
10 1.00 2.1 10.0 5.00 51.36 23.79
11 1.50 1.9 15.0 5.00 59.42 26.33
12 1.75 1.8 17.5 8.75 81.94 13.50
13 1.75 1.8 17.5 8.75 81.94 13.50
14 1.75 1.8 17.5 8.75 81.94 13.50

Another relevant assumption is that the standard
deviation of the random error is much smaller than the
accuracy needed, which holds for many types of computer
experiments.  Then, the user needs to specify the desired
accuracy to avoid unnecessary experimental expense.  In
our example, we select σprediction based on financial needs to
equal $5.0K, or �±5K� accuracy, for the profit and
σprediction=5.0 hrs. for the lead time.  The square roots of the
{sum of squares of the 6 quadratic coefficients divided by
5} for the two responses are βq,est=$5.0K and $3.8 hours
respectively.  Since these are less than or equal to their
respective cutoffs, we stop.  No more experiments are
believed necessary to achieve adequate meta-model
prediction errors.

Step 4: (Additional Runs, If Necessary) If needed,
perform additional experimental runs specified in part �(c)�
in the table appropriate for the number of factors used.
After the experiment, fit a full quadratic polynomial
regression model as in ordinary response surface methods
(RSM).  Then, the fit model is expected to have
comparable errors as if an expensive composite design had
been applied and a quadratic model fit.

3 THE DERIVATION OF LOW COST METHODS

In this section, we review and extend the results from the
studies of experimental design criteria and optimization
used in the method development from Allen and Yu
(1999a and b).  In the next section, we describe new
methods for model discrimination and regression
diagnostics that make LCRSM possible.

3.1 Experimental Design Criterion

LCRSM use relatively few experimental test runs as
compared with alternatives.  Therefore, it is imperative to
minimize the risk that the LCRSM procedure will derive
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inaccurate empirical models by capitalizing on the benefits
from optional sequential experimentation and model
selection.  In this section, we begin by developing an
experimental design criterion or optimization objective that
can estimate the expected loss from model inaccuracy or
�risk� in the Bayesian sense, e.g., see Pilz (1991), taking
into account errors from important interactions and other
terms not included in the final fit model, the possibility of a
follow-up experimentation, and model selection.

Box and Draper (1959 and 1987) and others have
pointed out the limitations of many popular experimental
design criteria, such as D-optimality.  These criteria ignore
the often-dominant bias errors from fitting a model form
that does not allow accurate approximation of the true
response.   Therefore, we base our criterion on the Box and
Draper (1959) integrated mean squared error (IMSE)
criterion, which includes bias errors in the estimation of the
model errors.  Allen and Yu (2000a) proposed the semi-
Bayesian extension of the IMSE called the expected
integrated mean squared error (EIMSE) to permit its
application in realistic situations when the true model is not
known.  Allen and Yu (2000a) showed that, in the single fit
model non-sequential case, EIMSE optimal designs
performed nearly optimally for a variety of assumptions
and criteria, which was not true for other criteria such as
D-optimality and minimum bias.  Further, they showed that
minimum bias and integrated variance optimal designs
could be generated using the EIMSE criteria.

The advantages of the EIMSE criterion include that
the square root of the EIMSE provides a direct and
comprehensive estimate of the plus or minus prediction
errors that experimenters can expect to achieve.  Also, it is
one of few criteria that has been extended to apply to
sequential experimentation, see Allen and Yu (2000b).
Moreover, because we will only have enough runs to fit
first and selected second order terms and we believe (see
below) that the true model can only be accurately
approximated by a third order polynomial, it is imperative
that we include both variance and bias errors which come
from model misspecification in our criterion.  The EIMSE
criterion is the only usable criterion that we are aware of
which does this.  Finally, Allen and Yu (2000a) showed
that, EIMSE optimal designs yielded good performance for
a variety of assumptions and other criteria such as D-
efficiency and minimum bias, which was not true for
alternative designs.

Next, we propose a straightforward extension to the
EIMSE as defined in Allen and Yu (2000b) to estimate and
compare the plus or minus errors in cases in which
multiple models are fit and a mechanistic analysis pro-
cedure examines the data and selects the best model.  We
write the expression below for the EIMSE independently
of our assumptions about the prior distributions for the
coefficients, ββββ, and the random errors for the first and
second experiment (if needed), εεεε1 and, εεεε2.  In the next
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subsection, we will describe the distributions used to
generate LCRSM.  Fortunately, as we will describe in later
sections, the LCRSM designs give good performance for a
variety of assumptions.  We define the startup experimental
design matrix, ξξξξ1, and the followup design matrix, ξξξξ2,
which is optional.  The function yi,est is the fit model based
on the model form i =1,2,..,s, and yfull,est is the fit model
after augmentation which is assumed to be a full quadratic
functional form.  The indicator function πstop(ββββ,ε1,ξξξξ1)
equals 1 if augmentation is not needed as decided after the
first experiment by the chosen model diagnostic, i.e., if
βq,est < 2σest , and 0 otherwise.  Similarly, πi(ββββ,ε1,ξξξξ1) equals
1 if model i is selected by the model selection method, i.e.,
in our case if SSEi < SSEj for all model pairs i≠j, and 0
otherwise.   Defining these �π� functions of random
variables is necessary in order to preserve the interpretation
of the EIMSE as the expected prediction errors.  With these
definitions, the EIMSE objective is:
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where by default ρ(x)=1/V where V is the volume of the
region of interest and the expression generally requires
numerical simulation for its evaluation.

Defined in this way, the EIMSE has the intuitive
interpretation of being the expected IMSE of the final fit
model derived from the experimental process.  Also, the
square root of the EIMSE may be defined as the �standard
error of prediction� or simply the �plus or minus prediction
error� which is of immediate relevance to the practitioner.
The trade-off for this interpretability and other advantages
is that the integration in (2) cannot be evaluated
analytically, complicating the minimization.  Fortunately,
recently it has become feasible in relevant cases to perform
this minimization using the heuristics described in Section
3.3 and modern computer capabilities.

3.2 Assumptions about the True Model

We begin by making what we believe is an often realistic
assumption that a third order polynomial with N(0,σ2)
experimental random errors, with unknown σ, well
approximates the true model.  If one feels that the true
model is highly nonlinear, i.e., fourth or higher order is
needed, then it is not clear whether any empirical modeling
methods with comparable numbers of runs to standard
response surface methods will provide an adequate fit
model.  Also, while several authors have investigated the
effects of outliers on empirical modeling techniques, for a
review see Beckman and Cook (1983), at present we urge
the user to re-perform runs believed to be outliers.  Note
that the assumption of a full cubic polynomial is
7
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substantially more realistic than the assumption of a
quadratic polynomial made in common implementations of
optimal experimental design, e.g., applications of D-
optimality, which are based on a single criterion and do not
include bias errors.

Next, we specify the necessary assumptions about the
coefficients of the cubic polynomial.  We make no
assumptions about the first order terms and only limited
assumptions about the second order terms.  This follows
because these terms may or may not be very large
compared with the standard deviation of the random error,
σ.  It is not difficult to show analytically that if we make
the specific choices about candidate model terms described
in the next section then model selection probabilities and
virtually all properties of the fit model are independent of
the values of the first order coefficients.  The main
assumption about the quadratic coefficients that we make
is conservative.  This is that all the quadratic coefficients of
our terms, with the standard [1-,1] scaling of all factor, are
roughly of the same order of magnitude, i.e., N(0,βq

2).
Clearly, if some of the terms are exactly zero, this would
tend to favor methods like ours that omit some quadratic
terms.  Then, we assume βq is a U(0,L) hyper parameter to
allow for our uncertainty about the degree of curvature.
We admit that this scheme may seem somewhat arbitrary,
however, in our simulation investigations, we have found
that the choice of distributions have a small effect on the
relative performance of alternative methods.   An important
achievement of LCRSM is, we believe, that the EIMSE is
highly insensitive to L (and βq).  Thus, the methods are
robust to uncertainty about the quadratic curvature.  Also,
the EIMSE values used in the comparison are based on
almost worst-case values of L and so, we believe, are
conservative.

In Allen and Yu (2000 a and b), we investigated
assumptions about the third order terms and concluded that
assuming that the third order coefficients are N(0,βc

2) with
βc equal to 0.5 is in accordance with the implied
assumptions of the users of response surface methods.  As
noted by Box and Draper (1987), �An investigator might
typically employ a fitted approximating function such as a
straight line, if he believed that the average departure from
the truth induced by the approximating function were no
worse than that induced by the process of fitting.�
Therefore, it is reasonable to believe that one will tend to
choose the degree of this approximating function in such a
way that the integrated variance error and the expected
integrated systematic error are about equal.  It is easy to
check that 0.5 makes the expected bias errors
approximately equal to the integrated variance errors when
a full central composite design is applied.  Fortunately, it is
easy to show that the relative effectiveness of alternative
methods is largely independent of the distribution of βc.
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3.3 The Method for Experimental
Design Generation

In this section, we review briefly how search techniques
that have traditionally been used for generating
experimental designs cannot be used to generate LCRSM
and how a new class of simulation optimization or
�stochastic� search techniques can; see Allen, Bernshteyn,
and Yu (1999) for more details.  Each evaluation of the
EIMSE in (1) requires time-consuming numerical
simulation to calculate the expected values for all but
trivial choices of diagnostics and model selection
procedures, i.e., πstop(ββββ,ε1,ξξξξ1) and πi(ββββ,ε1,ξξξξ1) functions.
Exchange algorithms, which are used in the majority of
commercial optimal experimental design algorithms,
obtain excellent efficiencies for linear optimality criteria
that do not require simulation evaluation, such as D-
optimality, by minimizing the number of time-consuming
function calls.  To do this, they use recursive formulas and
large numbers of computationally inexpensive evaluations,
see, e.g., Meyer and Nachtsheim (1995).  At present, no
recursive formulas exist to aid in the evaluation of the
EIMSE.  Therefore, every evaluation is expensive and
exchange algorithms are extremely inefficient.

Optimization where the objective value must be
estimated using numerical integration is called �simulation
optimization� for surveys see, e.g., Plug (1996) and
Andradottir (1996).  We used the optimization heuristic in
Allen, Bernshteyn, and Yu (2000) to produce the start up
and follow-up designs shown in Table 1, Table 2, and
Table 3 by minimizing the EIMSE in (3.1), using the
proposed hierachical prior, and the model selection and
diagnostics described in the next section.  This
optimization method combines population based and
multiple comparison based search methods and uses
variation reduction techniques.  In brief, a three stage
eliminating procedure is used to approximately sort the
population in each stage (generation) of the genetic
algorithm and to guarantee with an assignable probability
that the best solution is not lost.

4 MODEL SELECTION AND DIAGNOSTICS

The EIMSE objective, prior distributions, and stochastic
optimization methods can be used to generate and evaluate
experimental designs based on many types of model
selection and diagnostic procedures.  In this section, we
motivate the choice of the procedures used in LCRSM
which, in the case of model selection, are hybrids and
extensions of approaches discussed in Srivastava (1996)
and Meyer, Steinberg, and Box (1995) adapted to the
response surface context.  It would be ideal, perhaps, to
carry out the optimization of the EIMSE simultaneously
over the space of experimental designs, ξξξξ1 and ξξξξ2, and over
the space of possible model selection and diagnostic
8
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decision rules.  However, other considerations besides
model accuracy such as simplicity and analytical results
relating to robustness of the methods constrain the choices
and provide the motivation for the proposed hybrid
procedures.  These procedures, which define the functions
πstop(ββββ,ε1,ξξξξ1) and πi(ββββ,ε1,ξξξξ1) used to evaluate the EIMSE in
(3.1), are largely responsible for the success of LCRSM by
permitting designs with few runs to achieve small values of
the EIMSE, ease of use, and other desirable properties.

4.1 The Model Selection Procedure

In this section, we motivate the proposed model selection
approach.  We begin by briefly reviewing the proposed
method.  Then, we discuss the criteria used to evaluate
methods, use these criteria to characterize the relevant
alternatives from the literature, and describe how the
proposed methods address the criteria.  In the proposed
method models, all factors are present at first order in all
candidates, e.g., for m=3 all candidate models contain
β 0+β AA+β BB+β CC.  The m models differ by the
combinations of m-1 of the m factors present at second
order, e.g., for m=3, one of the three models would also
contain β A 2 A2  +β C 2 C2  +β A CAC, missing factor B at
second order.  See Tables 1-3b for other examples.

There has been considerable interest on the topic of
experimental design for model discrimination including
Atkinson and Fedorov (1975), Pukelsheim and Rosen-
berger (1993), and Meyer, Steinberg, and Box (1995) work
discussed in Srivastava (1996).  Two of the most
influential types of candidate models include main effect
plus P (MEP+P) plans where P is an integer Srivastava
describes and what we term the �all combinations of active
factors� model sets proposed in Box and Meyer (1993) and
used in Myers, Steinberg, and Box (1995).  Both types of
approaches have been proposed in the context of two level
experiments and require generalization to be applied for
response surface exploration.

MEP+P plans involve candidate models in which all
candidates include all first order terms and the candidates
differ by the combination of P terms from a chosen list of
R higher order terms, with all R choose P combinations
included.  The central problem with MEP+P plans is that
the large number of candidate models makes modeling
difficult.  For example, with m=4 factors, the number of
possible combinations of P=6 of the possible R=10 second
order terms is 210. While selecting the true model from
among 210 choices might, depending upon assumptions,
drive down the EIMSE compared with fitting the 4
candidate models in Table 2 (b), it is not, at present,
reasonable to request that the user routinely perform so
many regressions.  Also, times for generating the arrays in
Tables 1-3 are roughly linear in the number of candidates.
Using a Pentium 450 MHz machine, computation time to
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generate the array in Table 3 involving 10 candidate
models required roughly 1 day.  Because this optimization
must be run several times to ensure a thorough solution, we
feel that 10 candidates is, at least temporarily, a practical
limit.  The �all combinations of active factors� method
uses all possible choices of active factors and includes in
each model all possible interactions between the �a� active
factors including interactions of order a.  Benefits of this
type of approach include that it conforms to the plausible
assumptions of �factor sparsity� and �effect heredity�.
Box and Meyer (1986) defined �factor sparsity� as the
assumption that not all factors are �active.�  This means
that some or all of the terms in the Taylor series expansion
associated with at least some of the factors are negligible.
Hamada and Wu (1992) defined �effect heredity� as the
assumption that certain 2nd order terms are only present
only if the related 1st order terms being non-zero.  If these
assumptions hold, then the all combination of active factors
approach has a non-negligible probability of determining
the �true� model exactly.  However, this approach results
in 2m candidate models of different orders, which is usually
too many for easy calculation.  Also, depending upon the
number of active factors, some of the candidates may not
be estimable using ordinary least squares requiring
relatively difficult Bayesian modeling.  Finally, in the �all
combinations� method all candidate models do not contain
all factors at first order.   It is easy to confirm empirically
that this leads to high values of the EIMSE because of the
high probability that first order coefficients are large.

The proposed strategy has the following justifications.
First, all candidate sets contain ten or fewer models
facilitating calculation both for the practitioner and for
ourselves during design generation.  Second, all candidates
contain all first order terms to make expected model errors
independent of first order term distribution.  Third, the
strategy capitalizes on the benefits of both types of plans
and addresses both of our criteria.  It is similar to the main
effect plus P (MEP+P) plans because all the candidate
models contain all first order terms.  Another benefit that is
shared with the MEP+P plans is that all candidates include
greater than three terms so that the diagnostic described in
the next section can be applied.  However, we only use m
candidate models, so our method is simpler to use.  Finally,
like the all combinations of active factors plan, our
proposed strategy capitalizes on the possibility of factor
sparsity and effect heredity.  It should be noted that our
candidate models do not even approximately minimize the
EIMSE under the assumption that the true model is a full
cubic with normally distributed coefficients in Section 3.2.
Since this assumption does not take into account factor
sparsity and heredity, which would tend to favor our
choices of models, we feel that the EIMSE based on our
earlier assumptions provides a conservative estimate of the
prediction errors.
9
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4.2 The Least Squares Coefficient
Based (LSCB) Diagnostic

In this section, we justify the proposed LSCB diagnostic by
comparing it with the standard regression F-test diagnostic
described in, e.g., Myers and Montgomery (1995).  We
begin by describing the role of diagnostics in the low cost
response surface context.  Then, we present empirical
evidence of the benefits of the LSCB diagnostic.  Both
LCRSM and small composite designs involve estimating a
test statistic based on small numbers of start-up
experimental runs with the purpose of deciding whether
additional, follow-up experimental runs are needed after
the first set of experiments have been performed so that the
final model will have acceptable accuracy.  For example,
when small composite designs are used, the experimenter
performs the start-up experiments on the cube and center
points and calculates the test statistic that is the mean
squared error divided by the variance of the repeated
points, σest.  Then, the practitioner performs an F-test using
this statistic usually with α=0.05 or 0.25 to decide whether
the so-called �star point� follow-up runs and a second
order model form are needed, e.g., see Myers and
Montgomery (1995).  Similarly, in LCRSM, the
experimenter performs the first set of experiments, e.g.,
Table 1 (a), selects the appropriate model containing one
subset of the possible quadratic terms, and uses the LSCB
test statistic to decide whether or not to perform additional
pre-tabulated, follow-up runs, e.g., Table 1 (c).  As defined
in equation (1), the LSCB test statistic is the square root of
(the sum of the squared quadratic coefficients divided by
the number of quadratic terms minus one), βq,est.   If βq,est is
less than two times the desired plus or minus error of
prediction, σprediction, stop.  Otherwise, perform the
additional, follow-up runs and fit a full quadratic. By
default, we assume that σprediction, = 2σhat, where σhat is the
estimated standard error derived from the repeated points.
We show later that with this choice, LCRSM procedures
provide expected final model errors comparable to
alternatives based on small composite and Box Behknen
designs under the realistic assumptions described in
Section 3.2.

The primary justification for the LSCB diagnostic is
that it is able to achieve the objectives of the diagnostic
procedures while requiring two or more fewer start-up runs
than the standard F-test diagnostic.  The diagnostics have
two objectives.  First, the additional runs generally carry a
high cost, which is presumably the motivation for using the
low cost methods.  Therefore, it is desirable to minimize
the probability that the follow-up runs will be used.
Second, in some cases the follow-up runs may be
necessary to minimize the expected modeling errors to
achieve acceptable accuracy.   Empirical comparison of the
two diagnostics is not possible based on composite designs,
because the LSCB cannot be applied.  The LSCB
7

diagnostic requires a model containing at least three
quadratic terms for the robustness reasons mentioned
above which is not possible based on a cube and center
point design.  However, it is possible to compare the two
diagnostics based on LCRSM start-up and follow-up
designs and modeling strategies.  Table 5 compares the
performance of the two methods.  The extremely high
EIMSE values show that standard regression diagnostics
cannot be used in the context of LCRSM.  The results also
illustrate the dangers of having fewer than three degrees of
freedom for the diagnostic.  With the same experimental
designs and model selection strategy, the LSCB diagnostic
bases decisions on several more degrees of freedom than
the standard regression diagnostic.  In all cases, the MSE
has only one degree of freedom while the βq,est, used in
LSCB testing, has three or more.

Table 4:  Compares F-Test Based and LCRSM Diagnostics
for L=8 and βc=0.5 and the Designs in Tables 1-2(a)

No. F-Test with α = 0.05 F-Test with α = 0.25 LCRSM diagnostic
Factors EIMSE P(stop) EIMSE P(stop) EIMSE P(stop)

3 10.0 0.89 5.1 0.57 1.2 0.15
4 13.1 0.84 8.0 0.59 1.4 0.17
5 25.6 0.84 15.7 0.59 2.3 0.15

5 COMPARISONS WITH ALTERNATIVES

In the next two sections, we compare LCRSM with
alternatives in order to establish that it provides an
attractive alternative to standard methods.  Comparison of
alternative methods is an important topic in its own right.
Much in the next two sections is repeated from Allen and
Yu (2000b), which contains a more thorough comparison
of the alternatives.  In this section, we compare a relatively
small number of alternatives based on what we consider to
be the two most important criteria: 1) the experimental cost
which primarily depends upon the number of runs, and 2)
the expected accuracy of the derived, final empirical
model.  We restrict the scope of the comparison so that we
can examine a range of assumptions about the conditions.

Comparison of the modeling errors using popular
experimental design criteria such as G-efficiency and D-
efficiency, see, e.g., Myers and Montgomery (1995), which
rely on a pre-known functional form and experimental
design, is complicated by the fact that the LCRSM and the
methods based on composite designs are sequential.
Therefore, the final model form and associated experi-
mental design cannot be known before the experiments are
performed and these criteria would need to be generalized
to be applied.  For this reason and because it has the
simple, intuitive interpretation of being the �plus or minus�
prediction errors, we base the comparison on the square
root of expected integrated mean squared error,
sqrt(EIMSE), where the formula for the EIMSE is given in
(3.1).  This formula depends on the parameters L and βc.
Therefore, we discuss results for a variety of combinations
10
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of these parameters.  In Section 3.2, we argued that L=8
and βc =0.5 represent the implied assumptions of standard
response surface methods which are conservative in the
sense that they include large quadratic curvature.

Figure 1 shows the plus or minus errors, i.e.,
sqrt(EIMSE) of four methods for a range of values of L and
for four factors, which we believe is representative of other
numbers of factors.  The four methods compared include
procedures using the Hartley (1959) small central composite
design (SCCD) applied with the standard diagnostic with
α=0.25 and without the possibility of stopping, i.e., α=1,
LCRSM, and standard response surface methods based on
the 27 run Box Behnken design which is not sequential and
is based on fitting a full quadratic polynomial.  The results
show that the model errors of the LCRSM are appreciably
below those of small central composite designs whether or
not the composite designs are applied sequentially.  Also, the
probability of stopping with fewer runs, while dependent on
L, is substantially larger for LCRSM than for small
composite designs applied sequentially.  Therefore, the
probability of savings is considerably higher and the
accuracy is significantly improved.  Admittedly, if one stops
using the small central composite one has performed only
ten tests compared with fourteen using the response surface
methods.  However, given that the experimenter terminates
having performed only the startup runs, the plus or minus
errors, (EIMSE)-1/2, using the small composite design are
2.7σ compared with 1.5σ for the LCRSM approach.  Also, if
the degree of nonlinearity as set by the coefficient βc
increases, then the expected bias errors increase roughly
proportional to βc

2.  The curves look similar to Figure 2, see
Allen and Yu (1999), the differences in the accuracy also
increase, and the performance compared with small central
composite designs improves.   Finally, while the Box
Behnken design and full quadratic model do reduce the plus
or minus errors of prediction, the errors are comparable
although the Box Behnken requires 9 or 13 additional runs.
In the next section, we discuss other criteria in addition to
cost and accuracy.
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Figure 1:  The sqrt(EIMSE) or Plus or Minus Prediction
Errors for Alternative Methods with Four Factors.
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6 COMPREHENSIVE COMPARISONS

In this section, we expand the comparison to include
twelve methods in addition to LCRSM and six objectives
based on our interpretation of the Draper and Lin (1995)
money for value criteria.  We admit that this comparison
ignores several properties that the practitioner might
consider important, e.g., the distribution of the model
errors.  However, we follow Draper and Lin (1995) in
assuming that people interested in LCRSM will be less
interested in these properties than the five that we consider.
We have attempted to include all of the most popular
regression-based methods that have been proposed for
response surface investigations in the comparison.  These
include methods based on standard and small central
composite designs reviewed or proposed in Hartley (1959)
and Draper and Lin (1990), Box Behnken designs proposed
in Box and Behnken (1960), and other computer-generated
design methods.   Other research on design of experiments
for model discrimination, e.g., Atkinson and Fedorov
(1975), Pukelsheim and Rosenberger (1993), and
Srivastava (1996), has apparently not generated any
response surface designs.  Therefore, no comparison is
possible with other multi-model procedures and all the
alternative methods are based on single fit models.

6.1 The Draper and Lin �Value
for Money� Criteria

We use the following re-definitions of the 6 Draper and Lin
(1996) criteria that we feel are needed to objectify the
comparison while conforming to the intent of those authors.
First, we compare the model errors over the region of interest
using the square root of the expected integrated mean square
error, sqrt(EIMSE), or plus or minus error of prediction, based
on default assumptions described in Section 4.  Second, we
compare the ability to estimate lack of fit by specifying the
type of diagnostics that have been proposed for each method
and the degrees of freedom available for regression lack of fit
tests, ν1.  Possible diagnostic procedures include regression
lack of fit tests, available whenever ν1>0, and the least squares
coefficient based diagnostic proposed in Section 2.  Third, we
consider whether the implementation that we are evaluating is
performed sequentially, with a possibility of stopping with
less than the full run number.  Fourth, we compare the number
of degrees of freedom available for estimation of pure error,
ν2, which equals the number of repetitions of one of the
points.  Fifth, we specify the number of runs taken into
account in the evaluation of the EIMSE.  Sixth, the subjective
assessment of the simplicity of the application of the different
methods is complicated by uncertainty about practitioner�s
knowledge of regression.  If regression knowledge is limited,
all the methods are approximately equivalently difficult since
the additional difficulty of fitting more than 1 model is small
compared with learning regression.  Assuming that fitting one
1
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regression model is simple, then the LCRSM is relatively
complicated because it requires fitting multiple models.  Still,
complication is moderate compared with, e.g., Bayesian
regression, neural nets, or Kriging modeling which all, at
present, require specialized software.

6.2 Comparisons with Alternative Methods

Next, we use these interpretations of the Draper and Lin
(1996) �value for money� criteria to compare LCRSM with
regression-based alternatives using substantially more runs,
i.e., higher cost, and others with comparable numbers of
runs.  Then, we draw conclusions about when LCRSM
should be used.  Table 5 summarizes the comparison.

The Box Behnken (1960) and central composite
designs applied non-sequentially (NS) have advantages
including approximately 30% lower modeling errors in
sqrt(EIMSE).  These designs also have many more degrees
of freedom to estimate the model errors using regression
diagnostics and detect lack of fit.  However, if large errors
are detected, no widely used plan for adding runs to reduce
the model errors exists.  Also, in order to achieve these
benefits, these methods require nine additional runs in the
four-factor case and substantial numbers in other cases.

Considering the less expensive alternatives, LCRSM
has the smallest modeling error regardless of our
assumption about L.   The only two of these alternatives
with approximately the same expected errors are computer-
generated designs based on saturated or nearly saturated
full quadratic models and Hartley (1959) small composite
designs.  Even minimum bias designs for fitting forms with
missing quadratic terms give rise to extremely high errors
compared with LCRSM assuming that model form #1 in
Table 2 is used for 4 factors.  Standard computer-generated
designs, e.g., D-optimal, for nearly saturated models offer
limited diagnostic capabilities, no predefined augmentation
runs, and no estimate of the pure error.   We therefore
conclude that these computer-generated designs have few
advantages beyond the simplicity of fitting a single model.

As described in Section 5, if the Hartley (1959) small
central composite design is applied sequentially (S), i.e.,
standard regression lack of fit test based on F2,1,0.25 determines
whether a first order model is fit to the (resolution III)
fractional factorial and center points or whether star points are
used and the fit model is a full quadratic, the expected errors
are high.  Also, the probability of stopping with only the start-
up runs is considerably smaller than for the LCRSM
procedures.  The other considerations seem roughly equal for
the two methods.  For example, while the full small composite
design has an extra degree of freedom for diagnostics, the
LCRSM has an extra degree of freedom for the pure error.
Therefore, LCRSM has important cost and accuracy
advantages and no important disadvantages except the
complication of fitting multiple models.
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In conclusion, LCRSM procedures were designed for
cases in which experimental cost is a concern and the
experimenter is considering dropping factors in order to
meet a budget.  Under the assumptions about the realistic
conditions, which include substantial third order non-
linearity, detailed in Section 3.2, LCRSM yields models
with an expected accuracy within 30% of substantially more
expensive methods.  If the experimenter believes that the
surface being modeled is unusually non-linear and accuracy
is important, then the more expensive methods such as
methods based on Box Behnken designs should be used.  In
those cases, the modeling error sqrt(EIMSE) advantages
increase approximately proportionally to our parameter βc,
but so does the accuracy domination of LCRSM compared
with other alternatives with comparable numbers or runs.
We conclude that the results establish that LCRSM is a very
attractive alternative with few runs, low model errors,
diagnostic capabilities, and moderate simplicity.

Table 5.  Comparison with 4 Factors Using 6 criteria:  1)
sqrt(EIMSE) Assuming L=8, α=0.25, and βc=0.5, 2)
Diagnostic/Degrees of Freedom, 3) Additional Runs
Availability, 4) #Degrees of Freedom for Pure Error, 5)
Simplicity

Methods/Criteria 1 2 3 4 5 6
D-optimal Fitting Form #1 9.7 Std./1 NA 2 14 Simple

 Saturated D-optimal
Fitting Form #1

6.3 NA/0 NA 0 11 Simple

IV-optimal Fitting #1 5.6 Std./1 NA 2 14 Simple
Minimum Bias Fitting #1 3.7 Std./1 NA 2 14 Simple

Saturated D-optimal
Fitting Full Quadratic

1.6 NA/0 NA 0 15 Simple

Hartley(1959) Small
Composite (S)

1.5 Std./2 A 1 10 or
18

Simple

Central Composite (S) 1.4 Std./6 A 2 19 or
27

Simple

IV-optimal Fitting Full
Quadratic

1.2 Std./1 NA 2 18 Simple

LCRSM 1.2 Special A 2 14 or
18

Moderat
e

Central Composite (NS) 0.9 Std./12 NA 2 27 Simple
Box Behnken (NS) 0.9 Std./12 NS 2 27 Simple

7 SUMMARY

We have proposed low cost response surface methods
(LCRSM), which require roughly half the test runs of
methods based on central composite and Box Behnken
designs.  We have reviewed and extended results in
experimental design criterion selection and optimization
used in the method development.  Also, we have
introduced approaches for model discrimination and
diagnostics and explained how the methods derive from the
solution to a simulation optimization problem that involves
minimizing the expression in (1) which must be estimated
using simulation.  To our knowledge, this research
constitutes the first application of simulation optimization
to create experimental designs.  We have compared
2
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LCRSM methods with alternatives that include approaches
based on Hartley (1959) small central composites and
computer generated designs. Low cost methods allow
sequential construction, provide the ability to estimate the
pure errors and lack of fit and are simple to use.  We
conclude that LCRSM methods offer an attractive
alternative to regression-based methods appropriate for the
common situation in which the experimenter is considering
dropping factors in order to meet a budget constraint.
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