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ABSTRACT rived. An early, and still widely used, workload synthesizer,
teplib developed by Jamin and Danzig (1992) employs this
Analysis of network traffic indicates that packet arrival pro- approach.
cesses have significant stochastic dependence. It has been
suggested that this dependence is so strong as to be well-1.1 Synthesis of Stochastic Dependence
modeled by long-range dependent processes. The fact that
no finite process can be said to be truly long-range de- Synthesizing stochastic dependence is more difficult. The
pendent poses potentially serious obstacles to simulation autocorrelation function of a wide-sense stationary stochastic
modeling. In this paper, we explore some of these ob- process{X;};—o 1,2, . having mearu and variancer2 is
stacles and propose practical methods for obtaining useful given by:
results with simulations of manageable duration. Keywords:
Analysis methodology; network traffic models; stochastic r(k) = E[(X; — W) (X j4x — ;L)]/UZ.
dependence; long-range dependence.
Intuitively, (k) is a normalized measure of the correlation

1 INTRODUCTION between series elements that are a distanapart. |If
the elements of the series are i.i.d(k) = 0 for k > 1.
The foundational work of Leland, Taqqu, Willinger, and Wil-  If elements at a distanck are identical, then(k) = 1.

son (1994) demonstrated the presence of significant stochas-Thus, the autocorrelation and its Fourier transform, the

tic dependence in LAN traffic. It is now well-established power spectrum, provide useful mechanisms for quantifying

that i.i.d. processes are poor models of packet arrivals in stochastic dependence.

both local and wide-area networks (Paxson and Floyd 1994) Long-range dependendg a form of stochastic depen-

in that they can lead to serious underestimation of queuing dence that has received considerable interest in network traf-

delays (Erramilli et al. 1996). fic modeling. A wide-sense stationary process is said to be
To predict the behavior of system components when ar- long-range dependent if the dependence decays very slowly,

rival processes have stochastic dependence, designers havepecifically,) ", r (k) = co. Asymptotically self-similar pro-

therefore turned to simulation, and thus there is considerable cesses are a subclass of long-range dependent processes.

interest in constructing synthetic arrival processes to drive They are characterized by hyperbolically decaying auto-

the simulations. To ensure that the synthetic workloads are correlation functions that satisfy(k) o< k22" L (k) as

representative of those arrival processes that are likely to k — oo where L(k) is a slowly varying function, and?

be encountered in the “real world”, the synthetic workloads is the so-called Hurst parameter. Valuesmfin the range

are commonly derived from captured traces of actual ar- (0.5,1.0) are characteristic of processes having positively

rival processes. To predict system performance accurately, correlated long-range dependenésactly self-similaipro-

the synthetic workload must reflebbth the distributional cesses have autocorrelation functions that satisfy:

characteristics and the stochastic dependence of the arrival

process from which it was derived (Geist and Westall 2000). rik) = (1/2)[(k + 1?H — 2k°H + (k — 1)%H). (1)
Sampling from an empirical distribution is a simple and

well-established procedure for ensuring that the marginal It is straightforward to show that exactly self-similar pro-

distribution of the synthetic process has the distributional cesses are also asymptotically self-similar.

characteristics of the arrival process from which it was de-
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There are a number of well-known techniques for any autocorrelation function can theoretically be matched.
synthesizing processes that possess stochastic dependencdhe weakness s that there is no known algorithmic procedure
Franklin (1965) provided a method for synthesizing Gaus- for deriving the innovation and stitching functions necessary
sian noise whose autocorrelation matched a prescried to do so.
for a finite number of valueg. Procedures for synthe- In an earlier paper (Geist and Westall 2000) we showed
sizing long-range dependence were discovered much later, that transfer of correlation from fractional Gaussian noise
but they are now abundant and include: fractional ARIMA (fGn) was a practical technique for synthesizing arrival
processes (Beran 1992); sampling from the population of processes having stochastic dependence. In the remainder
an M /G /oo queuing system in which service times have of this paper we present some extensions and refinements
infinite variance (Paxson 1994); synthesis of approximate to that approach.

fractional Gaussian noise (fGn) (Paxson 1997, Lau et al. Two arrival processes that are derived from traces of
1995, Geist et al. 1999); and the aggregation of modulated actual network traffic are used in this study. The traces
packet-train processes in which the duration of @ and capture number of packet arrivals per second. The first,
OFF periods is heavy-tailed (Tagqu et al. 1997). BCR is the BC-pAug89 archive captured at Bellcore’s Mor-
ristown Research and Engineering Center. It is available at
1.2 Transfer of Stochastic Dependence http://ita.ee.Ibl.gov/html/contrib/BC.html. This trace repre-

sents almost one hour of LAN traffic captured on production
The problem of synthesizing a process that carries both Ethernet at Bellcore and is representative of the results re-
the marginal distribution and the autocorrelation of a tar- ported by Leland (1994). The secoriR48 represents two
get process is more difficult still, but it has also received hours of inbound traffic captured in 1999 at the Clemson
considerable attention. No existing procedure is entirely University Dept. of Computer Science’'s gateway to the
satisfactory. Present tradeoffs include: mathematical rigor, remainder of the campus and the external internet. The
computational efficiency, accuracy of approximation, and characteristics of the data are summarized in table 1. The
precise and concise parameterization. BCR data represents a total of about 1,000,000 packet ar-

Transfer of correlationis a widely used procedure that rivals. For the R48 data the number is 842,400.

dates at least to the work of Polge, Holliday, and Bhagavan o
(1973). The underlying idea is as follows. Suppdse : Table 1: Workload characteristics
k = 0,1,..} is a stochastic process having distribution Parameter BCR | R48
function F,, and autocorrelation(k). Then the valuequ; = w (pkis/sec)| 318 | 117

Fy(xx) : k =0, 1, ..} are uniformly distributed if0.0, 1.0] (;I Oé}é 023
and carry some representation of the correlation of the Length 3142 | 7200

x. Given an arbitrary distributionF, (y), if we now let

) . . : . :

yk = Fy~(u), then the values{y; : k = 0,1,.}, must The remainder of this paper is organized as follows. In
inherit the distributionFy(y) and will also inherit some  gection 2 we consider the problem of synthesizing Gaussian
form of the correlation from the,. The principal obstacle  nojse having sample autocorrelation that agrees statistically

compensating for the effect of the transfer «). of transfer of correlation is presented in section 3. Effects
Wise, Traganitis, and Thomas (1977) showed that the on the performance of a simulated system are evaluated in
effect of the transformatiog() = F;"~(Fx() on the auto-  gection 4, and our results are summarized in section 5.

correlationr (k) can be precisely quantified when the input

process,{xt}, is Gaussian. Building upon this work, Liu 2  gYNTHESIS OF GAUSSIAN NOISE
and Munson (1982) showed that under certain conditions WITH STOCHASTIC DEPENDENCE
it is possible to prescribe the autocorrelatio(k), of the

initial Gaussian so that the resulting autocorrelatioq), In this section we consider alternative approaches for synthe-

of the processF;*(F(x)) is equal to some desired target  sjzing Gaussian noise that carries the stochastic dependence

autocorrelation. They also show that for certain target dis- of g target arrival process. We begin with a discussion of

tributions and autocorrelations thereris Gaussian from Paxson’s (1997) procedure for synthesizing fGn. A unique

which the desired transfer of correlation is possible. aspect of this approach is that it operates in Fourier trans-
In Jagerman and Melamed's TES (Transform, Expand, form space. We will show how to exploit this aspect of the

Sample) processes (Jagerman and Melamed 1992, Melamedmethod to synthesize Gaussian noise with general stochastic
1997) an interactive tool is used to construdVED.0, 1.0] dependence.

correlated process that is claimed to be able to transfer any
desiredr (k) to a target process. However, the generality of
TES is both a strength and a weakness. The strength is that
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2.1 Synthesis of Fractional Gaussian Noise derived from equation 1. The series labef&h 64K was
obtained by use of Paxson’s method to synthesize 64 series
Paxson’s procedure is derived from Beran's (1986) func- of 65536 elements each. For each lag; [1, .., 256, the
tional representationf (1, H), of the power spectrum of mean of the 64 observed values Bfk) is plotted. For
an fGn process. He provides an approximate method for the series labelefiGn 4K series of 4096 elements were
computingf (A; H), and the result is denotefi; H). The synthesized.
sequence of valudgi, f, ..., fy 2} wheref; = f(z%; H)
thus approximates the power spectrum of an fGn pro- ! ' ' ' ' ' 'fT?;Lgfik '
cess for frequencien /N, ..., 7}. The discrete sequence fGn 64K
{f1, ..., fn,2} is then stochastically transformed into the
discrete Fourier transform (DFT) of an fGn processhof
points. The first step in this transformation is to multiply
the f;’s by an exponential random variable with mean 1.
This operation produces the periodogram of the self-similar
time series. Next the complex series{.. zn/2}, where
zi = J/fie'?, is generated. The phase, is randomly
chosen from [0, 2]. The second half of this series is
completed by settingn 24+« equal to the complex conju-
gate of fxo_x so that it represents the discrete Fourier 5 7 5 1o pv o1 128 256
transform of a real-valued series. Approximate fGn is then Lag k
obtained by applying the inverse DFT. It remains unproven
that this procedure generates a Gaussian process. However,
Paxson showed that fai < 0.85 the samples tested were This data is presented in a more quantitative way in
statistically consistent with having been drawn from a Gaus- table 2. The column labeled . contains the difference
sian distribution. Using Whittle's estimator he confirmed between the observed me&ik) and the theoretical value
that the stochastic dependence present in the synthetic pro-of (k). The half-width of the two-sided confidence interval
cesses was consistent with fGn having the target valué of  at the 90% level is contained in the columns labe®t
for H = {0.50,0.55, ...,0.95}. We have obtained similar  In no case does the confidence interval contain the target
results using Paxson’s procedure. value.
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Figure 1: Target vs. Sample Autocorrelation

- Table 2: Difference in Autocorrelation
2.2 Finite Sample Effects fGn 64K tGn 4K

Lag| Apx | 90% Cl.| Ap | 90% C.I.
1-0.0116] 0.0031 | -0.0282| 0.0077
2 | -0.0153| 0.0040 | -0.0393| 0.0107
4| -0.0179| 0.0048 | -0.0463| 0.0125
8 | -0.0196| 0.0053 | -0.0527| 0.0138
16 | -0.0202| 0.0055 | -0.0588| 0.0149
32| -0.0211| 0.0057 | -0.0615| 0.0151
64 | -0.0230| 0.0059 | -0.0652| 0.0158

The Hurst parameter provides a convenient, single-parameter
mechanism for characterizing the stochastic dependence of
an exactly self-similar process. However, the fact that
the estimated Hurst parameter of a collection of synthetic
samples matches a targétdoes not in itself guarantee that
the same will be true of sample autocorrelations.

For a finite sample ofV observations

N 128 | -0.0246| 0.0064 | -0.0583| 0.0144
R = 2 3 (X = X - /6% (2) 256 | -0.0248| 0.0064 | -0.0636| 0.0152
j=1

2.3 Synthesis of Gaussian Noise with
where 1 and 2 represent the sample mean and variance, Arbitrary Stochastic Dependence
is an asymptotically unbiased estimator-¢t) (Kobayashi
1978). Although Paxson’s method does an excellent job of The theory underlying Paxson’s method indicates eventual
matching a target Hurst parameter, synthetic series having convergence oR (k) to r (k) when the length of the synthetic
length in the range useful for driving simulation studies series becomes sufficiently large. However, the use of very
exhibit values ofR (k) that are, to a statistically significant  |ong series to drive simulations has obvious disadvantages.
degree, less than the valuesrgk) that they target. This  |n the remainder of this section we describe an extension to

observation, which is also true of methods based upon Paxson’s method that supports synthesis of Gaussian noise
random midpoint displacement, is illustrated in figure 1. having arbitrary stochastic dependence.
For this data,H = 0.845, and the target values ofk) are
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The Weiner-Khinchine transform (Kobayashi 1978) re-

lates the autocorrelation function to the power spectrum,
denotedP (1), for —r < A <.
1 k=00
— —imA
PO == 3 rke™™ €)
k=—o00
1 k=00
= —[r0)+2 ) r(k)cos(kn)] 4)
2
k=1
and
r(k) = / P(M)cos(kA)d. (5)
-7

This transform provides the mechanism by which Pax-

son’s method may be extended so as to synthesize Gaussian

noise having a target sample autocorrelation functig
for {k=1,2,..., K}. We first compute

2njk
N

pZy_ 1 AO)—i—ZiA(k (
(T)_Z(r( k:1r )cos

) (6)

for j = 1,2,.N/2. The values,{f1, f2, ..., fn/2} Where

fi = P(Z%), are then stochastically transformed using
Paxson’s procedure to yield approximate Gaussian noise
having sample autocorrelatiaR(k) approximatingr (k).

One application of this technique is to choose the target
F(k) equal to ther(k) associated with the fGn fok =
0,..K and7(k) = 0 for k > K. The potential utility of
this application lies in the observation that whafy K
is sufficiently large, the sample autocorrelatiof§k), of
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Figure 2: Sample Autocorrelation with Truncateg)

1 2 4 8 256

Table 3: Difference in Autocorrelation

Gn16 Gn256

Lag| Ap [ 90% C.I.| Ap | 90% C.I.
1| 0.0043| 0.0039 | -0.0051| 0.0060
2| 0.0026 | 0.0051 | -0.0092| 0.0083
4| 0.0017 | 0.0054 | -0.0090| 0.0097
8 | 0.0025| 0.0055 | -0.0108| 0.0103
16 | 0.0003 | 0.0056 | -0.0094| 0.0117
32 | -0.2010| 0.0422 | -0.0106| 0.0120
64 | -0.1615| 0.0342 | -0.0103| 0.0115
128 | -0.1285| 0.0277 | -0.0124| 0.0107
256 | -0.1113| 0.0242 | -0.0021| 0.0109

2.4 Matching Arbitrary Autocorrelations

Instead of targeting the autocorrelation of fGn, our procedure
can also be used to generate approximate Gaussian noise
whose autocorrelation targets the sample autocorrelation of

the synthetic processes more closely approximate the targeta real arrival process. This application is illustrated in figure

valuesy (k), fork = 1, ..., K than do those of synthetic fGn
produced by any of the previously cited methods. Results
of one comparison are shown in figure 2. In this example,

3 and table 4. In this case the targek) is the sample
R(k) of the BCR workload. Once again the values plotted
represent the means of 64 runs. The autocorrelations of

64 series of 4096 elements each were synthesized. Thethe synthetic processes track their ragged target statistically

targetr (k) remains that of fGn withf = 0.845. However,
for the series labeledin16 values ofr(k) were clamped
to O for k > 16 and the analogous procedure was applied
to the series labeledn256.
The results are summarized quantitatively in table 3.
In contrast to the results in table 2 the 90% confidence
intervals cover the target value in the majority of cases.
For K = 256, R(k) < r(k) for all k. This is indeed
evidence of a trend. AfteN/K becomes less than 16, the
accuracy of the approximation degrades rapidly. WN¢&
reaches 2, accuracy of the finite approximation is worse than
the original. This is to be expected since Paxson’s method
uses a more accurate approximation of the N/2 elements of
the power spectrum.
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well but there is an apparent trend toward low estimates.
In section 4 we consider the implications of these results
on the performance of simulated systems.

Table 4: Difference in Autocorrelation

Acl16 AC256
Lag| Aux | 90%C..| Ax | 90% C.I.
1| -0.0022| 0.0033 | -0.0049| 0.0052
2| -0.0031| 0.0052 | -0.0076| 0.0072
4 | -0.0046| 0.0060 | -0.0060| 0.0086
8 | -0.0029| 0.0055 | -0.0051| 0.0094
16 | -0.0001| 0.0065 | -0.0044| 0.0102
32 | -0.1997| 0.0420 | -0.0122| 0.0105
64 | -0.1906| 0.0400 | -0.0104| 0.0099
128 | -0.1206| 0.0259 | -0.0116| 0.0099
255 | -0.0403| 0.0114 | -0.0019| 0.0088
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3 TRANSFER OF CORRELATION

In this section we consider the effects of transfer of cor-
relation from one stochastic process to another. Since the
autocorrelation is invariant under linear transformation, no
distortion is introduced when the functig) = Fy_l(Fx())

is linear. It is also the case that) is linear if and only if
F,() is a Gaussian. At the other extreme, it was shown by
Liu and Munson (1982) that there exist target distributions,
F,(), and target autocorrelations, (k), for which there

is no Gaussian process and autocorrelatiQtk), that can
yield the targetr, (k). Intuitively, one might expect that
the distortion introduced by the transfer of correlation is
representative of some measure of the dissimilarity between

F), and a Gaussian, and this was shown to be the case by

Wise, Traganitis, and Thomas (1977). They provide a pre-
cise characterization of the distortion via a measure that
essentially captures the non-linearity gf). This measure
shows that no distortion occurs if and onlygit) is linear
and thatr, (k) < r.(k) whenever, (k) > 0. In practice, we
have found that the magnitude of coefficient of skewness
of the distributionF, () is a useful first-order indicator of
the degree of distortion.

Figure 4 illustrates the effect of transferring the correla-
tion from approximate fGn processes of length 4096 through
the marginal distribution of the BCR workload. The series
labeled fGninv is the uniformly distributed’ (x;) where
{x;} is fGn. The series labeled BCR_EmpHgéR(FZ(xi))

The effects of the transfer of correlation are apparent in the
graph and in table 5. As before, the values shown are the
means of 64 runs. Since our objective is to measure the
effect of transfer of correlation, thau values represent
the difference from the mean sample autocorrelation of the
fGn and not the nominal autocorrelation from equation
(2).

The transfer from Gaussian to Uniform causes a small
but statistically significant decrease in sample autocorrela-
tion. However, the transfer from Uniform to the empirical
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Figure 4: Transfer of f{Gn Correlation to BCR
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Table 5: Transfer of Autocorrelation

Uniform BCREmp

Lag Aup 90% C.Il.| Aup 90% C.I.
1] -0.0203| 0.0062 | -0.0051| 0.0043
2| -0.0183| 0.0071 | -0.0040| 0.0059
8 | -0.0115| 0.0079 | 0.0029 | 0.0067
16 | -0.0067| 0.0074 | 0.0098 | 0.0069
32| -0.0055| 0.0075 | 0.0071| 0.0078
64 | -0.0039| 0.0073 | 0.0066 | 0.0079
128 | -0.0105| 0.0071 | -0.0025| 0.0075
256 | 0.0032 | 0.0082 | 0.0050 | 0.0078

distribution of the BCR workload compensates. It is ob-
vious from the graph that the distortion introduced by the
failure of the mean sample autocorrelation of the synthetic
fGn processes to track the target) is significantly greater

in magnitude than the distortion introduced by transfer of
correlation.

An analogous transfer of correlation from Gn256 pro-
cesses of length 4096 is shown in figure 5 and table 6. In
this table Au doesrepresent the difference betwe&rk)
and r(k) from equation (1). Although the values are low
to a statistically significant degree, they are much closer
than the mean sample autocorrelations of the synthetic fGn
processes before the transfer of correlation.

Table 6: Transfer of Gn256 Autocorrelation

Uniform BCREmp
Lag Au 90% C.l.| Aup 90% C.1.
1] -0.0257| 0.0086 | -0.0149| 0.0071
2| -0.0278| 0.0104 | -0.0139| 0.0095
4| -0.0266| 0.0114 | -0.0164| 0.0112
8 | -0.0279| 0.0127 | -0.0171| 0.0116
16 | -0.0258| 0.0124 | -0.0117| 0.0123
32| -0.0219| 0.0120 | -0.0088| 0.0121
64 | -0.0185| 0.0121 | -0.0158| 0.0120
128 | -0.0202| 0.0114 | -0.0108| 0.0106
256 | -0.0215| 0.0089 | -0.0121| 0.0095
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Figure 5: Transfer of Gn256 Correlation to BCR

256

Despite these promising results, transfer of correlation
can significantly distort the autocorrelation. The R48 work-
load, shown in figure 6, illustrates this problem. The series
labeled,Target contains the equation 1 values for the Hurst
parameter of 0.87.Actual is the computedR (k) for the
8192 values of the series. Gn256, Unif, and R48Emp were
computed as with the BCR workload. Based upon a number
of observations, it appears that the skewness of the target
distribution is an indicator of the magnitude of the distortion
of the autocorrelation. The BCR workload has a coefficient
of skewness of 0.69 where R48 has 2.45.
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Figure 6: Transfer of Gn256 Correlation to R48
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4 PERFORMANCE EFFECTS

In this section we evaluate the ability of workloads synthe-
sized by the methods presented in the previous two sections
to predict the performance of the workload from which they
were derived. An FCFS server with deterministic service
time and optionally constrained queue capacity is simulated.
Given a target server utilizatiory, and a known packet
arrival rate, ., mean service time,/L, is set top/1. Mean
population and packet drop rate are captured. Results re-
ported for all workloads represent the mean value obtained
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from 20 replications of the simulation. A unit time of one
second is used. For the workloads referred toCasing

the simulation is driven by the true packet arrival counts.
However, these results are not deterministic because the
simulated arrivaltimesof individual packets are synthetic
and stochastic, (see (Giest and Westall 2000)).

Simulated run time for th€ountworkloads is identical
to the length of the arrival count traces: 3142 seconds for
the BCR workload; and 7200 for R48. For the synthetic
workloads, elapsed simulated time is 4096 seconds and
8192 seconds for BCR and R48 respectively. In both cases
the number of simulated packet arrivals per run is on the
order of one million. For the synthetic workloads, both the
arrival count and the arrival times are synthetic. Therefore,
as expected, the confidence intervals are much wider than
for the Countworkloads.

If a previous paper (Geist and Westall 2000) we demon-
strated the necessity of incorporating both distributional and
correlational characteristics of the target workload in the
synthetic workload. The focus here is upon the effects of
different approaches to transfer of correlation.

4.1 fGn Synthesis Versus Gn256

We first compare the results obtained when driving the
simulation with approximate fGn versus those obtained
with Gn256. Recall that the 256 in Gn256 refers to the fact
that only the first 256 lags of the target autocorrelatign

are used in synthesizing the Gaussian noise from which
the correlation is transferred. Simulations were run with
bounded queuelengths ranging from ® 2'1. Results

for both workloads with queue length constrained to a
maximum of 256 are shown in tables 7 and 8. These
results are representative. For most utilizations, the mean
populations predicted by both the f{Gn and Gn256 workloads
are smaller than those obtained using the target Count
workload. However, in both of these cases the difference
between fGn and Gn256 is not statistically significant.

Table 7: R48: Mean Pop. with Max Pop. = 256

Util R48 Count fGn Gn256

0.25| 1.36+ 0.002 1.36+ 0.019 1.39-+ 0.022
0.30| 3.16+ 0.004| 2.98 + 0.061] 3.02+ 0.071
0.35| 6.03+ 0.007] 5.51+ 0.083 5.71+ 0.091
0.40| 9.53F 0.008 9.00+ 0.085 9.32+ 0.112
0.45| 14.27+ 0.009 13.06+ 0.096 13.39+ 0.154
0.50| 18.96+ 0.011 17.95+ 0.13% 18.25+ 0.196
0.55| 24.13+ 0.008 23.52+ 0.224 24.15+ 0.272

When the population is unbounded, statistically signifi-
cant differences emerge as shown in tables 9 and 10. These
differences are more pronounced in the R48 workload, but
there is a clear trend for lower predicted mean populations
with fGn than for Gn256 as utilization increases. This
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Table 8: BCR: Mean Pop. with Max Pop. = 256

Table 11: R48: Mean Pop. with Max Pop. = 256

Util | BCR Count fGn Gn256 Util R48 Count Ac256 Gn256
0.401.02+ 0.004 |1.00+ 0.0044 |1.01+ 0.006 0.25| 1.36+ 0.002 1.33+ 0.019 1.39+ 0.022
0.45[1.99+ 0.007 |1.88+ 0.0124 |1.90+ 0.018 0.30| 3.16+ 0.004| 2.92+ 0.061] 3.02+ 0.071
0.50|3.85+ 0.010 [3.70+ 0.0364 |3.67 + 0.038 0.35| 6.03+ 0.007] 5.45+ 0.083 5.71+ 0.091
0.55[7.12+ 0.016 |6.83+ 0.0646 |7.01+ 0.091 0.40 | 9.53+ 0.008 8.95+ 0.085 9.32+ 0.112
0.60 [12.65+ 0.018 [12.29+ 0.1322[12.50+ 0.163 0.45| 14.27+ 0.009 13.20+ 0.096 13.39+ 0.154
0.65 [20.52+ 0.021 [19.91+ 0.2038 [20.18+ 0.199 0.50 | 18.96+ 0.011 17.79+ 0.13% 18.25+ 0.196
0.70 [30.62+ 0.026 [30.29+ 0.2659 [30.76 + 0.377 0.55| 24.13+ 0.008 23.51+ 0.224 24.15+ 0.272
Table 9: R48: Mean Pop. with Pop. Unbounded Table 12: BCR: Mean Pop. with Max Pop. = 256
Util R48 Count fGn Gn256 Util BCR Count AC256 Gn256
0.25| 2.453%+ 0.003 1.56+ 0.079 2.23+ 0.242 0.40| 1.02+ 0.004{ 1.01r 0.004 1.01+ 0.006
0.30| 5.85+ 0.005 4.77+ 0.672 4.84+ 0.372 0.45| 1.99+ 0.007| 1.89+ 0.017| 1.90+ 0.018
0.35| 13.83+ 0.006 8.91+ 0.707| 11.65+ 1.394 0.50 | 3.85+ 0.010 3.70+ 0.038 3.67 + 0.038
0.40 | 32.01F 0.00% 19.71+ 1.965% 33.68+ 9.470 0.55| 7.12+ 0.016/ 7.02+ 0.073 7.01+ 0.091
0.45| 71.95+ 0.011 40.71+ 8.140 58.03 + 9.687 0.60 | 12.65+ 0.018 12.26+ 0.146 12.50+ 0.163
0.65| 20.52+ 0.021 19.98+ 0.217 20.18+ 0.199
Table 10: BCR: Mean Pop. with Pop. Unbounded 0.70 | 30.62F 0.026 30.11F 0.304 30.76F 0.377
Util BCR Count fGn Gn256
0.40| 1.02+ 0.005 1.00-+ 0.0044 1.00+ 0.005 Table 13: R48: Mean Pop. with Pop. Unbounded
0.45| 1.98+ 0.007] 1.93+ 0.0244 1.93+ 0.021 util R48 Count Ac256 Gn256
0.50 | 4.27+ 0.008 3.90+ 0.0844 3.88+ 0.083 0.25| 2.45+ 0.003] 1.80+ 0.147] 2.23+ 0.242
0.55| 9.79+ 0.013 8.12F 0.536 8.76+ 0.653 0.30 | 5.85+ 0.005 5.56+ 0.777] 4.84+ 0.372
0.60 | 21.52+ 0.018 16.87+ 1.0222 18.31+ 1.101 0.35| 13.83+ 0.006 11.57+ 1.11% 11.65+ 1.394
0.65 | 45.77+ 0.020 39.26+ 2.1988 49.90 + 11.85% 0.40 | 32.01+ 0.00% 32.72+ 8.778 33.68+ 9.47(
0.45| 71.95+ 0.011 56.03+ 5.546 58.03 + 9.687

trend is consistent with our observation in section 2 that

RyGn(k) < Rgnase(k) also in a statistically significant way. Table 14: BCR: Mean Pop. with Pop. Unbounded

Util BCR Count Ac256 Gn256
4.2 Gn256 Synthesis versus Ac256 0.40| 1.02+ 0.005 1.00+ 0.004 1.00+ 0.005
0.45| 1.98+ 0.007] 1.92+ 0.032 1.93+ 0.021
We now evaluate the effect of deriving the power spectrum | 0-50 | 4.27+ 0.008 3.80+ 0.069 3.88+ 0.083
from values of- (k) taken from equation (1) versus deriving 0.55| 9.79+ 0.013 8.69+ 0.720 8.76+ 0.653
it from the sample autocorrelatioR,(k), of the true arrival 0.60 | 21.52+ 0.018 17.89+ 0.916 18.31+ 1.101
counts. The results for queue length bounded at 256 are | 0.65| 45.77+ 0.020 46.86+ 7.908 49.90+ 11.85%

shown in tables 11 and 12. For the BCR workload, the
90% confidence intervals overlap at all utilizations. For R48, 4.3 Bounded Queue Length Effects
a small but statistically significant trend emerges. Mean
populations predicted by Gn256 are consistently larger than In this section we present evidence indicating that bounded
those of Ac256 and more accurately predict the behavior queue lengths are very effective in ameliorating the negative
of the workload from which they were derived. effects of long-range dependence in the arrival process. All
The results for unbounded population appear in tables 13 routers and switches in IP or ATM networks drop packets
and 14. For the BCR workload there is again no statistically or cells when queues become excessively long. This result
significant difference in the results. For R48, there is again is therefore applicable to the design of such systems since it
an apparent trend for Gn256 to predict slightly higher mean indicates that the behavior of queue length limited systems
populations but it is not statistically significant. depends primarily on the short-range dependence in the
This slightly better performance of Gn256 is actually workload.
guite good news. It indicates that the Hurst parametér This behavior is illustrated in table 15 for the BCR
is indeed a very useful single parameter mechanism for workload with queue length limited to 256. For the column
capturing the essence of the stochastic dependence preseniabeled Ac4, the power spectrum was derived using only
in the workload. I@(O), R(S) from the sample autocorrelation function of
the BCR data with all other values clamped to 0. Neverthe-
less, its 90% confidence intervals overlap those of Ac256
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for all utilization except 0.70. The results obtained with
Ac16 are statistically indistinguishable from those obtained
with Ac256.

Table 15: BCR: Mean Pop. with Max Pop. = 256.

Util | Count| Ac256 | Ac2 | Ac4 | Acl6
0.40| 1.02 1.01| 1.00| 1.00| 1.00
0.45| 1.99 1.89| 1.88| 1.91| 1.89
0.50| 3.85 3.70| 3.56| 3.66| 3.70
0.55| 7.12 7.02| 6.57| 6.89| 6.96
0.60| 12.65| 12.26| 11.39| 12.15| 12.39
0.65| 20.52| 19.98| 18.28| 19.84 | 20.35
0.70 | 30.62| 30.11| 27.84| 29.53| 30.23

The contrasting behavior for unbounded queues is
shown in table 16. As utilization increases it is the case
that dependence up to a lag of 256 is having a significant
impact on system behavior.

Table 16: BCR: Mean Pop. with Pop. Unbounded.

Util | Count| Ac256 | Ac2 | Ac4 | Acl6
0.40| 1.02 1.00| 1.00| 1.00| 1.01
045| 1.98 1.92| 1.88| 1.92| 1.95
0.50| 4.27 3.80| 3.61| 3.84| 3.91
0.55| 9.79 869 | 6.86| 8.11| 8.84
0.60| 21.52| 17.89| 12.41| 15.45| 18.36
0.65| 45.77| 46.86| 21.89| 28.94 | 39.33

5 CONCLUSIONS

Although it is a fact of life thatproof by simulationis
not possible, we believe that the techniques and results
presented here make useful contributions to the modeling

and understanding of systems having arrival processes with
stochastic dependence. We have introduced a simple and

efficient procedure for synthesis of Gaussian noise having

Gaussian noise foK > K..;;. This indicates that much of
the negative impact of long-range dependence is effectively
negated by simply bounding queue length.
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