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ABSTRACT

Analysis of network traffic indicates that packet arrival pro
cesses have significant stochastic dependence. It has b
suggested that this dependence is so strong as to be w
modeled by long-range dependent processes. The fact t
no finite process can be said to be truly long-range d
pendent poses potentially serious obstacles to simulati
modeling. In this paper, we explore some of these ob
stacles and propose practical methods for obtaining use
results with simulations of manageable duration. Keyword
Analysis methodology; network traffic models; stochasti
dependence; long-range dependence.

1 INTRODUCTION

The foundational work of Leland, Taqqu, Willinger, and Wil-
son (1994) demonstrated the presence of significant stoch
tic dependence in LAN traffic. It is now well-established
that i.i.d. processes are poor models of packet arrivals
both local and wide-area networks (Paxson and Floyd 199
in that they can lead to serious underestimation of queuin
delays (Erramilli et al. 1996).

To predict the behavior of system components when a
rival processes have stochastic dependence, designers h
therefore turned to simulation, and thus there is considerab
interest in constructing synthetic arrival processes to driv
the simulations. To ensure that the synthetic workloads a
representative of those arrival processes that are likely
be encountered in the “real world”, the synthetic workload
are commonly derived from captured traces of actual a
rival processes. To predict system performance accurate
the synthetic workload must reflectboth the distributional
characteristics and the stochastic dependence of the arri
process from which it was derived (Geist and Westall 2000

Sampling from an empirical distribution is a simple and
well-established procedure for ensuring that the margin
distribution of the synthetic process has the distributiona
characteristics of the arrival process from which it was de
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rived. An early, and still widely used, workload synthesize
tcplib developed by Jamin and Danzig (1992) employs th
approach.

1.1 Synthesis of Stochastic Dependence

Synthesizing stochastic dependence is more difficult. Th
autocorrelation function of a wide-sense stationary stochas
process{Xj }j=0,1,2,... having meanµ and varianceσ 2 is
given by:

r(k) = E[(Xj − µ)(Xj+k − µ)]/σ 2.

Intuitively, r(k) is a normalized measure of the correlation
between series elements that are a distancek apart. If
the elements of the series are i.i.d.,r(k) = 0 for k ≥ 1.
If elements at a distancek are identical, thenr(k) = 1.
Thus, the autocorrelation and its Fourier transform, th
power spectrum, provide useful mechanisms for quantifyin
stochastic dependence.

Long-range dependenceis a form of stochastic depen-
dence that has received considerable interest in network tr
fic modeling. A wide-sense stationary process is said to
long-range dependent if the dependence decays very slow
specifically,

∑
k r(k) = ∞.Asymptotically self-similar pro-

cesses are a subclass of long-range dependent proces
They are characterized by hyperbolically decaying aut
correlation functions that satisfyr(k) ∝ k−(2−2H)L(k) as
k → ∞ whereL(k) is a slowly varying function, andH
is the so-called Hurst parameter. Values ofH in the range
(0.5,1.0) are characteristic of processes having positive
correlated long-range dependence.Exactly self-similarpro-
cesses have autocorrelation functions that satisfy:

r(k) = (1/2)[(k + 1)2H − 2k2H + (k − 1)2H ]. (1)

It is straightforward to show that exactly self-similar pro-
cesses are also asymptotically self-similar.
6
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There are a number of well-known techniques fo
synthesizing processes that possess stochastic depende
Franklin (1965) provided a method for synthesizing Gau
sian noise whose autocorrelation matched a prescribedr(k)

for a finite number of valuesk. Procedures for synthe-
sizing long-range dependence were discovered much la
but they are now abundant and include: fractional ARIMA
processes (Beran 1992); sampling from the population
anM/G/∞ queuing system in which service times hav
infinite variance (Paxson 1994); synthesis of approxima
fractional Gaussian noise (fGn) (Paxson 1997, Lau et a
1995, Geist et al. 1999); and the aggregation of modulat
packet-train processes in which the duration of theON and
OFF periods is heavy-tailed (Taqqu et al. 1997).

1.2 Transfer of Stochastic Dependence

The problem of synthesizing a process that carries bo
the marginal distribution and the autocorrelation of a ta
get process is more difficult still, but it has also receive
considerable attention. No existing procedure is entire
satisfactory. Present tradeoffs include: mathematical rigo
computational efficiency, accuracy of approximation, an
precise and concise parameterization.

Transfer of correlationis a widely used procedure that
dates at least to the work of Polge, Holliday, and Bhagava
(1973). The underlying idea is as follows. Suppose{xk :
k = 0,1, ..} is a stochastic process having distribution
functionFx and autocorrelationr(k).Then the values,{uk =
Fx(xk) : k = 0,1, ..} are uniformly distributed in[0.0,1.0]
and carry some representation of the correlation of th
xk. Given an arbitrary distribution,Fy(y), if we now let
yk = F−1

y (uk), then the values,{yk : k = 0,1, ..}, must
inherit the distributionFy(y) and will also inherit some
form of the correlation from theuk. The principal obstacle
to the use of transfer of correlation is characterizing an
compensating for the effect of the transfer onr(k).

Wise, Traganitis, and Thomas (1977) showed that th
effect of the transformationg( ) = F−1

y (Fx( ) on the auto-
correlationr(k) can be precisely quantified when the inpu
process,{xk}, is Gaussian. Building upon this work, Liu
and Munson (1982) showed that under certain conditio
it is possible to prescribe the autocorrelation,r(k), of the
initial Gaussian so that the resulting autocorrelation,r̂(k),
of the processF−1

y (Fz(x)) is equal to some desired targe
autocorrelation. They also show that for certain target di
tributions and autocorrelations there isno Gaussian from
which the desired transfer of correlation is possible.

In Jagerman and Melamed’s TES (Transform, Expan
Sample) processes (Jagerman and Melamed 1992, Melam
1997) an interactive tool is used to construct aU [0.0,1.0]
correlated process that is claimed to be able to transfer a
desiredr̂(k) to a target process. However, the generality o
TES is both a strength and a weakness. The strength is t
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any autocorrelation function can theoretically be matched
The weakness is that there is no known algorithmic procedu
for deriving the innovation and stitching functions necessar
to do so.

In an earlier paper (Geist and Westall 2000) we showe
that transfer of correlation from fractional Gaussian nois
(fGn) was a practical technique for synthesizing arriva
processes having stochastic dependence. In the remain
of this paper we present some extensions and refineme
to that approach.

Two arrival processes that are derived from traces o
actual network traffic are used in this study. The trace
capture number of packet arrivals per second. The firs
BCR, is the BC-pAug89 archive captured at Bellcore’s Mor
ristown Research and Engineering Center. It is available
http://ita.ee.lbl.gov/html/contrib/BC.html. This trace repre
sents almost one hour of LAN traffic captured on productio
Ethernet at Bellcore and is representative of the results r
ported by Leland (1994). The second,R48, represents two
hours of inbound traffic captured in 1999 at the Clemso
University Dept. of Computer Science’s gateway to th
remainder of the campus and the external internet. Th
characteristics of the data are summarized in table 1. T
BCR data represents a total of about 1,000,000 packet
rivals. For the R48 data the number is 842,400.

Table 1: Workload characteristics
Parameter BCR R48
µ (pkts/sec) 318 117
σ 114 80
H 0.845 0.87
Length 3142 7200

The remainder of this paper is organized as follows. I
section 2 we consider the problem of synthesizing Gaussi
noise having sample autocorrelation that agrees statistica
with some target̂r(k). Empirical analysis of the effects
of transfer of correlation is presented in section 3. Effect
on the performance of a simulated system are evaluated
section 4, and our results are summarized in section 5.

2 SYNTHESIS OF GAUSSIAN NOISE
WITH STOCHASTIC DEPENDENCE

In this section we consider alternative approaches for synth
sizing Gaussian noise that carries the stochastic depende
of a target arrival process. We begin with a discussion o
Paxson’s (1997) procedure for synthesizing fGn. A uniqu
aspect of this approach is that it operates in Fourier tran
form space. We will show how to exploit this aspect of the
method to synthesize Gaussian noise with general stochas
dependence.
7
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2.1 Synthesis of Fractional Gaussian Noise

Paxson’s procedure is derived from Beran’s (1986) func
tional representation,f (λ,H), of the power spectrum of
an fGn process. He provides an approximate method fo
computingf (λ;H), and the result is denoted̃f (λ;H). The
sequence of values{f1, f2, ..., fN/2}wherefj = f̃ (2πj

N
;H)

thus approximates the power spectrum of an fGn pro
cess for frequencies{2π/N, ..., π}. The discrete sequence
{f1, ..., fN/2} is then stochastically transformed into the
discrete Fourier transform (DFT) of an fGn process ofN

points. The first step in this transformation is to multiply
the fj ’s by an exponential random variable with mean 1
This operation produces the periodogram of the self-simila
time series. Next the complex series, {z1, .. zN/2}, where
zi = √fieiθ , is generated. The phase,θ , is randomly
chosen from [0, 2π ]. The second half of this series is
completed by settingfN/2+k equal to the complex conju-
gate of fN/2−k so that it represents the discrete Fourie
transform of a real-valued series. Approximate fGn is the
obtained by applying the inverse DFT. It remains unprove
that this procedure generates a Gaussian process. Howe
Paxson showed that forH ≤ 0.85 the samples tested were
statistically consistent with having been drawn from a Gaus
sian distribution. Using Whittle’s estimator he confirmed
that the stochastic dependence present in the synthetic p
cesses was consistent with fGn having the target value ofH

for H = {0.50,0.55, ...,0.95}. We have obtained similar
results using Paxson’s procedure.

2.2 Finite Sample Effects

The Hurst parameter provides a convenient, single-parame
mechanism for characterizing the stochastic dependence
an exactly self-similar process. However, the fact tha
the estimated Hurst parameter of a collection of synthet
samples matches a targetH does not in itself guarantee that
the same will be true of sample autocorrelations.

For a finite sample ofN observations

R̂(k) = 1

N − k
N−k∑
j=1

(Xj − µ̂)(Xj+k − µ̂)/σ̂ 2, (2)

whereµ̂ and σ̂ 2 represent the sample mean and variance
is an asymptotically unbiased estimator ofr(k) (Kobayashi
1978). Although Paxson’s method does an excellent job o
matching a target Hurst parameter, synthetic series havin
length in the range useful for driving simulation studies
exhibit values ofR̂(k) that are, to a statistically significant
degree, less than the values ofr(k) that they target. This
observation, which is also true of methods based upo
random midpoint displacement, is illustrated in figure 1
For this data,H = 0.845, and the target values ofr(k) are
66
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derived from equation 1. The series labeledfGn 64K was
obtained by use of Paxson’s method to synthesize 64 se
of 65536 elements each. For each lag,k ∈ [1, ..,256], the
mean of the 64 observed values ofR̂(k) is plotted. For
the series labeledfGn 4K, series of 4096 elements were
synthesized.
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Figure 1: Target vs. Sample Autocorrelation

This data is presented in a more quantitative way
table 2. The column labeled1µ contains the difference
between the observed meanR̂(k) and the theoretical value
of r(k). The half-width of the two-sided confidence interva
at the 90% level is contained in the columns labeledC.I.
In no case does the confidence interval contain the tar
value.

Table 2: Difference in Autocorrelation
fGn 64K fGn 4K

Lag 1µ 90% C.I. 1µ 90% C.I.
1 -0.0116 0.0031 -0.0282 0.0077
2 -0.0153 0.0040 -0.0393 0.0107
4 -0.0179 0.0048 -0.0463 0.0125
8 -0.0196 0.0053 -0.0527 0.0138

16 -0.0202 0.0055 -0.0588 0.0149
32 -0.0211 0.0057 -0.0615 0.0151
64 -0.0230 0.0059 -0.0652 0.0158

128 -0.0246 0.0064 -0.0583 0.0144
256 -0.0248 0.0064 -0.0636 0.0152

2.3 Synthesis of Gaussian Noise with
Arbitrary Stochastic Dependence

The theory underlying Paxson’s method indicates eventu
convergence of̂R(k) to r(k)when the length of the synthetic
series becomes sufficiently large. However, the use of ve
long series to drive simulations has obvious disadvantag
In the remainder of this section we describe an extension
Paxson’s method that supports synthesis of Gaussian no
having arbitrary stochastic dependence.
8
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The Weiner-Khinchine transform (Kobayashi 1978) re
lates the autocorrelation function to the power spectrum
denotedP(λ), for −π ≤ λ ≤ π .

P(λ) = 1

2π

k=∞∑
k=−∞

r(k)e−iπλ (3)

= 1

2π
[r(0)+ 2

k=∞∑
k=1

r(k)cos(kλ)] (4)

and

r(k) =
∫ π

−π
P (λ)cos(kλ)dλ. (5)

This transform provides the mechanism by which Pax
son’s method may be extended so as to synthesize Gauss
noise having a target sample autocorrelation functionr̂(k)

for {k = 1,2, ..., K}. We first compute

P(
2πj

N
) = 1

2π
(r̂(0)+ 2

K∑
k=1

r̂(k)cos(
2πjk

N
)) (6)

for j = 1,2, ..N/2. The values,{f1, f2, ..., fN/2} where
fj = P(

2πj
N
), are then stochastically transformed using

Paxson’s procedure to yield approximate Gaussian noi
having sample autocorrelation̂R(k) approximatingr̂(k).

One application of this technique is to choose the targe
r̂(k) equal to ther(k) associated with the fGn fork =
0, ...K and r̂(k) = 0 for k > K. The potential utility of
this application lies in the observation that whenN/K
is sufficiently large, the sample autocorrelations,R̂(k), of
the synthetic processes more closely approximate the targ
values,r(k), for k = 1, ..., K than do those of synthetic fGn
produced by any of the previously cited methods. Resul
of one comparison are shown in figure 2. In this example
64 series of 4096 elements each were synthesized. T
targetr(k) remains that of fGn withH = 0.845. However,
for the series labeledGn16 values ofr(k) were clamped
to 0 for k > 16 and the analogous procedure was applie
to the series labeledGn256.

The results are summarized quantitatively in table 3
In contrast to the results in table 2 the 90% confidenc
intervals cover the target value in the majority of cases.

For K = 256, R̂(k) < r(k) for all k. This is indeed
evidence of a trend. AfterN/K becomes less than 16, the
accuracy of the approximation degrades rapidly. WhenN/K

reaches 2, accuracy of the finite approximation is worse tha
the original. This is to be expected since Paxson’s metho
uses a more accurate approximation of the N/2 elements
the power spectrum.
669
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Figure 2: Sample Autocorrelation with Truncatedr(k)

Table 3: Difference in Autocorrelation
Gn16 Gn256

Lag 1µ 90% C.I. 1µ 90% C.I.
1 0.0043 0.0039 -0.0051 0.0060
2 0.0026 0.0051 -0.0092 0.0083
4 0.0017 0.0054 -0.0090 0.0097
8 0.0025 0.0055 -0.0108 0.0103

16 0.0003 0.0056 -0.0094 0.0117
32 -0.2010 0.0422 -0.0106 0.0120
64 -0.1615 0.0342 -0.0103 0.0115

128 -0.1285 0.0277 -0.0124 0.0107
256 -0.1113 0.0242 -0.0021 0.0109

2.4 Matching Arbitrary Autocorrelations

Instead of targeting the autocorrelation of fGn, our procedu
can also be used to generate approximate Gaussian no
whose autocorrelation targets the sample autocorrelation
a real arrival process. This application is illustrated in figur
3 and table 4. In this case the targetr(k) is the sample
R̂(k) of the BCR workload. Once again the values plotte
represent the means of 64 runs. The autocorrelations
the synthetic processes track their ragged target statistica
well but there is an apparent trend toward low estimate
In section 4 we consider the implications of these resul
on the performance of simulated systems.

Table 4: Difference in Autocorrelation
Ac16 Ac256

Lag 1µ 90% C.I. 1µ 90% C.I.
1 -0.0022 0.0033 -0.0049 0.0052
2 -0.0031 0.0052 -0.0076 0.0072
4 -0.0046 0.0060 -0.0060 0.0086
8 -0.0029 0.0055 -0.0051 0.0094

16 -0.0001 0.0065 -0.0044 0.0102
32 -0.1997 0.0420 -0.0122 0.0105
64 -0.1906 0.0400 -0.0104 0.0099

128 -0.1206 0.0259 -0.0116 0.0099
255 -0.0403 0.0114 -0.0019 0.0088
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Figure 3: Sample Autocorrelation with Truncatedr(k)

3 TRANSFER OF CORRELATION

In this section we consider the effects of transfer of cor
relation from one stochastic process to another. Since t
autocorrelation is invariant under linear transformation, n
distortion is introduced when the functiong( ) = F−1

y (Fx( ))

is linear. It is also the case thatg( ) is linear if and only if
Fy( ) is a Gaussian. At the other extreme, it was shown b
Liu and Munson (1982) that there exist target distributions
Fy( ), and target autocorrelations,ry(k), for which there
is no Gaussian process and autocorrelation,rx(k), that can
yield the targetry(k). Intuitively, one might expect that
the distortion introduced by the transfer of correlation i
representative of some measure of the dissimilarity betwe
Fy and a Gaussian, and this was shown to be the case
Wise, Traganitis, and Thomas (1977). They provide a pr
cise characterization of the distortion via a measure th
essentially captures the non-linearity ofg( ). This measure
shows that no distortion occurs if and only ifg( ) is linear
and thatry(k) ≤ rx(k) wheneverrx(k) > 0. In practice, we
have found that the magnitude of coefficient of skewnes
of the distributionFy( ) is a useful first-order indicator of
the degree of distortion.

Figure 4 illustrates the effect of transferring the correla
tion from approximate fGn processes of length 4096 throug
the marginal distribution of the BCR workload. The serie
labeled fGnInv is the uniformly distributedFz(xi) where
{xi} is fGn. The series labeled BCR_Emp isF−1

BCR(Fz(xi))

The effects of the transfer of correlation are apparent in th
graph and in table 5. As before, the values shown are t
means of 64 runs. Since our objective is to measure th
effect of transfer of correlation, the1µ values represent
the difference from the mean sample autocorrelation of th
fGn and not the nominal autocorrelation from equation
(1).

The transfer from Gaussian to Uniform causes a sma
but statistically significant decrease in sample autocorrel
tion. However, the transfer from Uniform to the empirica
67
-
e

o

y
,

n
by
-

at

s

-
h

e
e
e

e

ll
a-

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256

M
e
a
n
 
s
a
m
p
l
e
 
a
u
t
o
c
o
r
r
e
l
a
t
i
o
n
s
 
r
(
k
)

Lag k

    

Target

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256

M
e
a
n
 
s
a
m
p
l
e
 
a
u
t
o
c
o
r
r
e
l
a
t
i
o
n
s
 
r
(
k
)

Lag k

    

Target
fGn

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256

M
e
a
n
 
s
a
m
p
l
e
 
a
u
t
o
c
o
r
r
e
l
a
t
i
o
n
s
 
r
(
k
)

Lag k

    

Target
fGn

fGnInv

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256

M
e
a
n
 
s
a
m
p
l
e
 
a
u
t
o
c
o
r
r
e
l
a
t
i
o
n
s
 
r
(
k
)

Lag k

    

Target
fGn

fGnInv
BCREmp

Figure 4: Transfer of fGn Correlation to BCR

Table 5: Transfer of Autocorrelation
Uniform BCREmp

Lag 1µ 90% C.I. 1µ 90% C.I.
1 -0.0203 0.0062 -0.0051 0.0043
2 -0.0183 0.0071 -0.0040 0.0059
8 -0.0115 0.0079 0.0029 0.0067

16 -0.0067 0.0074 0.0098 0.0069
32 -0.0055 0.0075 0.0071 0.0078
64 -0.0039 0.0073 0.0066 0.0079

128 -0.0105 0.0071 -0.0025 0.0075
256 0.0032 0.0082 0.0050 0.0078

distribution of the BCR workload compensates. It is ob
vious from the graph that the distortion introduced by th
failure of the mean sample autocorrelation of the synthet
fGn processes to track the targetr(k) is significantly greater
in magnitude than the distortion introduced by transfer o
correlation.

An analogous transfer of correlation from Gn256 pro
cesses of length 4096 is shown in figure 5 and table 6.
this table1µ doesrepresent the difference betweenR̂(k)
and r(k) from equation (1). Although the values are low
to a statistically significant degree, they are much close
than the mean sample autocorrelations of the synthetic fG
processes before the transfer of correlation.

Table 6: Transfer of Gn256 Autocorrelation
Uniform BCREmp

Lag 1µ 90% C.I. 1µ 90% C.I.
1 -0.0257 0.0086 -0.0149 0.0071
2 -0.0278 0.0104 -0.0139 0.0095
4 -0.0266 0.0114 -0.0164 0.0112
8 -0.0279 0.0127 -0.0171 0.0116

16 -0.0258 0.0124 -0.0117 0.0123
32 -0.0219 0.0120 -0.0088 0.0121
64 -0.0185 0.0121 -0.0158 0.0120

128 -0.0202 0.0114 -0.0108 0.0106
256 -0.0215 0.0089 -0.0121 0.0095
0
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Figure 5: Transfer of Gn256 Correlation to BCR

Despite these promising results, transfer of correlatio
can significantly distort the autocorrelation. The R48 work
load, shown in figure 6, illustrates this problem. The serie
labeled,Target, contains the equation 1 values for the Hurs
parameter of 0.87.Actual is the computedR̂(k) for the
8192 values of the series. Gn256, Unif, and R48Emp we
computed as with the BCR workload. Based upon a numb
of observations, it appears that the skewness of the targ
distribution is an indicator of the magnitude of the distortion
of the autocorrelation. The BCR workload has a coefficien
of skewness of 0.69 where R48 has 2.45.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256

M
e
a
n
 
s
a
m
p
l
e
 
a
u
t
o
c
o
r
r
e
l
a
t
i
o
n
s
 
r
(
k
)

Lag k

    

Target

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256

M
e
a
n
 
s
a
m
p
l
e
 
a
u
t
o
c
o
r
r
e
l
a
t
i
o
n
s
 
r
(
k
)

Lag k

    

Target
Actual

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256

M
e
a
n
 
s
a
m
p
l
e
 
a
u
t
o
c
o
r
r
e
l
a
t
i
o
n
s
 
r
(
k
)

Lag k

    

Target
Actual
Gn256

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256

M
e
a
n
 
s
a
m
p
l
e
 
a
u
t
o
c
o
r
r
e
l
a
t
i
o
n
s
 
r
(
k
)

Lag k

    

Target
Actual
Gn256
Unif

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256

M
e
a
n
 
s
a
m
p
l
e
 
a
u
t
o
c
o
r
r
e
l
a
t
i
o
n
s
 
r
(
k
)

Lag k

    

Target
Actual
Gn256
Unif

R48Emp

Figure 6: Transfer of Gn256 Correlation to R48

4 PERFORMANCE EFFECTS

In this section we evaluate the ability of workloads synthe
sized by the methods presented in the previous two sectio
to predict the performance of the workload from which the
were derived. An FCFS server with deterministic servic
time and optionally constrained queue capacity is simulate
Given a target server utilization,ρ, and a known packet
arrival rate,λ, mean service time, 1/µ, is set toρ/λ. Mean
population and packet drop rate are captured. Results
ported for all workloads represent the mean value obtaine
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from 20 replications of the simulation. A unit time of one
second is used. For the workloads referred to asCount,
the simulation is driven by the true packet arrival counts
However, these results are not deterministic because
simulated arrivaltimesof individual packets are synthetic
and stochastic, (see (Giest and Westall 2000)).

Simulated run time for theCountworkloads is identical
to the length of the arrival count traces: 3142 seconds f
the BCR workload; and 7200 for R48. For the syntheti
workloads, elapsed simulated time is 4096 seconds a
8192 seconds for BCR and R48 respectively. In both cas
the number of simulated packet arrivals per run is on th
order of one million. For the synthetic workloads, both th
arrival count and the arrival times are synthetic. Therefor
as expected, the confidence intervals are much wider th
for the Countworkloads.

If a previous paper (Geist and Westall 2000) we demo
strated the necessity of incorporating both distributional an
correlational characteristics of the target workload in th
synthetic workload. The focus here is upon the effects
different approaches to transfer of correlation.

4.1 fGn Synthesis Versus Gn256

We first compare the results obtained when driving th
simulation with approximate fGn versus those obtaine
with Gn256. Recall that the 256 in Gn256 refers to the fa
that only the first 256 lags of the target autocorrelationr(k)

are used in synthesizing the Gaussian noise from whi
the correlation is transferred. Simulations were run wit
bounded queuelengths ranging from 25 to 211. Results
for both workloads with queue length constrained to
maximum of 256 are shown in tables 7 and 8. Thes
results are representative. For most utilizations, the me
populations predicted by both the fGn and Gn256 workload
are smaller than those obtained using the target Cou
workload. However, in both of these cases the differenc
between fGn and Gn256 is not statistically significant.

Table 7: R48: Mean Pop. with Max Pop. = 256
Util R48 Count fGn Gn256
0.25 1.36 +̄ 0.002 1.36 +̄ 0.019 1.39 +̄ 0.022
0.30 3.16 +̄ 0.004 2.98 +̄ 0.061 3.02 +̄ 0.071
0.35 6.03 +̄ 0.007 5.51 +̄ 0.083 5.71 +̄ 0.091
0.40 9.53 +̄ 0.008 9.00 +̄ 0.085 9.32 +̄ 0.112
0.45 14.27+̄ 0.009 13.06+̄ 0.096 13.39+̄ 0.154
0.50 18.96+̄ 0.011 17.95+̄ 0.135 18.25+̄ 0.196
0.55 24.13+̄ 0.008 23.52+̄ 0.224 24.15+̄ 0.272

When the population is unbounded, statistically signifi
cant differences emerge as shown in tables 9 and 10. Th
differences are more pronounced in the R48 workload, b
there is a clear trend for lower predicted mean populatio
with fGn than for Gn256 as utilization increases. Thi
71
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Table 8: BCR: Mean Pop. with Max Pop. = 256
Util BCR Count fGn Gn256
0.40 1.02 +̄ 0.004 1.00 +̄ 0.0044 1.01 +̄ 0.006
0.45 1.99 +̄ 0.007 1.88 +̄ 0.0124 1.90 +̄ 0.018
0.50 3.85 +̄ 0.010 3.70 +̄ 0.0364 3.67 +̄ 0.038
0.55 7.12 +̄ 0.016 6.83 +̄ 0.0646 7.01 +̄ 0.091
0.60 12.65+̄ 0.018 12.29+̄ 0.1322 12.50+̄ 0.163
0.65 20.52+̄ 0.021 19.91+̄ 0.2038 20.18+̄ 0.199
0.70 30.62+̄ 0.026 30.29+̄ 0.2659 30.76+̄ 0.377

Table 9: R48: Mean Pop. with Pop. Unbounded
Util R48 Count fGn Gn256
0.25 2.45 +̄ 0.003 1.56 +̄ 0.079 2.23 +̄ 0.242
0.30 5.85 +̄ 0.005 4.77 +̄ 0.672 4.84 +̄ 0.372
0.35 13.83+̄ 0.006 8.91 +̄ 0.707 11.65+̄ 1.394
0.40 32.01+̄ 0.005 19.71+̄ 1.965 33.68+̄ 9.470
0.45 71.95+̄ 0.011 40.71+̄ 8.140 58.03+̄ 9.687

Table 10: BCR: Mean Pop. with Pop. Unbounded
Util BCR Count fGn Gn256
0.40 1.02 +̄ 0.005 1.00 +̄ 0.0044 1.00 +̄ 0.005
0.45 1.98 +̄ 0.007 1.93 +̄ 0.0244 1.93 +̄ 0.021
0.50 4.27 +̄ 0.008 3.90 +̄ 0.0844 3.88 +̄ 0.083
0.55 9.79 +̄ 0.013 8.12 +̄ 0.5366 8.76 +̄ 0.653
0.60 21.52+̄ 0.018 16.87+̄ 1.0222 18.31+̄ 1.101
0.65 45.77+̄ 0.020 39.26+̄ 2.1988 49.90+̄ 11.855

trend is consistent with our observation in section 2 tha
R̂fGn(k) < R̂Gn256(k) also in a statistically significant way.

4.2 Gn256 Synthesis versus Ac256

We now evaluate the effect of deriving the power spectrum
from values ofr(k) taken from equation (1) versus deriving
it from the sample autocorrelation,̂R(k), of the true arrival
counts. The results for queue length bounded at 256 a
shown in tables 11 and 12. For the BCR workload, th
90% confidence intervals overlap at all utilizations. For R48
a small but statistically significant trend emerges. Mea
populations predicted by Gn256 are consistently larger tha
those of Ac256 and more accurately predict the behavi
of the workload from which they were derived.

The results for unbounded population appear in tables 1
and 14. For the BCR workload there is again no statistical
significant difference in the results. For R48, there is aga
an apparent trend for Gn256 to predict slightly higher mea
populations but it is not statistically significant.

This slightly better performance of Gn256 is actually
quite good news. It indicates that the Hurst parameterH

is indeed a very useful single parameter mechanism f
capturing the essence of the stochastic dependence pres
in the workload.
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Table 11: R48: Mean Pop. with Max Pop. = 256
Util R48 Count Ac256 Gn256
0.25 1.36 +̄ 0.002 1.33 +̄ 0.019 1.39 +̄ 0.022
0.30 3.16 +̄ 0.004 2.92 +̄ 0.061 3.02 +̄ 0.071
0.35 6.03 +̄ 0.007 5.45 +̄ 0.083 5.71 +̄ 0.091
0.40 9.53 +̄ 0.008 8.95 +̄ 0.085 9.32 +̄ 0.112
0.45 14.27+̄ 0.009 13.20+̄ 0.096 13.39+̄ 0.154
0.50 18.96+̄ 0.011 17.79+̄ 0.135 18.25+̄ 0.196
0.55 24.13+̄ 0.008 23.51+̄ 0.224 24.15+̄ 0.272

Table 12: BCR: Mean Pop. with Max Pop. = 256
Util BCR Count AC256 Gn256
0.40 1.02 +̄ 0.004 1.01+̄ 0.004 1.01 +̄ 0.006
0.45 1.99 +̄ 0.007 1.89+̄ 0.017 1.90 +̄ 0.018
0.50 3.85 +̄ 0.010 3.70+̄ 0.038 3.67 +̄ 0.038
0.55 7.12 +̄ 0.016 7.02+̄ 0.073 7.01 +̄ 0.091
0.60 12.65+̄ 0.018 12.26+̄ 0.146 12.50+̄ 0.163
0.65 20.52+̄ 0.021 19.98+̄ 0.217 20.18+̄ 0.199
0.70 30.62+̄ 0.026 30.11+̄ 0.304 30.76+̄ 0.377

Table 13: R48: Mean Pop. with Pop. Unbounded
Util R48 Count Ac256 Gn256
0.25 2.45 +̄ 0.003 1.80 +̄ 0.147 2.23 +̄ 0.242
0.30 5.85 +̄ 0.005 5.56 +̄ 0.777 4.84 +̄ 0.372
0.35 13.83+̄ 0.006 11.57+̄ 1.115 11.65+̄ 1.394
0.40 32.01+̄ 0.005 32.72+̄ 8.778 33.68+̄ 9.470
0.45 71.95+̄ 0.011 56.03+̄ 5.546 58.03+̄ 9.687

Table 14: BCR: Mean Pop. with Pop. Unbounded
Util BCR Count Ac256 Gn256
0.40 1.02 +̄ 0.005 1.00 +̄ 0.004 1.00 +̄ 0.005
0.45 1.98 +̄ 0.007 1.92 +̄ 0.032 1.93 +̄ 0.021
0.50 4.27 +̄ 0.008 3.80 +̄ 0.069 3.88 +̄ 0.083
0.55 9.79 +̄ 0.013 8.69 +̄ 0.720 8.76 +̄ 0.653
0.60 21.52+̄ 0.018 17.89+̄ 0.916 18.31+̄ 1.101
0.65 45.77+̄ 0.020 46.86+̄ 7.908 49.90+̄ 11.855

4.3 Bounded Queue Length Effects

In this section we present evidence indicating that bounde
queue lengths are very effective in ameliorating the negativ
effects of long-range dependence in the arrival process. A
routers and switches in IP or ATM networks drop packet
or cells when queues become excessively long. This resu
is therefore applicable to the design of such systems since
indicates that the behavior of queue length limited system
depends primarily on the short-range dependence in th
workload.

This behavior is illustrated in table 15 for the BCR
workload with queue length limited to 256. For the column
labeled Ac4, the power spectrum was derived using onl
R̂(0), ..., R̂(3) from the sample autocorrelation function of
the BCR data with all other values clamped to 0. Neverthe
less, its 90% confidence intervals overlap those of Ac25
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for all utilization except 0.70. The results obtained with
Ac16 are statistically indistinguishable from those obtaine
with Ac256.

Table 15: BCR: Mean Pop. with Max Pop. = 256.
Util Count Ac256 Ac2 Ac4 Ac16
0.40 1.02 1.01 1.00 1.00 1.00
0.45 1.99 1.89 1.88 1.91 1.89
0.50 3.85 3.70 3.56 3.66 3.70
0.55 7.12 7.02 6.57 6.89 6.96
0.60 12.65 12.26 11.39 12.15 12.39
0.65 20.52 19.98 18.28 19.84 20.35
0.70 30.62 30.11 27.84 29.53 30.23

The contrasting behavior for unbounded queues
shown in table 16. As utilization increases it is the cas
that dependence up to a lag of 256 is having a significa
impact on system behavior.

Table 16: BCR: Mean Pop. with Pop. Unbounded.
Util Count Ac256 Ac2 Ac4 Ac16
0.40 1.02 1.00 1.00 1.00 1.01
0.45 1.98 1.92 1.88 1.92 1.95
0.50 4.27 3.80 3.61 3.84 3.91
0.55 9.79 8.69 6.86 8.11 8.84
0.60 21.52 17.89 12.41 15.45 18.36
0.65 45.77 46.86 21.89 28.94 39.33

5 CONCLUSIONS

Although it is a fact of life thatproof by simulationis
not possible, we believe that the techniques and resu
presented here make useful contributions to the modeli
and understanding of systems having arrival processes w
stochastic dependence. We have introduced a simple a
efficient procedure for synthesis of Gaussian noise havi
arbitrary stochastic dependence. This procedure was u
to demonstrate that the sample autocorrelation of a Gn
process ofN elements more closely approximates a targ
r(k) for k ≤ K than does fGn when theN/K is sufficiently
large, and that the use of GnK produces slightly bett
estimates of mean population than does fGn.

We provided evidence indicating that whether correlate
Gaussian noise is derived from the sampleR̂(k) or the
theoreticalr(k) associated with the Hurst parameter of th
target process does not usually affect mean population
a statistically significant degree. This observation indicat
that the dependence in real network traffic arrivalscan be
usefully characterized by the single parameterH .

Finally, an example was presented indicating that whe
maximum queue length is bounded by someQ, then there
is a valueKcrit << Q such that predicted mean population
does not vary significantly for GnK sources of correlate
6

d

is
e
nt

lts
ng
ith
nd

ng
sed
K

et

er

d

e
to

es

n

d

Gaussian noise forK ≥ Kcrit . This indicates that much of
the negative impact of long-range dependence is effective
negated by simply bounding queue length.
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