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ABSTRACT networks are much more complex than the GI/GI/1 queue,

this work may be viewed as one of the first steps in that

This paper deals with estimating small tail probabilities
of the steady-state waiting time in a GI/Gl/1 queue with
heavy-tailed (subexponential) service times. The problem

direction in the context of heavy-tailed service times (and
related quantities that may be heavy-tailed, e.g., duration
of packet transmission times).

of estimating infinite horizon ruin probabilities in insurance The random walk associated with the waiting time in
risk processes with heavy-tailed claims can be transformed the GI/Gl/1 queue has the same probabilistic structure as an
into the same framework. It is well-known that naive sim- insurance risk process where the claims arrive according to
ulation is ineffective for estimating small probabilities and an ordinary renewal process (see, e.g., Embrechts and Klip-
special fast simulation techniques like importance sampling, pelberg (1993)). In particula®? (W > u) in the context of
multilevel splitting, etc., have to be used. Previous fast sim- a GI/Gl/1 queue may be interpreted as the probability of
ulation techniques for queues with subexponential service ultimate ruin with initial capital: in the insurance risk pro-
times have been confined to M/GI/1 queueing systems. The cess. Inthis setting, a subexponential claim-size distribution
general approach is to use the Pollaczek-Khintchine trans- corresponds to a subexponential service-time distribution.
formation to transform the problem into that of estimating Subexponential claim-size distributions are used to model
the tail distribution of a geometric sum of independent the possibility of large claims.

subexponential random variables. However, no such useful A large body of work already exists for the rare event
transformation exists when one goes from Poisson arrivals simulation of queues and networks of queues for the case
to general interarrival-time distributions. We describe an where service times and related quantities are light-tailed
approach that is based on directly simulating the random (see, e.g., Cottrell, Fort and Malgouyres (1983), Parekh
walk associated with the waiting-time process of the GI/GI/1 and Walrand (1989), Frater, Lenon and Anderson (1991),
queue, using a change of measure called delayed subex-Sadowsky (1991), Chang, Heildelberger, Juneja and Sha-
ponential twisting — an importance sampling idea recently habuddin (1994) and Falkner, Devetsikiotis and Lambadaris
developed and found useful in the context of M/GI/1 heavy- (1999); for a survey see Heidelberger (1995)). In this paper
tailed simulations. we call a distribution light-tailed if its moment generating
function is finite in some neighborhood of zero. Impor-
tance sampling is a widely used technique in the setting
of light-tailed random variables. It involves simulating the
This paper deals with estimating tail probabilities of the system with a new probability dynamics (i.e., a change
steady-state waiting-time random variable in a Gl/Gl/1 queue of probability measure) that makes the rare event happen
with heavy-tailed service times. In particular we consider more frequently and then adjusting the final estimate. The
service times that are sub-exponentially distributedWIf change of probability measure frequently used in the light-
is the steady-state waiting-time random variable, then the tailed case is called “exponential change of measure” or
problemisto estimat® (W > u) whereu islarge. Problems “exponential twisting” (see, e.g., Siegmund (1976), Buck-
like these arise, for example, while estimating probabilities lew (1990), Asmussen (1985) and Lehtohnen and Nyrhinen
of extreme delays of packets in communication networks (1992)). Letf(-) be the density function of a non-negative
or the packet loss probabilities in such networks. While the random variableX and letMx (-) be its moment generating
gueueing systems used to realistically model communication function. In a queue, th& may correspond to a service
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time random variable or an interarrival-time random vari-
able. Then the density obtained by exponentially twisting
f(x) by an amoun® is

e f(x)

fo(x) = My (@)

If the rare event of interest is facilitated by the being
large (cf., small) then one usesfathat is positive (cf.,
negative) so that more large (cf., small) sampleX afccur
under the new measure. However, just arbitrarily chooging
may result in highly unstable estimates, and large deviations
theory has to be used to determine the optithed be used
in each case.

where 0< 6 < 1. As was the case for exponential twisting,
an appropriat® has to be chosen for the given application.
In Juneja and Shahabuddin (1999) it was formally shown
that a “delayed” version of hazard rate twisting is efficient
for the case of estimating®(W > u) in M/GI/1 queues
for all traffic intensities (provided the queue is stable) and
for almost all subexponential distributions. Independently
of Juneja and Shahabuddin (1999), Asmussen, Binswanger
and Hojgaard (2000) gave a refinement of the importance
sampling algorithm in Asmussen, Binswanger and Hojgaard
(1998) that is also provably efficient for all traffic intensities.
All the above techniques relied on the Pollaczek-
Khintchine transformation to simulate the M/GI/1 queue.
Using this transformation one can expreRBéW > u) as

Recent data in the telecommunications area shows that P(Z,N:l Y; > u) where theY;’s are independent and have

very frequently quantities like service times (and related
guantities) exhibit heavy-tailed behavior (see, e.g., Leland,
Taqqu, Willinger and Wilson (1994)). Note that exponential
twisting relies on the existence of the moment generating
functions in a neigborhood of zero. Whef(x) is heavy-
tailed then the moment generating function is infinite for
all 6 > 0. Consequently most of the techniques and theory
developed for rare event simulation in the light-tailed setting
are not valid here.

One of the first works in the area of rare event sim-
ulation for systems with heavy-tailed random variables is
Asmussen and Binswanger (1997). They considered the
problem of estimating the probability of ruin for insurance-
claim processes with Poisson claim arrivals and subexpo-
nentially distributed claim size. As mentioned before, it
can easily be shown that this is equivalent to the prob-
lem of estimating the tail probability of the steady-state
waiting time in a M/GI/1 queue with subexponential ser-
vice times. They came up with an innovative algorithm
based on conditioning and they proved that it works for
subexponential service times with a regularly-varying tail.
Later, Asmussen, Binswanger and Hojgaard (1998) gave

the integrated-tail distribution of the service times (explained
later), andN is a geometric random variable with parame-
ter p, wherep is the traffic intensity (i.e., the ratio of the
expected service time to the expected interarrival time), and
N is independent of th&;’s. In the importance sampling
techniques in Asmussen, Binswanger and Hojgaard (2000)
and Juneja and Shahabuddin (1999), the “new” distribution
is chosen for theY;’s; the distribution of theN is left
unchanged. However, once we go from Poisson arrivals to
general interarrival times the distributions of tNeand the

Y;'s are no longer known in explicit form.

In this paper we attempt to go beyond the restriction
imposed by the Pollaczek-Khintchine transformation, and
simulate the random walk associated with the GI/GI/1 queue
directly using delayed subexponential twisting. Results
are mixed; the method works well for some classes of
subexponential distributions and not for others. Before we
discuss the formal effciency of these methods, we will review
the standard criterion used in the simulation literature to
evaluate the efficiency of rare event simulation techniques,
and a slightly weaker one which we developed. Techniques
satisfying the weaker criterion are as good for most practical

an importance sampling change of measure for the same purposes as the techniques satisfying the usual one.

problem that works for other subexponential distributions,
but only if the traffic intensity is below a certain level. A
different framework for importance sampling for systems
with subexponential distributions was presented in Juneja
and Shahabuddin (1999). The idea was “subexponential
twisting”, i.e., twist at a “subexponential rate” rather than
at an exponential rate as is done in exponential twisting.
One way of doing subexponential twisting is “hazard rate
twisting”. Let A(x) = f(x)/F(x) be the hazard rate cor-
responding tof(x) and let A(x) = f;‘zok(s)ds be the
cumulant function. Note that the tail of any distribution,
F(x), may be represented as* ™). In hazard rate twisting,
the new distribution function is given by
Fe (x) = e~ A(1=0)

@)
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The standard criterion used to evaluate the efficiency
of rare event simulation techniques is “asymptotic optimal-
ity” (see, e.g., Heidelberger (1995); sometimes also called
“asymptotic efficiency”). Many of the light-tailed simulation
techniques and the three heavy-tailed simulation techniques
mentioned have been shown to be “asymptotically optimal”
under certain assumptions. However, in our experience and
in the experience of others (see, e.g., Asmussen, Binswanger
and Hojgaard (2000), p. 315) it is difficult to come up with
techniques that satisfy this criterion in the heavy-tailed set-
ting beyond the M/GI/1 queue. So instead we settle for
something weaker that we call “large set asymptotic opti-
mality.” The new criterion is based on the observation that
many times the reason why importance sampling does not
work well is that the likelihood-ratio on some “small” set
(i.e., note that “small” here is in comparison with the rare
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set, the probability of which we are trying to estimate) is
highly variable; if we exclude this set when we conduct

2.1 The Model

importance sampling, then one gets very good estimates Let F be the cumulative distribution function of the service-

for the remaining “large” part. Now in most simulation
experiments in practice, one tries for a fixed relative error
(the confidence interval half-width upon the probability one
is trying to estimate) of sa§ (usually somewhere between
0.01 and 0.1). And theé’ is usually independent of the
rarity of the overall event (i.e., whether one is estimating
a probablity of 162 or 10~° one attempts to achieve the
same relative error). If the relative bias, i.e., the ratio of
the “small” set probability to the probability of interest is
of the same order a8 (and remains so as the event of
interest becomes rarer), then we are not losing much from
the practical point of view when we exclude the small set.
Roughly speaking, the class of subexponential distri-

time random variableX. We assume thaf' has a density
f. Let A(x) = f(x)/F(x) be the hazard-rate function and
Alx) = fsxzok(s)ds the cumulant function. It is well-
known thatA(x) = —log F(x). We assume that the Oth
customer arrives at epoch 0 to an empystemand hence
has a waiting time in theueueWp = 0. Let (&,),>0 be
the sequence of i.i.d. interarrival times afX,),>o be the
sequence of i.i.d. service times, i.&, is the service time
of the n-th customer and, the time between the arrival
of customem andn + 1. We assume the traffic intensity
p = E[X]/E[£] to be smaller than 1 and the sequence
of interarrival times to be independent of the sequence of
service times. An insightful recursion for the waiting time

butions most commonly used in practice can be categorized can be derived; ifW, denotes the waiting time of the-

into the following three classes: “Weibull type tails”, “log-
normal type tails” and “Pareto type tails”; a more formal
categorization will be given later on. These are tails with
different degrees of “heaviness” ranging from least heavy
to most heavy. We show that for the class of subexponen-
tial distributions with Weibull type tails we obtain large set
asymptotic optimality. For the class of distributions with
lognormal type tails, we conjecture large set asymptotic
optimality but it is very difficult to formally prove it. For
the Pareto type tails we feel that this technique is not large
set asymptotically optimal and hence is not recommended
for use in this setting. Fortunately, being the class with the
heaviest tails, the asympotic approximations fgW > u)

given by heavy-tailed theory are the most accurate here and

fairly close toP(W > u).

Section 2 reviews the random walk formulation for es-
timating P(W > u) in the GI/GI/1 queue and discusses the
basic concepts in the theory of subexponential distributions.

Section 3 reviews rare event simulation and importance sam-

pling. We also introduce the concept of large set asymptotic
optimality in this section. Section 4 presents the simulation
algorithm and conditions on the parameters of the service
time distribution and the simulation algorithm that guarantee
large set asymptotic optimality. Experimental results are
presented in Section 5.

2 PRELIMINARIES AND
RELATED RESULTS

We start with some commonly used notation. For any
functionsz1(x) andz2(x), we use the notatiofy (x) ~ z2(x)

to mean thatzy(x)/z2(x) converges to 1 asx goes to
infinity. Order statistics ofX1, ..., X,, are denoted by
X1 <+ < X@). The maximum of zero and is denoted

by {x}*. Finally, the indicator function is denoted k).
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th customer, then it is well-known tha¥, satisfies the
so-called Lindley’s recursioW, .1 = (W, + X, — &,}T,

n > 0 (see, e.g., Feller (1966)). Expanding this relation
recursively gives

n
War1 = maxiy (Xi—&)....,
i=0

Y Xi— &), X, —sn,O}. 2

i=n—1

Define the random walkM,),>1 by

n—1
My =) (Xi — &), 3)
i=0

with i.i.d. incrementsX; —&; and letMp = 0. It is easy to
see from (2) and (3) tha’, has the same distribution as
maXp<i <, M;. Thus the steady-state waiting tiri#é has the
same distribution as sypy M,. In this paper, we assume
the interarrival-time distribution to be light-tailed with a
finite mean and we simulate faP (W > u), for large u,
via the random variablé (sup,-q M, > u). Let

t(u)=inf{n:neN,M, > u},

be thehitting timeof level u. Note thatr (1) is an{oo} UN-
valued random variable an8(W > u) = P(t(u) < 00).

2.2 Subexponential Distributions and
Gl/GI/1 Queue Asymptotics

For details about subexponential distributions we refer
the reader to the textbook Embrechts, Kluppelberg and
Mikosch (1997). Below we give a short summary.
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The definition of subexponentiality is due to Chistyakov
(1964):

Definition 2.1  The distributionF is subexponential
(denoted byF € S) if and only if

P(X1+4+:--+X,>u)
nP(X1>u)

— 1 (u — o0),

(4)

for all n.

The integrated tail ofF is defined by F;(x) =
Jo F(»)dy/E[X] when E[X] < co. Define A;(u) and
Ar(u) similar to A(u) and A(u#). In this paperF; is as-
sumed to be subexponential, rather tlfanSince the most
interesting distributions which are subexponential have in-

tegrated tails that are also subexponential and vice versa

(this is certainly the case for the ones we use in this paper;
see also Embrechts, Klippelberg and Mikosch (1997)), we
continue using the phrase “subexponential service times”.

For the GI/GI/1 queue with subexponential service
times, the asymptotic waiting-time distribution is given by
Pakes (1975):

P(W > u)~ 1 p f1(u).

—p

(5)

Note that in the asymptotics of the waiting-time distribution,
the interarrival-time distribution plays a role only via its first
moment. In this paper we use the following assumption for
the service times:

Assumption 1 F; € S and F is in the maximum
domain of attraction of the Gumbel distribution.

This implies that maxX, converges, when properly
normalized, to the Gumbel distribution. This is a result from
extreme value theory. A function that plays animportant role
in extreme value theory is the so-calladxiliary function
a(u). The functiona(u) is defined to be any function such
that

Fi(u)
F)

For details we refer the reader to Goldie and Resnick (1988),
Asmussen and Klippelberg (1996), and Embrechts, Klip-
pelberg and Mikosch (1997). Examples of subexponential
distributions that satisfy Assumption 1 are:

= E[X]

* The heavy-tailed Weibuly, ) distribution with
Fx)=1- e o, fx) = cax® le=x

with ¢ > 0 and O< « < 1. In this case we may
take

1
a(u) = —ut™e.
o
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«  The lognormalx, o) distribution with

F(x)=® (Ing——a)
o
and
PR
X)) = ——¢
xv2mno?

with « € R ando > 0 and whered denotes the
standard normal distribution function. Thei mean
of the lognormal distribution is given by**2°".

As auxiliary function we may take

0'21/{

alu) = logu — o’

The technique in this paper relies heavily on a result
in Asmussen and Kluppelberg (1996). Define a conditional
distribution P™ of (M,,) by

Py =P(- | t(u) < 00).

In case Assumption 1 holds, the asymptotic distribution of
the normalized hitting timer under the P“)-measure is
derived in Asmussen and Klippelberg (1996)u)/a(u)
asymptotically has an exponential distribution. In particular,

()
it > denotes convergence in the conditional distribution,
then
T(u) P Y
— % —_—
a(u) 2

where ¢ is a standard exponential random variable (i.e.,
with mean 1) and

: (6)

1-—
w=Ex)—2.
P

In this paper we will also need the following condition that
is satisfied by most of the common subexponential distribu-
tions; distributions not satisfying it are mainly pathological
cases (see Juneja and Shahabuddin (1999) for a discussion):

Assumption 2 The hazard-rate functiom(x) is
eventually decreasing.

3 RARE EVENT SIMULATION AND
IMPORTANCE SAMPLING

3.1 A New Criterion for Rare Event
Simulation Efficiency

Let A(u) denote some event parameterizedubwith the
property thatP(A(#)) — 0 asu — oco. Theu is called
the rarity parameter. Define(u) := P(A(u)) and leta (u)
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denote an unbiased estimator équ), which is obtained by
averaging realizations from i.i.d. simulation replications.

If we let \Er(&(u)) be the sample estimator of the variance
of a(u), then an 10QL — )% confidence interval based on
the central limit theorem is given by

<&u —/ Nar(@(u))z1—y;2, Gu + \/\Ef(&(u))u—n/z) ,

wherez, denotes thei-th quantile of the standard normal
distribution. A quantity that is a measure of the precision
of an estimator is the relative error, which is defined to be
the confidence interval half-width upon the quantity one is
trying to estimate, i.e.,

Var(@(u))

RE [&(u)] =212 )

The estimatoty (1) is said to have a bounded relative error,
if for fixed “n” the relative error remains bounded:atends
to infinity (Shahabuddin, 1994). Alternatively, the number
of samples required to obtain a given relative error remains
bounded as goes to infinity. Since rare event simulation
techniques with bounded relative errors are usually very
hard to find, in the literature one works with the somewhat
weaker notion ofasymptotic optimalitya.o.).

Definition 3.1 “Asymptotically optimal” &(u) is
an asymptotically optimal estimator af(x) if

log (Var [&(u)]) -

lim sup log(@2(@)

u—00

()

Note that a.0. allows the relative error to grow to
infinity for growing u, but that this growth is at a slower
rate (compared to the decay rateoqis)).

In the following definition, think ofs as the maximum
asymptotic relative biathat one is willing to tolerate in the
simulation.

Definition 3.2  “Large set asymptotically opti-
mal” Lets € (0, 1) be a fixed constant. If

1. there exists a decomposition @fu) into two pos-
itive quantitiesa (u) = y (u) + €(u) s.t.

<34

= U

lim supe(u)
u—oco o(u

2. there exists an unbiased estimatptu) of y (u)
s.t.

log (Var [ (u)]) .

lim sup 10902(0)) >1, ()]

u—00

theny (i) is said to be a large set a.o0. estimator @fu).

Similar to work-normalized a.o., we can define work-
normalized large set a.o.

Let «,(u) be anasymptotic approximationo o (u),
i.e., a,(u) ~ a(u). Sincewa,(u) may be regarded as an
estimator with zero variance, it can be checked that it is also
large set a.0. Unlike the approximations in the light-tailed
setting which are asymptotic in the log (i.e., lgu) ~
loga(u)), in the heavy-tailed setting approximations that
satisfy a, (1) ~ a(u) do exist and hence are competitive
with large set a.o. rare event simulation methods. We now
briefly discuss the advantage and disadvantage of each.

Even if we come up with a.0. simulation methods
(in contrast to large set a.0. simulation methods) for the
heavy-tailed case, asymptotic approximations have relative
errors going to zero, whereas a.o. is weaker than bounded
relative error in the simulation. Also approximations take
negligible computation time as compared to simulation. So

In many cases the simulation effort per replication is the only advantage of simulation methods is:fdixed (say
either independent of the rarity parameteor grows very atug) and in the “practical range” (in contrast #0— o0).
weakly with it (see, e.g., Shahabuddin (1994) and Juneja Then the relative bias in the asymptotic approximations, i.e.,
and Shahabuddin (1999)). However in cases where the («,(uq)—a(u0))/a(uo) is also fixed and beyond our control.
growth of effort is substantial with increasing(see, e.g., However, in simulation one has the choice of decreasing
Glasserman, Heidelberger, Shahabuddin and Zajic (1999) the relative error by running more simulations (i.e., putting

and this paper) it is more fair to consider the criterion

log (work(u) x Var[a(u)])
log(a2(u))

(see, e.g., Glynn and Whitt (1992)). Here work(de-
notes the computation effort per simulation replication as a
function ofu. If a(u) satisfies (8), then it is calledork-
normalized a.a.As mentioned in the Introduction, we have
not been able to find a work-normalized a.o. simulation
algorithm for the GI/GI/1 case and hence we introduce the
weaker criterionvork-normalized large set a,oand prove
that it is satisfied under certain conditions.

lim sup

u—o0

>1 (8)
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in more effort). In this practical range where asymptotic
approximations are not accurate, it is still worthwhile to
come up with a.o. simulation techniques if they improve
considerably over naive ones. As mentioned before, this has
been done for certain cases in Asmussen and Binswanger
(1997), Asmussen, Binswanger and Hojgaard (2000) and
Juneja and Shahabuddin (1999).

One would prefer this to be the case for large set a.o.
techniques also. However, in the definition of large set a.o.,
one can also think of (ug) as a bias term over which one
has no control. So on top of Definition 3.2, we place another
stringent requirement of having an additional paramgter
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in the decomposition that gives control over such bias terms
for fixed u.

Condition 3.3  Additional condition for definition
of large set asymptotic optimality: For any fixedu, there
exists a family of decompositions parameterizeg@shj.e.,
a(u) = yg(u) + eg(u)) such that:

lim sup—— e _
B—00 a(“)

With this new additional condition, asymptotic approxi-
mations are no longer work-normalized large seta.o. To sim-
plify notation, we will usey (1) = yg(u) ande (1) = eg(u).

3.2 Importance Sampling

The simulation method we use in this paper is importance

Under some mild regularity conditions, for the choice
of
c

0=60,=1— ——,
Au)

11)

wherec is any positive constant, HR is proved to be a.o. for
estimatingP (X1+- - -+ X, > u) in Juneja and Shahabuddin
(1999).

Weighted delayed hazard rate twisting (WDHR) extends
HR by introducing a weighting parameterand a delaying
parameten*. The WDHR density is defined by

fx)
T for x < x*

(1— %x;)) S0 gor x > x*

Fo, (x*)
If we let N be a geometrically distributed random variable

Jouxr(x) = 12)

sampling. Suppose the stochastic process that we wish towith P(N = n) = p"(1—p) forn > 0, thenitis well-known
simulate is defined on some probability space with measure for the M/GI/1 queue that (see, e.g., Feller (1966))

P. Let Q be some other measure on the same probability
space such thaP is absolutely continuous relative 9.

One can then express
(1<A< ) P)
4P
a0

whered P/dQ is called the likelihood-ratio and subscript
QO indicates that the expectation is with respect to the
new measurg). In importance sampling one generates the
sample paths under th@ measure, computes the likelihood-
ratio in each case and estimate@:) by the sample mean
of the I'(A(u))(dP/dQ)'s. The underlying idea is that
the event that is rare undd? is not rare undeiQ and in
order to get an unbiased estimator we have to multiply the
estimator by some correction factor, which turns out to be
the likelihood-ratio.

As mentioned in Section 1, for subexponential distri-
butions one may use hazard rate twisting (HR) where the
new distribution is given by (1). The density corresponding
to Fy is given by

a(u) =

(1 — O)r(x)e” DA,

fo(x) = (10)

For X1 with density f, HR leads to a likelihood-ratio of

f(X1)/fe(X1) and an unbiased estimator fB( X1+ - -+
X, >) is given by
S (Xi)

er(X)

(L1—0)"e O L AXD (X + ...

I(X1+ -+ Xy > u)

+ X, > u).
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PW>u)=PY1+---+Yy>u), (13)
where the sequence of i.i.d. random variab{&s) are
distributed as the integrated tail of the service-time distri-
bution. In Juneja and Shahabuddin (1999) it is proved that
for 6, given by (11) and for certain choices of* = x}
andw (and under some mild regularity conditions), WDHR
is a.0. for estimatingP (Y1 + --- + Yy > u). Unfortu-
nately, these results cannot be applied to the GI/GI/1 queue,
since for non-Poisson arrivals, th&'s no longer have the
integrated-tail distribution of the service times, but another
distribution for which no explicit form is known in gen-
eral. Besides,P(N = n) = p"(1— p) for n > 0 and
somep for which again no explicit expression is known.
The techniques in Asmussen and Binswanger (1997) and
Asmussen, Binswanger and Hojgaard (2000) also rely on
(13) and hence are only applicable for M/GI/1 queues.

4 THE SIMULATION ALGORITHM

For the GI/GI/1 case, instead of using (13), we simulate the
waiting-time distribution by directly simulating the random
walk (M,) defined in Section 2.1. We use WDHR for
the service times, i.e., use the densjty .« (x) with some
specifiedd, andx, to simulate the service times. We do
not apply any change of measure to the interarrival-time
distribution. This requires some stringent conditions on the
choice ofx}; and unlike the case in Juneja and Shahabuddin
(1999), requiresv to depend onu.

For any preselected asymptotic relative hiasve will
use the decomposition

a) = P(t(u) < ko(u)) + P(t(u) > ko(u)),
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where

pa(u)logs

a(u)logs B
(11— pE[X]

ko(u) = — (14)

Using (6), it is easy to check that

P(t(u) < ko(u))
o(u)

—-1-96

asu — oo. We will now show thatP(t(u) < ko(u))
may be estimated (work-normalized) a.o. using WDHR,
thus giving a (work-normalized) large set a.o0. estimator for
a(u). Also note that selecting

Bpa(u)logs
(1-p)E[X]

Ba(u)logs 3
p =

ko(u) = —

(15)

gives us the flexibility required to fulfill Condition 3.3.
However, for ease of presentation we will yse= 1.

An important question in using WDHR is the choice
of the importance sampling parametégs w, andx;;. For

reasons similar to those in Juneja and Shahabuddin (1999),

we used, given by the equation

1
0, =1— . 16
X0 (16)
Furthermore, we use = w, given by
c1pt
== 17
o 17)

where 0< ¢1 < 1 is some constant.
We will need F' to satisfy the following assumption.
Assumption 3  The F(-) is such that there exists
some positive constamnt satisfying

A (u)—b+1

Wy

lim =0.
u— oo

(For instance, for the Weibull service times witix) =
1— ¢, Assumption 3 holds with &x < b.) We then use

x,; satisfying

A(x)) =blogAu), (18)

whereb is the constant in Assumption 3. Note thgtgoes
to infinity asu goes to infinity.

Finally, we will also need the following assumption,
which is satisfied by the commonly used subexponential
distributions that are in the maximum domain of attraction of
the Gumbel distribution, like the Weibull and the lognormal
distribution.
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Assumption 4
a(u) such that

The F(-) has an auxiliary function

a(u—)x;—>0(u—>oo).

The algorithm for estimatingP (W > u), using the
above given values df,, w, andx; is as follows:

Algorithm 4.1  “Weighted delayed hazard rate
twisting of the service times”

1. Drawi.i.d. samplegy, ..., & fromtheinterarrival
time distribution and i.i.d. sampleXo, ..., X;
using the densityfy, .+ (x), wherek is the minimum
of ko(w) andinf {i : Y\ _o(X; — &) > u}.

2. Definez by

d F(X0)
Z=1 Xi—&)>u
g r H o Sy (X0)
3. An average of many independent sampleg a$

an unbiased estimator faP (t (u) < ko(1)) which
is used as an estimator faP (W > u).

Under the given assumptions one can prove the following
theorem.

Theorem 4.2 Algorithm 4.1 results in a work-
normalized large set asymptotically optimal estimator for
P(W > u) with yw) = P(r(w) < ko)), ew) =
P(t(u) > ko(u)).

For the proof of the theorem we refer the reader to
Boots and Shahabuddin (2000).

5 EXPERIMENTAL RESULTS

In this section we present some experimental results us-
ing Algorithm 4.1 (A4.1). We present results only for the
M/GI/1 queue, since for this case we can compare with accu-
rate simulation estimates based on the Pollaczek-Khintchine
transformation (P-K) from Juneja and Shahabuddin (1999).
We will also compare each case with the best known asymp-
totic approximation (AA) forP(W > u) given by (5).

We first use service times that are Weibull distributed. It
can easily be checked that this class of distributions satisfies
the assumptionsin Section 4. Forthe experiments we assume
the service times to have the distribution &~v*. We abort
a simulation, if more thako(x) = max{—a(u) logs/u, 50}
customers have arrived fér = 0.001. We useb = 2.1,
consistent with Assumption 3.

The values of the other parameters used by the algorithm
are given in Table 1. They were determined using a heuristic
approach further detailed in Boots and Shahabuddin (2000).
Note that for the general subexponential Weibull distribution



Boots and Shahabuddin

Table 1: Values of the Parameters

u p=025 o =05 o =0.75

100 wy, =.1693¢; =.56 w, =.0503c1 =.50 w, =0.0135¢; = .41
Xy =2338 xr=2338 xy=2338

200 w, =.1185¢1=.56 w, =.0364c¢;=.51 w, =0.0105¢; = .45
x} = 3095 x} = 3095 xy =3095

400 w, =.0827c¢1=.55 w,=.0261¢1=.52 w, =0.0079c1 = .47
x; = 3958 x; = 3958 xy =3958

800 w, =.058c¢1=.55 w, =.0186¢; =.53 w, =0.0058 c; =.49
Xy = 4926 Xy = 4926 Xy =49.26

(i.e., ¢ # 1/2), it is difficult to compute the integrated-tail  in contrast one can increa¢g (to decrease the relative

distribution. This indicates that even for the M/GI/1 case, bias) and run more simulation replications to improve the

Algorithm 4.1 is easier to implement than the one in Juneja simulation estimate.

and Shahabuddin (1999), for service-time distributions for We also conducted experiments using lognormal ser-

which the integrated-tail distribution is difficult to compute. vice times that are reported in Boots and Shahabuddin

However, itis usually far less efficient in terms of simulation  (2000). It can be checked that this family of distributions

time. does not satisfy Assumption 3 . However, we still conjec-
The results from Juneja and Shahabuddin (1999) were ture in Boots and Shahabuddin (2000) that the algorithm

based on 10,000,000 replications, in order to get accurate es-is (work-normalized) large set a.0. and give an intuitive

timates for comparison purposes. For A4.1, we use 300,000 argument in its support. The experimental results in Boots

replications for each simulation. The percentages after the and Shahabuddin (2000) also support that claim.

estimates are the relative half-widths of the 99%-confidence

intervals, i.e., the relative error of the estimate. The standard ACKNOWLEDGMENTS
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