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ABSTRACT

This paper deals with estimating small tail probabilitie
of the steady-state waiting time in a GI/GI/1 queue wit
heavy-tailed (subexponential) service times. The proble
of estimating infinite horizon ruin probabilities in insuranc
risk processes with heavy-tailed claims can be transform
into the same framework. It is well-known that naive sim
ulation is ineffective for estimating small probabilities an
special fast simulation techniques like importance samplin
multilevel splitting, etc., have to be used. Previous fast sim
ulation techniques for queues with subexponential servi
times have been confined to M/GI/1 queueing systems. T
general approach is to use the Pollaczek-Khintchine tran
formation to transform the problem into that of estimatin
the tail distribution of a geometric sum of independen
subexponential random variables. However, no such use
transformation exists when one goes from Poisson arriv
to general interarrival-time distributions. We describe a
approach that is based on directly simulating the rando
walk associated with the waiting-time process of the GI/GI
queue, using a change of measure called delayed sub
ponential twisting – an importance sampling idea recent
developed and found useful in the context of M/GI/1 heav
tailed simulations.

1 INTRODUCTION

This paper deals with estimating tail probabilities of th
steady-state waiting-time random variable in a GI/GI/1 que
with heavy-tailed service times. In particular we conside
service times that are sub-exponentially distributed. IfW

is the steady-state waiting-time random variable, then t
problem is to estimateP(W > u)whereu is large. Problems
like these arise, for example, while estimating probabilitie
of extreme delays of packets in communication networ
or the packet loss probabilities in such networks. While th
queueing systems used to realistically model communicati
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networks are much more complex than the GI/GI/1 queu
this work may be viewed as one of the first steps in tha
direction in the context of heavy-tailed service times (an
related quantities that may be heavy-tailed, e.g., durati
of packet transmission times).

The random walk associated with the waiting time in
the GI/GI/1 queue has the same probabilistic structure as
insurance risk process where the claims arrive according
an ordinary renewal process (see, e.g., Embrechts and Kl
pelberg (1993)). In particular,P(W > u) in the context of
a GI/GI/1 queue may be interpreted as the probability o
ultimate ruin with initial capitalu in the insurance risk pro-
cess. In this setting, a subexponential claim-size distributio
corresponds to a subexponential service-time distributio
Subexponential claim-size distributions are used to mod
the possibility of large claims.

A large body of work already exists for the rare even
simulation of queues and networks of queues for the ca
where service times and related quantities are light-taile
(see, e.g., Cottrell, Fort and Malgouyres (1983), Parek
and Walrand (1989), Frater, Lenon and Anderson (1991
Sadowsky (1991), Chang, Heildelberger, Juneja and Sh
habuddin (1994) and Falkner, Devetsikiotis and Lambada
(1999); for a survey see Heidelberger (1995)). In this pap
we call a distribution light-tailed if its moment generating
function is finite in some neighborhood of zero. Impor
tance sampling is a widely used technique in the settin
of light-tailed random variables. It involves simulating the
system with a new probability dynamics (i.e., a chang
of probability measure) that makes the rare event happ
more frequently and then adjusting the final estimate. Th
change of probability measure frequently used in the ligh
tailed case is called “exponential change of measure”
“exponential twisting” (see, e.g., Siegmund (1976), Buck
lew (1990), Asmussen (1985) and Lehtohnen and Nyrhine
(1992)). Letf (·) be the density function of a non-negative
random variableX and letMX(·) be its moment generating
function. In a queue, theX may correspond to a service
6
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time random variable or an interarrival-time random vari
able. Then the density obtained by exponentially twistin
f (x) by an amountθ is

fθ (x) ≡ eθxf (x)

MX(θ)
.

If the rare event of interest is facilitated by theX being
large (cf., small) then one uses aθ that is positive (cf.,
negative) so that more large (cf., small) samples ofX occur
under the new measure. However, just arbitrarily choosingθ

may result in highly unstable estimates, and large deviatio
theory has to be used to determine the optimalθ to be used
in each case.

Recent data in the telecommunications area shows th
very frequently quantities like service times (and relate
quantities) exhibit heavy-tailed behavior (see, e.g., Lelan
Taqqu, Willinger and Wilson (1994)). Note that exponentia
twisting relies on the existence of the moment generatin
functions in a neigborhood of zero. Whenf (x) is heavy-
tailed then the moment generating function is infinite fo
all θ > 0. Consequently most of the techniques and theo
developed for rare event simulation in the light-tailed settin
are not valid here.

One of the first works in the area of rare event sim
ulation for systems with heavy-tailed random variables i
Asmussen and Binswanger (1997). They considered t
problem of estimating the probability of ruin for insurance
claim processes with Poisson claim arrivals and subexp
nentially distributed claim size. As mentioned before, i
can easily be shown that this is equivalent to the prob
lem of estimating the tail probability of the steady-state
waiting time in a M/GI/1 queue with subexponential ser
vice times. They came up with an innovative algorithm
based on conditioning and they proved that it works fo
subexponential service times with a regularly-varying tai
Later, Asmussen, Binswanger and Hojgaard (1998) ga
an importance sampling change of measure for the sam
problem that works for other subexponential distributions
but only if the traffic intensity is below a certain level. A
different framework for importance sampling for system
with subexponential distributions was presented in June
and Shahabuddin (1999). The idea was “subexponent
twisting”, i.e., twist at a “subexponential rate” rather than
at an exponential rate as is done in exponential twistin
One way of doing subexponential twisting is “hazard rat
twisting”. Let λ(x) ≡ f (x)/F̄ (x) be the hazard rate cor-
responding tof (x) and let3(x) = ∫ x

s=0 λ(s)ds be the
cumulant function. Note that the tail of any distribution,
F̄ (x), may be represented ase−3(x). In hazard rate twisting,
the new distribution function is given by

F̄θ (x) = e−3(x)(1−θ) (1)

e
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where 0≤ θ < 1. As was the case for exponential twisting
an appropriateθ has to be chosen for the given application
In Juneja and Shahabuddin (1999) it was formally show
that a “delayed” version of hazard rate twisting is efficien
for the case of estimatingP(W > u) in M/GI/1 queues
for all traffic intensities (provided the queue is stable) an
for almost all subexponential distributions. Independent
of Juneja and Shahabuddin (1999), Asmussen, Binswan
and Hojgaard (2000) gave a refinement of the importan
sampling algorithm in Asmussen, Binswanger and Hojgaa
(1998) that is also provably efficient for all traffic intensities

All the above techniques relied on the Pollaczek
Khintchine transformation to simulate the M/GI/1 queue
Using this transformation one can expressP(W > u) as
P(
∑N
i=1 Yi > u) where theYi ’s are independent and have

the integrated-tail distribution of the service times (explaine
later), andN is a geometric random variable with parame
ter ρ, whereρ is the traffic intensity (i.e., the ratio of the
expected service time to the expected interarrival time), a
N is independent of theYi ’s. In the importance sampling
techniques in Asmussen, Binswanger and Hojgaard (200
and Juneja and Shahabuddin (1999), the “new” distributio
is chosen for theYi ’s; the distribution of theN is left
unchanged. However, once we go from Poisson arrivals
general interarrival times the distributions of theN and the
Yi ’s are no longer known in explicit form.

In this paper we attempt to go beyond the restrictio
imposed by the Pollaczek-Khintchine transformation, an
simulate the random walk associated with the GI/GI/1 que
directly using delayed subexponential twisting. Resul
are mixed; the method works well for some classes
subexponential distributions and not for others. Before w
discuss the formal effciency of these methods, we will revie
the standard criterion used in the simulation literature
evaluate the efficiency of rare event simulation technique
and a slightly weaker one which we developed. Techniqu
satisfying the weaker criterion are as good for most practic
purposes as the techniques satisfying the usual one.

The standard criterion used to evaluate the efficien
of rare event simulation techniques is “asymptotic optima
ity” (see, e.g., Heidelberger (1995); sometimes also call
“asymptotic efficiency”). Many of the light-tailed simulation
techniques and the three heavy-tailed simulation techniqu
mentioned have been shown to be “asymptotically optima
under certain assumptions. However, in our experience a
in the experience of others (see, e.g., Asmussen, Binswan
and Hojgaard (2000), p. 315) it is difficult to come up with
techniques that satisfy this criterion in the heavy-tailed se
ting beyond the M/GI/1 queue. So instead we settle f
something weaker that we call “large set asymptotic op
mality.” The new criterion is based on the observation th
many times the reason why importance sampling does n
work well is that the likelihood-ratio on some “small” se
(i.e., note that “small” here is in comparison with the rar
7
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set, the probability of which we are trying to estimate) i
highly variable; if we exclude this set when we conduc
importance sampling, then one gets very good estima
for the remaining “large” part. Now in most simulation
experiments in practice, one tries for a fixed relative err
(the confidence interval half-width upon the probability on
is trying to estimate) of sayδ′ (usually somewhere between
0.01 and 0.1). And theδ′ is usually independent of the
rarity of the overall event (i.e., whether one is estimatin
a probablity of 10−2 or 10−9 one attempts to achieve the
same relative error). If the relative bias, i.e., the ratio o
the “small” set probability to the probability of interest is
of the same order asδ′ (and remains so as the event o
interest becomes rarer), then we are not losing much fro
the practical point of view when we exclude the small se

Roughly speaking, the class of subexponential dist
butions most commonly used in practice can be categoriz
into the following three classes: “Weibull type tails”, “log-
normal type tails” and “Pareto type tails”; a more forma
categorization will be given later on. These are tails wit
different degrees of “heaviness” ranging from least hea
to most heavy. We show that for the class of subexpone
tial distributions with Weibull type tails we obtain large se
asymptotic optimality. For the class of distributions with
lognormal type tails, we conjecture large set asympto
optimality but it is very difficult to formally prove it. For
the Pareto type tails we feel that this technique is not lar
set asymptotically optimal and hence is not recommend
for use in this setting. Fortunately, being the class with th
heaviest tails, the asympotic approximations forP(W > u)

given by heavy-tailed theory are the most accurate here a
fairly close toP(W > u).

Section 2 reviews the random walk formulation for es
timatingP(W > u) in the GI/GI/1 queue and discusses th
basic concepts in the theory of subexponential distribution
Section 3 reviews rare event simulation and importance sa
pling. We also introduce the concept of large set asympto
optimality in this section. Section 4 presents the simulatio
algorithm and conditions on the parameters of the servi
time distribution and the simulation algorithm that guarante
large set asymptotic optimality. Experimental results a
presented in Section 5.

2 PRELIMINARIES AND
RELATED RESULTS

We start with some commonly used notation. For an
functionsz1(x) andz2(x), we use the notationz1(x) ∼ z2(x)

to mean thatz1(x)/z2(x) converges to 1 asx goes to
infinity. Order statistics ofX1, . . . , Xn are denoted by
X(1) ≤ · · · ≤ X(n). The maximum of zero andx is denoted
by {x}+. Finally, the indicator function is denoted byI (·).
65
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2.1 The Model

LetF be the cumulative distribution function of the service-
time random variableX. We assume thatF has a density
f . Let λ(x) ≡ f (x)/F̄ (x) be the hazard-rate function and
3(x) = ∫ x

s=0 λ(s)ds the cumulant function. It is well-
known that3(x) = − log F̄ (x). We assume that the 0th
customer arrives at epoch 0 to an emptysystemand hence
has a waiting time in thequeueW0 = 0. Let (ξn)n≥0 be
the sequence of i.i.d. interarrival times and(Xn)n≥0 be the
sequence of i.i.d. service times, i.e.,Xn is the service time
of the n-th customer andξn the time between the arrival
of customern andn + 1. We assume the traffic intensity
ρ = E[X]/E[ξ ] to be smaller than 1 and the sequence
of interarrival times to be independent of the sequence o
service times. An insightful recursion for the waiting time
can be derived; ifWn denotes the waiting time of then-
th customer, then it is well-known thatWn satisfies the
so-called Lindley’s recursionWn+1 = {Wn + Xn − ξn}+,
n ≥ 0 (see, e.g., Feller (1966)). Expanding this relation
recursively gives

Wn+1 = max

{
n∑
i=0

(Xi − ξi), . . . ,
n∑

i=n−1

(Xi − ξi), Xn − ξn,0
}
. (2)

Define the random walk(Mn)n≥1 by

Mn =
n−1∑
i=0

(Xi − ξi), (3)

with i.i.d. incrementsXi − ξi and letM0 ≡ 0. It is easy to
see from (2) and (3) thatWn has the same distribution as
max0≤i≤n Mi . Thus the steady-state waiting timeW has the
same distribution as supn≥0Mn. In this paper, we assume
the interarrival-time distribution to be light-tailed with a
finite mean and we simulate forP(W > u), for largeu,
via the random variableI (supn≥0Mn ≥ u). Let

τ(u) = inf {n : n ∈ N,Mn ≥ u} ,

be thehitting timeof levelu. Note thatτ(u) is an{∞}∪N-
valued random variable andP(W > u) = P(τ(u) <∞).

2.2 Subexponential Distributions and
GI/GI/1 Queue Asymptotics

For details about subexponential distributions we refe
the reader to the textbook Embrechts, Klüppelberg an
Mikosch (1997). Below we give a short summary.
8
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The definition of subexponentiality is due to Chistyakov
(1964):

Definition 2.1 The distributionF is subexponential
(denoted byF ∈ S) if and only if

P(X1+ · · · +Xn > u)

nP (X1 > u)
→ 1 (u→∞), (4)

for all n.
The integrated tail ofF is defined by FI (x) =∫ x

0 F(y)dy/E[X] when E[X] < ∞. Define3I (u) and
λI (u) similar to 3(u) and λ(u). In this paperFI is as-
sumed to be subexponential, rather thanF . Since the most
interesting distributions which are subexponential have in
tegrated tails that are also subexponential and vice ver
(this is certainly the case for the ones we use in this pape
see also Embrechts, Klüppelberg and Mikosch (1997)), w
continue using the phrase “subexponential service times

For the GI/GI/1 queue with subexponential service
times, the asymptotic waiting-time distribution is given by
Pakes (1975):

P(W > u) ∼ ρ

1− ρ F I (u). (5)

Note that in the asymptotics of the waiting-time distribution
the interarrival-time distribution plays a role only via its first
moment. In this paper we use the following assumption fo
the service times:

Assumption 1 FI ∈ S and F is in the maximum
domain of attraction of the Gumbel distribution.

This implies that maxn Xn converges, when properly
normalized, to the Gumbel distribution. This is a result from
extreme value theory. A function that plays an important rol
in extreme value theory is the so-calledauxiliary function
a(u). The functiona(u) is defined to be any function such
that

a(u) ∼
∫∞
u
F (x)dx

F (u)
= E[X]FI (u)

F (u)
.

For details we refer the reader to Goldie and Resnick (1988
Asmussen and Klüppelberg (1996), and Embrechts, Klü
pelberg and Mikosch (1997). Examples of subexponenti
distributions that satisfy Assumption 1 are:

• The heavy-tailed Weibull(σ, α) distribution with

F(x) = 1− e−σxα , f (x) = σαxα−1e−σxα ,

with σ > 0 and 0< α < 1. In this case we may
take

a(u) = 1

α
u1−α.
6
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• The lognormal(α, σ 2) distribution with

F(x) = 8
(

logx − α
σ

)
and

f (x) = 1

x
√

2πσ 2
e
− 1

2

[
logx−α
σ

]2

with α ∈ R andσ > 0 and where8 denotes the
standard normal distribution function. The mean
of the lognormal distribution is given byeα+ 1

2σ
2
.

As auxiliary function we may take

a(u) = σ 2u

logu− α .

The technique in this paper relies heavily on a resu
in Asmussen and Klüppelberg (1996). Define a condition
distributionP (u) of (Mn) by

P (u)(·) = P(· | τ(u) <∞).

In case Assumption 1 holds, the asymptotic distribution o
the normalized hitting timeτ under theP (u)-measure is
derived in Asmussen and Klüppelberg (1996):τ(u)/a(u)
asymptotically has an exponential distribution. In particula

if
P (u)→ denotes convergence in the conditional distribution

then

τ(u)

a(u)

P (u)→ ψ

µ
, (6)

whereψ is a standard exponential random variable (i.e
with mean 1) and

µ = E[X]1− ρ
ρ

.

In this paper we will also need the following condition tha
is satisfied by most of the common subexponential distrib
tions; distributions not satisfying it are mainly pathologica
cases (see Juneja and Shahabuddin (1999) for a discussi

Assumption 2 The hazard-rate functionλ(x) is
eventually decreasing.

3 RARE EVENT SIMULATION AND
IMPORTANCE SAMPLING

3.1 A New Criterion for Rare Event
Simulation Efficiency

Let A(u) denote some event parameterized byu with the
property thatP(A(u)) → 0 asu → ∞. The u is called
the rarity parameter. Defineα(u) := P(A(u)) and letα̂(u)
59
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denote an unbiased estimator forα(u), which is obtained by
averaging realizations fromn i.i.d. simulation replications.
If we let V̂ar(α̂(u)) be the sample estimator of the variance
of α̂(u), then an 100(1− η)% confidence interval based on
the central limit theorem is given by(

α̂u −
√

V̂ar(α̂(u))z1−η/2, α̂u +
√

V̂ar(α̂(u))z1−η/2
)
,

whereza denotes thea-th quantile of the standard normal
distribution. A quantity that is a measure of the precision
of an estimator is the relative error, which is defined to b
the confidence interval half-width upon the quantity one i
trying to estimate, i.e.,

RE
[
α̂(u)

] := z1−η/2
√

Var(α̂(u))

α(u)
.

The estimator̂α(u) is said to have a bounded relative error,
if for fixed “n” the relative error remains bounded asu tends
to infinity (Shahabuddin, 1994). Alternatively, the number
of samples required to obtain a given relative error remain
bounded asu goes to infinity. Since rare event simulation
techniques with bounded relative errors are usually ver
hard to find, in the literature one works with the somewha
weaker notion ofasymptotic optimality(a.o.).

Definition 3.1 “Asymptotically optimal” α̂(u) is
an asymptotically optimal estimator ofα(u) if

lim sup
u→∞

log
(
Var

[
α̂(u)

])
log(α2(u))

≥ 1. (7)

Note that a.o. allows the relative error to grow to
infinity for growing u, but that this growth is at a slower
rate (compared to the decay rate ofα(u)).

In many cases the simulation effort per replication is
either independent of the rarity parameteru or grows very
weakly with it (see, e.g., Shahabuddin (1994) and June
and Shahabuddin (1999)). However in cases where th
growth of effort is substantial with increasingu (see, e.g.,
Glasserman, Heidelberger, Shahabuddin and Zajic (199
and this paper) it is more fair to consider the criterion

lim sup
u→∞

log
(
work(u)×Var

[
α̂(u)

])
log(α2(u))

≥ 1 (8)

(see, e.g., Glynn and Whitt (1992)). Here work(u) de-
notes the computation effort per simulation replication as
function of u. If α̂(u) satisfies (8), then it is calledwork-
normalized a.o.. As mentioned in the Introduction, we have
not been able to find a work-normalized a.o. simulation
algorithm for the GI/GI/1 case and hence we introduce th
weaker criterionwork-normalized large set a.o., and prove
that it is satisfied under certain conditions.
66
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In the following definition, think ofδ as the maximum
asymptotic relative biasthat one is willing to tolerate in the
simulation.

Definition 3.2 “Large set asymptotically opti-
mal” Let δ ∈ (0,1) be a fixed constant. If

1. there exists a decomposition ofα(u) into two pos-
itive quantitiesα(u) = γ (u)+ ε(u) s.t.

lim sup
u→∞

ε(u)

α(u)
≤ δ,

2. there exists an unbiased estimatorγ̂ (u) of γ (u)
s.t.

lim sup
u→∞

log
(
Var

[
γ̂ (u)

])
log(γ 2(u))

≥ 1, (9)

then γ̂ (u) is said to be a large set a.o. estimator ofα(u).
Similar to work-normalized a.o., we can define work

normalized large set a.o.
Let αa(u) be an asymptotic approximationto α(u),

i.e., αa(u) ∼ α(u). Sinceαa(u) may be regarded as an
estimator with zero variance, it can be checked that it is al
large set a.o. Unlike the approximations in the light-taile
setting which are asymptotic in the log (i.e., logαa(u) ∼
logα(u)), in the heavy-tailed setting approximations tha
satisfy αa(u) ∼ α(u) do exist and hence are competitive
with large set a.o. rare event simulation methods. We no
briefly discuss the advantage and disadvantage of each

Even if we come up with a.o. simulation method
(in contrast to large set a.o. simulation methods) for th
heavy-tailed case, asymptotic approximations have relat
errors going to zero, whereas a.o. is weaker than bound
relative error in the simulation. Also approximations tak
negligible computation time as compared to simulation. S
the only advantage of simulation methods is foru fixed (say
at u0) and in the “practical range” (in contrast tou→∞).
Then the relative bias in the asymptotic approximations, i.
(αa(u0)−α(u0))/α(u0) is also fixed and beyond our control.
However, in simulation one has the choice of decreasi
the relative error by running more simulations (i.e., puttin
in more effort). In this practical range where asymptoti
approximations are not accurate, it is still worthwhile t
come up with a.o. simulation techniques if they improv
considerably over naive ones. As mentioned before, this h
been done for certain cases in Asmussen and Binswan
(1997), Asmussen, Binswanger and Hojgaard (2000) a
Juneja and Shahabuddin (1999).

One would prefer this to be the case for large set a
techniques also. However, in the definition of large set a.
one can also think ofε(u0) as a bias term over which one
has no control. So on top of Definition 3.2, we place anoth
stringent requirement of having an additional parameterβ
0
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in the decomposition that gives control over such bias term
for fixed u.

Condition 3.3 Additional condition for definition
of large set asymptotic optimality: For any fixedu, there
exists a family of decompositions parameterized byβ (i.e.,
α(u) = γβ(u)+ εβ(u)) such that:

lim sup
β→∞

εβ(u)

α(u)
= 0.

With this new additional condition, asymptotic approxi-
mations are no longer work-normalized large set a.o. To sim
plify notation, we will useγ (u) ≡ γβ(u) andε(u) ≡ εβ(u).

3.2 Importance Sampling

The simulation method we use in this paper is importanc
sampling. Suppose the stochastic process that we wish
simulate is defined on some probability space with measu
P . Let Q be some other measure on the same probabili
space such thatP is absolutely continuous relative toQ.
One can then express

α(u) = EQ
(
I (A(u))

dP

dQ

)
,

wheredP/dQ is called the likelihood-ratio and subscript
Q indicates that the expectation is with respect to th
new measureQ. In importance sampling one generates the
sample paths under theQmeasure, computes the likelihood-
ratio in each case and estimatesα(u) by the sample mean
of the I (A(u))(dP/dQ)’s. The underlying idea is that
the event that is rare underP is not rare underQ and in
order to get an unbiased estimator we have to multiply th
estimator by some correction factor, which turns out to b
the likelihood-ratio.

As mentioned in Section 1, for subexponential distri-
butions one may use hazard rate twisting (HR) where th
new distribution is given by (1). The density corresponding
to Fθ is given by

fθ (x) = (1− θ)λ(x)e−(1−θ)3(x). (10)

For X1 with densityf , HR leads to a likelihood-ratio of
f (X1)/fθ (X1) and an unbiased estimator forP(X1+· · ·+
Xn >) is given by

n∏
i=1

f (Xi)

fθ (Xi)
I (X1+ · · · +Xn > u)

= (1− θ)−ne−θ
∑n
i=13(Xi)I (X1+ · · · +Xn > u).
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Under some mild regularity conditions, for the choice
of

θ ≡ θu = 1− c

3(u)
, (11)

wherec is any positive constant, HR is proved to be a.o. fo
estimatingP(X1+· · ·+Xn > u) in Juneja and Shahabuddin
(1999).

Weighted delayed hazard rate twisting (WDHR) extend
HR by introducing a weighting parameterw and a delaying
parameterx?. The WDHR density is defined by

fθu,x?(x) =


f (x)
1+w for x ≤ x?,(
1− F(x?)

1+w
)

fθu (x)

F θu (x
?)

for x > x?.
(12)

If we let N be a geometrically distributed random variable
withP(N = n) = ρn(1−ρ) for n ≥ 0, then it is well-known
for the M/GI/1 queue that (see, e.g., Feller (1966))

P(W > u) = P(Y1+ · · · + YN ≥ u), (13)

where the sequence of i.i.d. random variables(Yi) are
distributed as the integrated tail of the service-time distr
bution. In Juneja and Shahabuddin (1999) it is proved th
for θu given by (11) and for certain choices ofx? ≡ x?u
andw (and under some mild regularity conditions), WDHR
is a.o. for estimatingP(Y1 + · · · + YN ≥ u). Unfortu-
nately, these results cannot be applied to the GI/GI/1 queu
since for non-Poisson arrivals, theYi ’s no longer have the
integrated-tail distribution of the service times, but anothe
distribution for which no explicit form is known in gen-
eral. Besides,P(N = n) = ρ̂n(1 − ρ̂) for n ≥ 0 and
someρ̂ for which again no explicit expression is known.
The techniques in Asmussen and Binswanger (1997) a
Asmussen, Binswanger and Hojgaard (2000) also rely o
(13) and hence are only applicable for M/GI/1 queues.

4 THE SIMULATION ALGORITHM

For the GI/GI/1 case, instead of using (13), we simulate th
waiting-time distribution by directly simulating the random
walk (Mn) defined in Section 2.1. We use WDHR for
the service times, i.e., use the densityfθu,x?u(x) with some
specifiedθu andx?u, to simulate the service times. We do
not apply any change of measure to the interarrival-tim
distribution. This requires some stringent conditions on th
choice ofx?u and unlike the case in Juneja and Shahabudd
(1999), requiresw to depend onu.

For any preselected asymptotic relative biasδ, we will
use the decomposition

α(u) = P(τ(u) ≤ k0(u))+ P(τ(u) > k0(u)),
1
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where

k0(u) = −a(u) logδ

µ
= − ρa(u) logδ

(1− ρ)E[X] . (14)

Using (6), it is easy to check that

P(τ(u) ≤ k0(u))

α(u)
→ 1− δ

as u → ∞. We will now show thatP(τ(u) ≤ k0(u))

may be estimated (work-normalized) a.o. using WDHR,
thus giving a (work-normalized) large set a.o. estimator for
α(u). Also note that selecting

k0(u) = −βa(u) logδ

µ
= − βρa(u) logδ

(1− ρ)E[X] (15)

gives us the flexibility required to fulfill Condition 3.3.
However, for ease of presentation we will useβ = 1.

An important question in using WDHR is the choice
of the importance sampling parametersθu, wu andx?u. For
reasons similar to those in Juneja and Shahabuddin (1999
we useθu given by the equation

θu = 1− 1

3(u)
. (16)

Furthermore, we usew = wu given by

wu = c1µ

a(u)
, (17)

where 0< c1 < 1 is some constant.
We will needF to satisfy the following assumption.
Assumption 3 The F(·) is such that there exists

some positive constantb satisfying

lim
u→∞

3(u)−b+1

wu
= 0.

(For instance, for the Weibull service times withF(x) =
1− exα , Assumption 3 holds with 1/α < b.) We then use
x?u satisfying

3(x?u) = b log3(u), (18)

whereb is the constant in Assumption 3. Note thatx?u goes
to infinity asu goes to infinity.

Finally, we will also need the following assumption,
which is satisfied by the commonly used subexponentia
distributions that are in the maximum domain of attraction of
the Gumbel distribution, like the Weibull and the lognormal
distribution.
).
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Assumption 4 TheF(·) has an auxiliary function
a(u) such that

a(u)x?u

u
→ 0 (u→∞).

The algorithm for estimatingP(W > u), using the
above given values ofθu, wu andx∗u is as follows:

Algorithm 4.1 “Weighted delayed hazard rate
twisting of the service times”

1. Draw i.i.d. samplesξ0, . . . , ξk from the interarrival
time distribution and i.i.d. samplesX0, . . . , Xk
using the densityfθu,x?u(x), wherek is the minimum

of k0(u) and inf
{
i :∑i

j=0(Xj − ξj ) > u
}
.

2. DefineZ by

Z = I
 k∑
j=0

(Xj − ξj ) > u

 k∏
i=0

f (Xi)

fθu,x?u(Xi)
.

3. An average of many independent samples ofZ is
an unbiased estimator forP(τ(u) ≤ k0(u)) which
is used as an estimator forP(W > u).

Under the given assumptions one can prove the followin
theorem.

Theorem 4.2 Algorithm 4.1 results in a work-
normalized large set asymptotically optimal estimator for
P(W > u) with γ (u) = P(τ(u) ≤ k0(u)), ε(u) =
P(τ(u) > k0(u)).

For the proof of the theorem we refer the reader to
Boots and Shahabuddin (2000).

5 EXPERIMENTAL RESULTS

In this section we present some experimental results u
ing Algorithm 4.1 (A4.1). We present results only for the
M/GI/1 queue, since for this case we can compare with acc
rate simulation estimates based on the Pollaczek-Khintchin
transformation (P-K) from Juneja and Shahabuddin (1999
We will also compare each case with the best known asym
totic approximation (AA) forP(W > u) given by (5).

We first use service times that are Weibull distributed. I
can easily be checked that this class of distributions satisfi
the assumptions in Section 4. For the experiments we assu
the service times to have the distribution 1−e−√x . We abort
a simulation, if more thank0(u) = max{−a(u) logδ/µ,50}
customers have arrived forδ = 0.001. We useb = 2.1,
consistent with Assumption 3.

The values of the other parameters used by the algorith
are given in Table 1. They were determined using a heurist
approach further detailed in Boots and Shahabuddin (2000
Note that for the general subexponential Weibull distribution
2
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Table 1: Values of the Parameters
u ρ = 0.25 ρ = 0.5 ρ = 0.75

100 wu = .1693, c1 = .56 wu = .0503, c1 = .50 wu = 0.0135, c1 = .41
x?u = 23.38 x?u = 23.38 x?u = 23.38

200 wu = .1185, c1 = .56 wu = .0364, c1 = .51 wu = 0.0105, c1 = .45
x?u = 30.95 x?u = 30.95 x?u = 30.95

400 wu = .0827, c1 = .55 wu = .0261, c1 = .52 wu = 0.0079, c1 = .47
x?u = 39.58 x?u = 39.58 x?u = 39.58

800 wu = .058, c1 = .55 wu = .0186, c1 = .53 wu = 0.0058, c1 = .49
x?u = 49.26 x?u = 49.26 x?u = 49.26
o
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(i.e., α 6= 1/2), it is difficult to compute the integrated-tail
distribution. This indicates that even for the M/GI/1 case
Algorithm 4.1 is easier to implement than the one in June
and Shahabuddin (1999), for service-time distributions f
which the integrated-tail distribution is difficult to compute
However, it is usually far less efficient in terms of simulatio
time.

The results from Juneja and Shahabuddin (1999) we
based on 10,000,000 replications, in order to get accurate
timates for comparison purposes. For A4.1, we use 300,0
replications for each simulation. The percentages after t
estimates are the relative half-widths of the 99%-confiden
intervals, i.e., the relative error of the estimate. The standa
effort of any simulation algorithm is defined as the varianc
per simulation replication times the CPU time per simula
tion replication. The numbers in the parenthesis besides
A4.1 estimator denote theefficiency ratiowhich is the ratio
of the standard effort of naive simulation and the standa
effort of A4.1. For naive simulation the standard effort i
estimated by using the estimate ofP(W > u) from A4.1 and
then using the formulaP(W > u)(1− P(W > u)) for the
variance per replication; for the CPU time per replicatio
we simulate the random walk up tok0 (as otherwise there
is a positive probability that the simulation may never end
without using importance sampling. The efficiency rati
may be interpreted as the number of times longer nai
simulation will need to run to achieve the same relativ
accuracy as simulation with the new algorithm. We hav
not given anyperformancecomparison with the algorithm
in Juneja and Shahabuddin (1999), as that algorithm c
only be used for the special case of M/GI/1 systems. T
number in the parenthesis besides the AA denote the re
tive bias of AA, i.e., 100%× |α̂(u)− αa(u)|/α̂(u), where
α̂(u) is the accurate simulation estimate from Juneja a
Shahabuddin (1999). Estimates in Table 2 for high valu
of ρ are not accurate for lowu and the given number of
simulation replications. This is also the case for P-K an
u = 400. However, for largeu the asymptotics take effect
and the accuracy improves. From Table 2 we also see t
for the given choice of run-lengths, AA is outperformed
Also there is no way to change the relative bias of AA
6
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in contrast one can increasek0 (to decrease the relative
bias) and run more simulation replications to improve the
simulation estimate.

We also conducted experiments using lognormal se
vice times that are reported in Boots and Shahabudd
(2000). It can be checked that this family of distributions
does not satisfy Assumption 3 . However, we still conjec
ture in Boots and Shahabuddin (2000) that the algorithm
is (work-normalized) large set a.o. and give an intuitive
argument in its support. The experimental results in Boot
and Shahabuddin (2000) also support that claim.
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