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ABSTRACT

This paper is focused on estimating the quality of the samp
mean from a steady-state simulation experiment with co
sideration of computational efficiency, memory requiremen
and statistical efficiency. In addition, we seek methods th
do not require knowing run lengtha priori. We develop
an algorithm of nonoverlapping batch means that is im
plemented in fixed memory by dynamically changing bot
batch size and number of batches as the simulation ru
The algorithm, denoted by DBM for Dynamic Batch Means
requires computation time similar to other batch means da
collection methods, despite its fixed memory requiremen
To achieve satisfactory statistical efficiency of DBM, we
propose two associated estimators,V̂T BM andV̂PBM , of the
variance of the sample mean and investigate their statisti
properties. Our study shows that the estimatorV̂PBM with
parameterw = 1 is, as a practical matter, better than th
other proposed estimators.

1 INTRODUCTION

Consider steady-state data{Y1, Y2, . . .} generated from a
stochastic simulation experiment for estimating the on
performance measureθ by θ̂ , where θ̂ is a function of
{Y1, Y2, . . . , Yn} and n is the run length. We discuss the
problem of determining the quality of̂θ from both the
practitioner’s and the researcher’s point of view.

A fundamental problem that the practitioner faces is ho
to determine the quality of the point estimatorθ̂ . In other
words, what would happen if the simulation experimen
were repeated with different random numbers. Usually th
variability of θ̂ , the sampling error, is measured by the
standard error of̂θ , ste(θ̂), or by its square, var(θ̂). Once
the standard error is estimated, it can be used to comput
confidence interval ofθ or a tolerance interval of F̂

θ
, or to

conclude how many digits of̂θ are meaningful (Song and
Schmeiser 1994).

From the practitioner’s point of view, a good solution
to the problem should meet the following three criteria.
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• Small storage requirements: Data storage eith
in random access memory (ram) or in disk spac
should require onlyO(1) space compared with
the sample size. Computation cost is free if th
practitioner does not need the results from th
simulation experiment immediately. Therefore, he
or she could run the simulation experiment as lon
as he or she desires without any restriction on ra
or disk space.

• Fast computation: The computation of estimator
should involve no more thanO(n) computation
time. Computationally intensive estimators, e.g
bootstrapping and jackknifing, are inappropriate t
use in steady-state simulation because time spe
in computing estimators could be used to genera
more observations from the simulation experimen

• Good statistical properties: An estimator, in term
of the mean-square-error (mse) criterion, shoul
have small bias and variance. For the confidenc
interval of θ , the commonly used criteria are the
probability of coverage, the expected length of th
the confidence interval, and the standard deviatio
of length of the confidence interval (Schmeise
1982).

Therefore, one of the primary tasks for a researcher
to develop procedures and estimators associated with
procedure to estimate var(θ̂) or ste(θ̂) that satisfy the three
solution criteria discussed above.

Often the performance measureθ is a population

mean E(Y ) and its associated point estimatorθ̂ = Yn =
n−1∑n

i=1 Yi , the sample mean. We focus on estimatin

the variance of the sample mean, var(Y n). Throughout this
paper, we use the mse criterion to measure the quality
a variance estimator of the sample mean.

This paper consists of two investigations: one is t
develop Dynamic Batch Means (DBM), an output-analys
procedure that meets the criteria discussed above; the ot
is to study two different types of variance estimators t
estimate var(θ̂) via DBM.
7
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The approach to develop DBM is by using Fish-
man’s idea of doubling batch sizes for Nonoverlappin
Batch Means (NBM), see Fishman (1978). NBM is
conceptually straightforward, dividing the observation
Y1, Y2, . . . , Yn into b batches each of which is of size
m. Therefore, theith batch consists of the observations
Y(i−1)m+1, Y(i−1)m+2, . . . , Yim for i = 1,2, . . . , b. Both
NBM and DBM transform the correlated observations into
fewer batch means that are approximately normal distribute
and uncorrelated. NBM and other batching methods as d
cussed in previous research literature, e.g., Pedrosa (199
requireO(n) space for the data storage. DBM uses only fi
nite memory, increases batch size dynamically as run leng
increases, and computes the variance of sample mean e
mates according to the value of current batch size. Sin
DBM requires onlyO(1) space for data storage andO(n)
computation time, practitioners can run their simulation
experiments via DBM as long as they desire without an
restriction on ram or disk space.

To estimate the variance of the sample mean via DBM
we may sometimes have the situation that the number
observations in the last batch is less than previous batch
For other output-analysis methods withO(n) space for data
storage, the partial batch becomes asymptotically insigni
cant as the run lengthn increases. For DBM, however, asn
increases, the batch size increases as well since DBM us
onlyO(1) space for data storage. The partial batch becom
important if the partial batch size is only a bit less than th
size of previous batches and the number of batches is sm
We consider two different types of variance estimators t
estimate the variance of sample mean: one that trunca
the partial batch, denoted bŷVTBM , and one that considers
the partial batch, denoted bŷVPBM .

This papers is organized as follows. In Section 2 w
review NBM and the quadratic-form coefficients of NBM
variance estimator. In Section 3, we propose DBM. In
Section 4 we develop and study two variance estimato
associated with DBM. We evaluate the performance of the
two estimators in Section 5.

2 BACKGROUND

We summarize background information about batchin
methods, especially for NBM and its quadratic-form es
timator. General background can be found in Law an
Kelton (1991).

2.1 Nonoverlapping Batch Means Methods

Batching is a classical methodology for estimating the sam
pling error of θ̂ . Several output-analysis methods base
on batching have been proposed, e.g., NBM by Conwa
(1963), Overlapping Batch Means (OBM) by Meketon and
Schmeiser (1984), and Standardized Time Series (STS)
Schruben (1983). NBM has some advantages over oth
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output-analysis methods. In addition to being easy to unde
stand and easy to implement, batch means can be exten
by analogy to estimators other than the sample mean, f
example the sample standard deviation (Schmeiser et

1990). We consider onlŷθ = Y , the sample mean of the
simulation output dataY1, Y2, . . . , Yn.

As discussed in Section 1, NBM divides the observation
Y1, Y2, . . . , Yn into b nonoverlapping batches, each of size
m (assuming for now thatn = bm). The NBM estimator

of var(Y n) is defined as

V̂(N) = m

n

b∑
i=1

(Y i,m − Yn)2
b − 1

, (1)

where theith nonoverlapping batch mean is

Y i,m = 1

m

m∑
k=1

Y(i−1)m+k, (2)

i = 1,2, . . . , b. Schmeiser (1982) suggests using ten t
thirty NBM batches if only two criteria for the confidence
interval procedure are considered: coverage probabili
and expected length. Song and Schmeiser (1995) a
Pedrosa (1994) consider mse for batch size. Goldsm
and Schmeiser (1997) discuss the computational efficien
NBM. The variance estimators of NBM requiresO(n) time
for computation andO(1) space for storage if the batch
sizem is known.

2.2 Quadratic-Form Estimators

Song and Schmeiser (1993) use the quadratic-form stru
ture to study the properties of different variance estimato
of the sample mean, e.g., NBM, OBM, and STS. To de
rive quadratic-form coefficients is straightforward but re
quires tedious algebra. This approach, however, provid
us intuition into an estimator by visualizing it through a
three-dimensional graph of the quadratic-form coefficient
As discussed in Song and Schmeiser (1993), for exam
ple, the quadratic-form argument is another way to sho
that the OBM estimator is asymptotically equivalent to the
classical-spectral estimator with Bartlett’s window (e.g.
Priestley (1981), p. 437–443). Also, these quadratic-form
coefficients can be used for computing the covariance
quadratic-form estimators numerically.

The NBM estimator of var(Y n) defined in Equation (1)
can be written as the quadratic form

V̂(N) =
n∑
i=1

n∑
j=1

q
(N)
ij YiYj , (3)
8



Yeh and Schmeiser

ch

e

t

ll,

g

for constant coefficientsq(N)ij . Song and Schmeiser (1993)

derive the quadratic-form coefficients for̂V(N) as

q
(N)
ij =

 n−2 if i = 1,2, . . . , n;
j = f (i), . . . , l(i),

−n−2(b − 1)−1 otherwise,
(4)

where l(i) = di/mem denotes the subscript of the last
observation in the batch that containsYi andf (i) = l(i)−
m+ 1 denotes the subscript of the first observation in th
batch that containsYi . For instance, ifn = 48 andm = 12,
then the first observation of the second batch isY13 and
the last observation of the second batch isY24. Therefore,
f (i) = 13 andl(i) = 24 for i = 13,14, . . . ,24.

Figure 1 shows the the cross-product coefficientsq
(N)
ij

for V̂(N). The horizontal plane consists of the subscriptsi

and j , where 1≤ i, j ≤ n, and the surface represents the
corresponding value ofq(N)ij . Based on whetheri andj are
from the same batch or not, NBM assigns all cross produc
within each batch the same positive weight and all cros
products outside the batches the same negative weight.
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Figure 1: NBM Quadratic-From Coefficientsq(N)i,j

for n = 48 andm = 12

3 DYNAMIC BATCH MEANS

In this section, we propose and discuss the Dynamic Batc
Mean (DBM) method, which requires only finite memory,
even whenn is not knowna priori. DBM is an updating

procedure for the cumulative statistics to estimate var(Y n).

3.1 The DBM Method

The key idea of developing DBM is collapsing a vector. In
general-purpose computer languages, e.g. C, the obser
tions from simulation are stored in a vector. For DBM, a
practitioner needs to specify the size of the vector wher
the observations are stored: 2k wherek is a positive integer.
A nonoverlapping batch sum, by analogy, is a componen
of the vector or a cell. Instead of keeping each individua
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observation, DBM stores the sum of observations for ea
batch. DBM is called each time that a new observationyn
is generated from a simulation experiment. Whenever th
vector is full DBM collapses these 2k cells intok cells. The
idea of collapsing a vector in DBM is illustrated in Fig 2.
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Figure 2: The Idea of Collapsing in DBM

Let A be the vector of size 2k where DBM stores
batch sums. LetA[c] be the current cell where DBM stores
the latest observation, wherec = 1, . . . ,2k, and letp be
the number of observations stored in thec-th cell, where
p = 1, . . . , m. The DBM algorithm is

To updateA with the new observationyn, given k.

Initially, before y1, p = 1, m = 1, c = 0.

Step 1 If thec-th cell has room (p < m), thenp← p+1
and go to Step 4.

Step 2 If the vector has room (c<2k), then 2.a.
Else 2.b.

2.a Increment the current cell,c← c + 1.
2.b Collapse the vector. Initialize the curren

cell c and double the batch sizem.

(1) For ( i = 1, . . . , k)
A[i] ← A[2i − 1] + A[2i];

(2) c← k + 1 andm← 2m.

Step 3 Initialize the value ofp and the sum stored in
the current cell,
p← 1 andA[c] = 0.

Step 4 Add the new observationyn in the current cell,
A[c] ← A[c] + yn.

Step 5 Return.

DBM adds a new observation in the current cell if the
number of observations contained in the current cell,p, is
less than the full-batch sizem, indicating the vector is not
full. As long as thec-th cell contains the same number of
observations as the full-batch size and the vector is fu
DBM collapses theses 2k cells intok cells. After collapsing
the vector, DBM updates the full-batch size by doublin
the previous value.
39
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3.2 Discussion

Rather than obtaining the state variables,c,p, andm, directly
from the program, DBM could compute these values b
usingn andk alone. Given the values ofn andk, the values
of m, c, andp are also determined. Form, its value is
determined by

m = 2dlog2
n
k
e−1, (5)

wherem = 1,2,4,8,16, . . .. Given the value ofm from
Equation (5), the current batch is

c = d n
m
e, (6)

where c = 1, . . . ,2k. From Equations (5) and (6), the
number of observations in the current batch is

p = n− (c − 1)m, (7)

wherep ∈ {1, . . . , m}. Conversely, the observation number
can be computed usingn = (c − 1)m+ p.

As mentioned previously, a practitioner needs to specif
the size of the vector, 2k, before using DBM. For DBM, once
the number of observationsn is determined, the number
of DBM batches,c, is determined by Equations (5) and
(6). The value for the number of DBM batches is betwee
k and 2k if n > k. The number of batches for NBM
Schmeiser citeschmeiser82 suggested can be applied
DBM since DBM is NBM in essence. He suggests usin
ten to thirty NBM batches for the reasons discussed
Section 2. The value ofk we suggest for DBM is between
ten and fifteen, so that the number of DBM batches is i
the range from ten to thirty.

For a fixed value ofk, therefore, DBM meets the first
two criteria discussed in Section 1, i.e.,O(1) storage and
O(n) computation time.

The reason we use the idea of doubling batch siz
instead of tripling batch size or a higher rate is to reduc
the potential wasting of degrees of freedom. Doubling batc
size is more statistically efficient. In the case ofn = 12
andk = 3, using the idea of doubling batch size creates s
batches each of size two. On the other hand, using triplin
batch size creates only four batches each of size three.

DBM can be applied for analyzing outputs from a
simulation experiment with the initial-transient problem by
combining existing methods for the initial-transient prob
lem, e.g. initial-data truncation. As long as we decide th
truncation point, we start to use DBM after the truncation
point. DBM can be also applied for analyzing outputs with
out combining the methods for the initial-transient problem
since we can run a simulation experiment via DBM as lon
as we desire. As simulation run lengthn increases, the batch
size in DBM increases. Therefore, the initial bias become
asymptotically negligible. Nevertheless, we consider onl
6
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steady-state simulation throughout this paper because th
statistical performances of variance estimators for DBM are
more tractable.

4 ESTIMATING VARIANCE OF
THE SAMPLE MEAN VIA DBM

Given the information about the vectorA and its state

variables,c, p, andm from DBM, the sample meanYn is
obtained by

∑c
i=1A[i]/n. Thei-th batch mean is obtained

by Y i = A[i]/m for i = 1,2, . . . , c − 1 and the last-batch
mean in DBM is obtained byY c = A[c]/p. As n increases,
the full-batch sizem also increases. Practitioners may end
up with the situation that the last-batch sizep is relatively
large. We propose and study two estimatorV̂T BM andV̂PBM
to estimate var(Y n) when the number of observations in the
last batch is not the same as previous full batches.

4.1 Definition of V̂T BM and V̂PBM

The estimator̂VTBM of var(Y n) is defined as

V̂T BM = (bm
n
)

∑b
i=1(Y i,m − Ybm)2
b(b − 1)

, (8)

whereb is the number of full batches,b = c− 1+bp/mc,
Y i,m denotes thei-th nonoverlapping batch mean, andYbm
denotes the sample mean ofY1, . . . , Ybm. The right fraction

in Equation (8) is the classical NBM estimator of var(Y km),
which does not consider the final partial batch. Ifp = m,

Equation (8) is equivalent to the NBM estimator of var(Y n).
The left fraction in Equation (8) is a correction factor;

asymptotically the variance ofYn over the variance of

Ybm is (bm)/n. If the batch means are asymptotically
uncorrelated then the correction factorbm/n is equal to the

asymptotic ratio of the variance ofYn to the variance of

Ybm. In other words,

lim
n→∞

n

bm

var(Y n)

var(Y bm)
= 1, wherebm ≤ n. (9)

The estimator̂VPBM of var(Y n) is defined as

V̂PBM=
∑c−1
i=1(Y i,m − Yn)2+ ( pm)w(Y c,p − Yn)2
(c − 1)(c − 2+ ( pm)w−1+ p

m)
, (10)

wherew ≥ 0, c is the number of batches stored in DBM,
p is the partial-batch size, andm is the full-batch size.
In Equation (10), we use the function(p/m)w to weight
variance of the batch mean for the partial batch compared
40
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to variance of the batch mean for the full batch, which is
weighted to one.

The estimator̂VTBM can be rewritten as the quadratic
form

q
(T )
ij =



bm

n3 if i = 1,2, . . . , bm

andj = f (i), . . . , l(i),
−bm

n3(b − 1)
if i = 1,2, . . . , bm− 1

andj = l(i)+ 1, . . . , bm,

0 otherwise,

(11)

where f (i) and l(i) are defined in Section 2. These
quadratic-form coefficients are similar to those quadratic
form coefficients of the classical NBM estimator in Equa-
tion (4). One can simply multiply the quadratic-form co-
efficients in Equation (4) by(bm)/n to get the result in
Equation (11) becausêVTBM considers the partial batch but
truncates it. Therefore,̂VTBM weights zeros to those data
in the final partial batch.

The estimator̂VPBM can be rewritten as the quadratic
form

q
(P )
ij =



(c + p/m− 2)2+ c − 2
(c − 1+ p/m)2m2+ (p/w)w

(c + (p/m)w−1+ p/m− 2)(c − 1)
if i = 1,2, . . . , (c − 1)m

andj = f (i), . . . , l(i);
−c + 1− 2p/m+ (p/w)w

(c − 1+ p/m)2m2

(c + (p/m)w−1+ p/m− 2)(c − 1)
if i = 1,2, . . . , (c − 1)m− 1

andj = l(i)+ 1, . . . , (c − 1)m;
(c − 1)p2+ (c − 1)2(p/m)wm2

(c − 1+ p/m)2m2p2

(c + (p/m)w−1+ p/m− 2)(c − 1)
if i = (c − 1)m+ 1, . . . , n

andj = (c − 1)m+ 1, . . . , n;
−(c − 1)(p/m)wm− p2/m

(c − 1+ p/m)2m2p

(c + (p/m)w−1+ p/m− 2)(c − 1)
if min(i, j) = 1,2, . . . , (c − 1)m

and max(i, j) = (c − 1)m+ 1, . . . , n,

(12)

wheref (i) andl(i) are defined in Section 2. The first part of
q
(P )
ij is the quadratic coefficient when both the observation
Yi andYj are in the same full batch. The second part o

q
(P )
ij is the quadratic coefficient when both the observation
Yi and Yj are in different full batches. The third part of

q
(P )
ij is the quadratic coefficient when the observations i

which bothYi andYj are in the partial batch. The fourth

part of q(P )ij is the quadratic coefficient when one of the
64
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observations is in a full batch and the other is in the parti
batch.

To get some intuition for the estimatorŝVTBM and
V̂PBM , we can view them through three-dimensional graph
q
(T )
ij or q(P )ij versusi andj . Using Equations (11) and (12),

we viewV̂T BM andV̂PBM through three-dimensional graphs
q
(T )
ij and q(P )ij versusi and j . From Figure 3 we see the

missing partial batch in̂VTBM . From Figures 4–5, we can
see how the quadratic-form coefficients ofV̂PBM change by
setting different value ofw. As w approaches infinity, the
three-dimensional graphs ofq(P )ij become almost identical

to the three-dimensional graph ofq(T )ij except for those

q
(T )
ij ’s within the partial batch. Comparing Figure 2 with

Figure 3, we see hoŵVN andV̂T BM weights differently on
the edges of the three-dimensional graphs.
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Figure 3: Graph of the Quadratic-Form Coeffi-
cients of V̂T BM , q(T )i,j with a Half Partial Batch:
n = 54, b = 4, andm = 12
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Figure 4: Graph of the Quadratic-Form Coeffi-
cients ofV̂PBM , q(P )i,j , with a Half Partial Batch
andw = 1, n = 54, c = 5, andm = 12
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Figure 5: Graph of the Quadratic-Form Coeffi-
cients ofV̂PBM , q(P )i,j , with a Half Partial Batch
andw = 3, n = 54, c = 5, andm = 12
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Figure 6: Graph of the Quadratic-Form Coeffi-
cients ofV̂PBM , q(P )i,j , with a Half Partial Batch
andw = 50, n = 54, c = 5, andm = 12

4.2 Statistical Properties ofV̂T BM and V̂PBM

For IID data,V̂T BM and V̂PBM are unbiased (Yeh 1999).
The estimator̂VTBM is biased in general, however, and the
bias of V̂PBM is not tractable.

Result 4.1 If full-batch means are uncorrelated,
then

var(V̂T BM) = m2σ 4(m)

n2b
(α4(m)− b − 3

b − 1
), (13)

whereα4(m) is the kurtosis of a full-batch mean andσ 2(m)

is the variance for the distribution of a full-batch mean,Y i ,
a function ofm and in turn a function ofn.

Proof: From Wilks (1962) p. 200, we have

var(

∑b
i=1(Y i,m − Ybm)2
b(b − 1)

) = σ 4(m)

b3 (α4(m)− b − 3

b − 1
).
64
Therefore,

var(V̂T BM) = (bm)2

n2 var(

∑b
i=1(Y i,m − Ybm)2
b(b − 1)

)

= b2m2σ 4(m)

n2b3 (α4(m)− b − 3

b − 1
)

= m2σ 4(m)

n2b
(α4(m)− b − 3

b − 1
).

Pedrosa (1994) shows that under certain sufficient con
ditions the variance of the OBM estimator,̂V (O), can be
approximated as

var(V̂ (O)) ≈ 2 R2
0 γ0

2

 n∑
i=1

n∑
j=1

(q
(O)
ij )2

 , (14)

whereR0 = var(Yi) and γ0 = ∑∞h=−∞ ρh, andρh is the
lag-h autocorrelation. Similar results still hold for̂V (N).
That is,

var(V̂ (N)) ≈ 2 R2
0 γ0

2

 n∑
i=1

n∑
j=1

(q
(N)
ij )2

 . (15)

The variance ofV̂PBM can be computed by Equa-
tion (15) sinceV̂PBM is just a variant of̂V (N). We apply
golden section search to find that the variance ofV̂PBM is
minimal whenw = 1 in several different cases. To verify
this statement visually, we generate several graphs of th
variance V̂PBM with different partial-batch sizes. From
Figures 7–10, the variance of̂VPBM is minimized when
w = 1. Whenp = m, the variance of̂VPBM is constant
regardless of the value ofw. Forp = m, (p/m)w = 1 and
therefore the variance of̂VPBM is the same for allw ≥ 0.
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Figure 7: Variance of̂VPBM as a Function
of w for n=2049,c=3,m=1024,p=1,R0=1
andγ0=1
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Figure 8: Variance of̂VPBM as a Function of
w for n=2560,c=3,m=1024,p=512,R0=1
andγ0=1
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Figure 9: Variance of̂VPBM as a Function
of w for n=3071, c=3, m=1024, p=1023,
R0=1 andγ0=1
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Figure 10: Variance of̂VPBM as a Function
of w for n=3072, c=3, m=1024, p=1024,
R0=1 andγ0=1

In the case of dependent data, however, the bias
V̂PBM is not easy to derive. We show empirically in the
next section thatw = 1 works well for dependent, as well
as independent, data.

In DBM, the number of full batchesb is bouncing
betweenk and 2k as n increases. Therefore, the limiting
6

of

value ofn2b var(V̂T BM) does not exist. Equations (16) and
(17), however, provide asymptotic upper bound and lowe
bounds onn2b var(V̂T BM).

Asymptotically α4(m) → 3 and mσ 2(m) → R0γ0.
Becausek ≤ b ≤ 2k, Equation (13) implies

lim sup
n→∞

n2b var(V̂T BM) = R0
2γ 2

0 (3−
k − 3

k − 1
) (16)

and

lim inf
n→∞ n2b var(V̂T BM) = R0

2γ 2
0 (3−

2k − 3

2k − 1
). (17)

Another interesting property of the asymptotic value o
n2b var(V̂T BM) is that the fractions 3− (k − 3)/(k − 1)
and 3− (2k− 3)/(2k− 1) in Equations (16) and (17) have
some connections to the classical NBM estimator,V̂ (N).
Goldsman and Meketon (1986) show that the classical NBM
estimator has following property:

lim
n→∞ n

2b var(V̂ (N)) = R0
2γ 2

0 cv (18)

if b → ∞ as n → ∞, where the variance constantcv =
2. Comparing to the fractions 3− (k − 3)/(k − 1) and
3 − (2k − 3)/(2k − 1) in Equations (16) and (17), the
fractions approach 2 ask goes to infinity. The value ofk in
DBM, however, is fixed. Therefore, the variance constan
for var(V̂T BM) is bouncing between 3− (k−3)/(k−1) and
3−(2k−3)/(2k−1). In other words, asymptoticallŷVTBM
in DBM is not as efficient as the classical NBM estimator
V̂ (N). The variance of̂VPBM exhibits similar behaviors.

5 COMPARISON OF V̂T BM AND V̂PBM FOR
DEPENDENT AND NON-NORMAL DATA

In Section 4, we propose two variance estimators,V̂T BM and
V̂PBM , and study some of their statistical properties. The
performances of these estimators are, however, unknown
more realistic situations. The question of which estimato
practitioners should use in practice is considered here.

To compare the DBM variance estimatorŝVTBM and
V̂PBM in more-general situations, we examine them usin
non-normal and autocorrelated data, AR(1) and EAR(1
(Schmeiser and Song 1989). We empirically compare th
performances of̂VTBM and V̂PBM and conclude that, as
a practical matter,̂VPBM with w = 1 is the mse-optimal
variance estimator. We discuss the design of the Mon
Carlo experiments and present the results next.

5.1 The Monte Carlo Experiment

The purpose of this empirical study is to compare the
performance of̂VTBM andV̂PBM in a more realistic situation
and to see how mse changes asw, k, φ and the marginal
43
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distributions change. The results for̂VTBM and V̂PBM are
presented in terms of squared bias, variance and mse.

At each of the design points, two processes are sim
lated: AR(1) withφ = 0.85 and EAR(1) withφ = 0.85.
These two processes for each design point are initialized fro
the appropriate steady-state distribution. The sample size
n = 1153. Six estimators,̂VPBM with w = 0.5,1,2,10,50
andV̂T BM , are compared. The DBM parameterk we choose
in the Monte Carlo experiments is between 2 and 80. Ta
ble 1 gives the associatedk value with full-batch sizem,
number of full batchesc−1, and partial-batch sizep when
n = 1153.

Table 1: The Relationship of Number of Full
Batchesc−1, Full-Batch Sizem, and Partial-
Batch Sizep, for k = 2 to 80 withn = 1153

k c − 1 m p

2 2 512 129
3 to 4 4 256 129
5 to 9 9 128 1

10 to 18 18 64 1
19 to 36 36 32 1
37 to 72 72 16 1
73 to 80 144 8 1

The results are based on 50 independent micr
replications within 60 independent macro-replications a
each design point. Common random numbers are used.

all cases, var(Y n) = 1. Therefore, the degenerate estimato
V̂ = 0, which is dimensionless, has bias= 1, var(V̂ ) = 0,
and mse= 1.

5.2 MSE of V̂T BM and V̂PBM

The numerical studies in Yeh (1999) demonstrate that th
mse ofV̂PBM with w = 1 is better than the mse of̂VPBM
with w other than 1. Here, we usew = 1 for V̂PBM and
compare it toV̂T BM in this section.

As a practical matter,̂VPBM with w = 1 is better than
V̂T BM . Fork relatively small, the mse of̂VPBM with w = 1
is much smaller than the mse of̂VTBM . Even a tiny partial
batch helps to reduce more variance than squared bias
introduced. Ask increases, mse of̂VPBM with w = 1
does not dominatêVTBM but is close to the mse of̂VTBM .
As shown in Figures 11 and 12, the estimatorV̂PBM with
w = 1 is often best whenk is small and is close to the
best whenk is large. The amount by whicĥVPBM with
w = 1 loses, in practice, is insignificant. Because we wan
to setk small, the estimator̂VPBM with w = 1 is the best
estimator.

The results of AR(1) are similar to the results of EAR(1
even though the marginal distributions are different. By th
central limit theorem, batch means converge to the norm
distribution as batch size becomes large. Therefore, t
similarity between the results is no surprise.
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Figure 11: MSE ofV̂T BM and V̂PBM with
w = 1 for AR(1) with φ = 0.85
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Figure 12: MSE ofV̂T BM and V̂PBM with
w = 1 for EAR(1) with φ = 0.85

6 CONCLUSION

We conclude that DBM is a method that satisfies all three
desired properties. For small storage requirement, most o
the algorithms requireO(n) storage; DBM requires only
finiteO(1) storage and does not require knowing run length
a priori. For fast computation, in respect to computational
efficiency, no algorithm can estimate the variance of the
sample mean in less thanO(n) time; DBM requiresO(n)
computation time. For good statistical properties, we con-
clude that the variance estimator̂VPBM with w = 1, as a
practical matter, is the best estimator for use with DBM.
Based on analytical and experimental comparisons with the
powerw of V̂PBM and with V̂T BM , the estimator̂VPBM
with w = 1 provides a good mse performance in general.

The estimatorV̂PBM with w = 1 could be applied
in NBM as well whenever there exists a partial batch.
Including the information contained in the partial batch
improves statistical efficiency.
4
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