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ABSTRACT

This paper is focused on estimating the quality of the sample
mean from a steady-state simulation experiment with con-
sideration of computational efficiency, memory requirement,
and statistical efficiency. In addition, we seek methods that
do not require knowing run lengta priori. We develop

an algorithm of nonoverlapping batch means that is im-

plemented in fixed memory by dynamically changing both

batch size and number of batches as the simulation runs.

The algorithm, denoted by DBM for Dynamic Batch Means,
requires computation time similar to other batch means data-
collection methods, despite its fixed memory requirement.
To achieve satisfactory statistical efficiency of DBM, we
propose two associated estimatdrs gy andVppyy, of the
variance of the sample mean and investigate their statistical
properties. Our study shows that the estimatpg,, with
parameterw = 1 is, as a practical matter, better than the
other proposed estimators.

1 INTRODUCTION

Consider steady-state dat#i, Y, ...} generated from a
stochastic simulation experiment for estimating the only
performance measure by 6, whereé is a function of
{Y1,Yo,...,Y,} andn is the run Iengtrl. We discuss the
problem of determining the quality of from both the
practitioner’s and the researcher’s point of view.

Small storage requirements: Data storage either
in random access memory (ram) or in disk space
should require onlyO(1) space compared with
the sample size. Computation cost is free if the
practitioner does not need the results from the
simulation experiment immediately. Therefore, he
or she could run the simulation experiment as long
as he or she desires without any restriction on ram
or disk space.

Fast computation: The computation of estimators
should involve no more tham (n) computation
time. Computationally intensive estimators, e.g.,
bootstrapping and jackknifing, are inappropriate to
use in steady-state simulation because time spent
in computing estimators could be used to generate
more observations from the simulation experiment.
Good statistical properties: An estimator, in terms
of the mean-square-error (mse) criterion, should
have small bias and variance. For the confidence
interval of 6, the commonly used criteria are the
probability of coverage, the expected length of the
the confidence interval, and the standard deviation
of length of the confidence interval (Schmeiser
1982).

Therefore, one of the primary tasks for a researcher is
to develop procedures and estimators associated with the
procedure to estimate @) or stg#) that satisfy the three

Afundamental problem that the practitioner facesis how Solution criteria discussed above.

to determine the quality of the point estimator In other

Often the performance measure is a population

words, what would happen if the simulation experiment mean EY) and its associated point estimator= Y, =
were repeated with different random numbers. Usually the n—1 Y ' 1Y, the sample mean. We focus on estimating

variability of 9, the sampling error, is measured by the ine variance of the sample mean, @&r). Throughout this

standard error of, stg®), or by its square, vap). Once

paper, we use the mse criterion to measure the quality of

the standard error is estimated, it can be used to compute a5 \ariance estimator of the sample mean.

confidence interval of or a tolerance interval ofél? or to

conclude how many digits af are meaningful (Song and
Schmeiser 1994).

From the practitioner’s point of view, a good solution
to the problem should meet the following three criteria.
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This paper consists of two investigations: one is to
develop Dynamic Batch Means (DBM), an output-analysis
procedure that meets the criteria discussed above; the other
is to study two different types of variance estimators to
estimate vaw) via DBM.
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The approach to develop DBM is by using Fish-
man’s idea of doubling batch sizes for Nonoverlapping
Batch Means (NBM), see Fishman (1978). NBM s
conceptually straightforward, dividing the observations
Y1,Ys,...,Y, into b batches each of which is of size
m. Therefore, theth batch consists of the observations
Yi-tm+1, Yi-vm+2, -, Yim fOr i = 1,2,....b. Both Asdiscussed in Section 1, NBM divides the observations
NBM and DBM transform the correlated observations into y, y, ..., Y, into b nonoverlapping batches, each of size
fewer batch means that are approximately normal distributed ,,; (assuming for now that = bm). The NBM estimator
and uncorrelated. NBM and other batching methods as dis- =, .
cussed in previous research literature, e.g., Pedrosa (1994),Of var(¥,) is defined as
requireO (n) space for the data storage. DBM uses only fi-

output-analysis methods. In addition to being easy to under-
stand and easy to implement, batch means can be extended
by analogy to estimators other than the sample mean, for
example the sample standard deviation (Schmeiser et al.

1990). We consider onlﬁz Y, the sample mean of the
simulation output datd, Y2, ..., Y,.

b —_— =
nite memory, increases batch size dynamically as run length gm " Z Yim —Ya)? 1)
increases, and computes the variance of sample mean esti- n = b—1
mates according to the value of current batch size. Since
DBM requires onlyO (1) space for data storage aiitin) where theith nonoverlapping batch mean is
computation time, practitioners can run their simulation
experiments via DBM as long as they desire without any . 1z
restriction on ram or disk space. Yim == Y Dmiks 2
To estimate the variance of the sample mean via DBM, =1

we may sometimes have the situation that the number of ) _
observations in the last batch is less than previous batches.! = 1.2, ...,b. Schmeiser (1982) suggests using ten to
For other output-analysis methods with(n) space for data Fh|rty NBM batches if only two criteria for the confldencg
storage, the partial batch becomes asymptotically insignifi- interval procedure are considered: coverage probability
cant as the run lengthincreases. For DBM, however, as and expected Iength.. Song and Schme|§er (1995) and
increases, the batch size increases as well since DBM usesPedrosa (1994) consider mse for batch size. Goldsman
only O (1) space for data storage. The partial batch becomes and Schmeiser (1997) discuss the computational efficiency

important if the partial batch size is only a bit less than the
size of previous batches and the number of batches is small.
We consider two different types of variance estimators to

estimate the variance of sample mean: one that truncates

the partial batch, denoted @BM, and one that considers
the partial batch, denoted B¥p g, .

This papers is organized as follows. In Section 2 we
review NBM and the quadratic-form coefficients of NBM
variance estimator. In Section 3, we propose DBM. In
Section 4 we develop and study two variance estimators
associated with DBM. We evaluate the performance of these
two estimators in Section 5.

2 BACKGROUND

We summarize background information about batching
methods, especially for NBM and its quadratic-form es-
timator. General background can be found in Law and
Kelton (1991).

2.1 Nonoverlapping Batch Means Methods

Batching is a classical methodology for estimating the sam-
pling error of 8. Several output-analysis methods based
on batching have been proposed, e.g., NBM by Conway
(1963), Overlapping Batch Means (OBM) by Meketon and
Schmeiser (1984), and Standardized Time Series (STS) by
Schruben (1983). NBM has some advantages over other
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NBM. The variance estimators of NBM requiréqn) time
for computation andO (1) space for storage if the batch
sizem is known.

2.2 Quadratic-Form Estimators

Song and Schmeiser (1993) use the quadratic-form struc-
ture to study the properties of different variance estimators
of the sample mean, e.g., NBM, OBM, and STS. To de-
rive quadratic-form coefficients is straightforward but re-
quires tedious algebra. This approach, however, provides
us intuition into an estimator by visualizing it through a
three-dimensional graph of the quadratic-form coefficients.
As discussed in Song and Schmeiser (1993), for exam-
ple, the quadratic-form argument is another way to show
that the OBM estimator is asymptotically equivalent to the
classical-spectral estimator with Bartlett's window (e.g.,
Priestley (1981), p. 437-443). Also, these quadratic-form
coefficients can be used for computing the covariance of
guadratic-form estimators numerically.

The NBM estimator of vaiy,,) defined in Equation (1)
can be written as the quadratic form

n n

T =33,

i=1j=1

®3)
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for constant coefficientql.(]m. Song and Schmeiser (1993) observation, DBM stores the sum of observations for each

derive the quadratic-form coefficients fof) as batch. DBM is called each time that a new observatipn
is generated from a simulation experiment. Whenever the
n—2 fi=12 . . .n vector is full DBM collapses these Zells intok cells. The
qi(j{v) _ J=f@), ..., 1), (4) idea of collapsing a vector in DBM is illustrated in Fig 2.

—n~2(b-1)"1 otherwise . —
where [(i) = [i/m]m denotes the subscript of the last
observation in the batch that contaitisand f (i) = (i) —
m + 1 denotes the subscript of the first observation in the
batch that contain®;. For instance, ifi = 48 andm = 12, s/ -
then the first observation of the second batclvis and
the last observation of the second batclyig. Therefore, T 2 3 4 s P 21z
f@) =13 andi(i) = 24 fori =13 14, ...,24.

Figure 1 shows the the cross-product coefficie;#@

for V™. The horizontal plane consists of the subscripts
and j, where 1< i, j < n, and the surface represents the

; (N) . .
corresponding value of;;"’. Based on whetherand j are Let A be the vector of size &2 where DBM stores

from the same batch or not, NBM assigns all cross products ,5ich sums. Leti[¢] be the current cell where DBM stores
within each batch the same positive weight and all cross he |atest observation. where= 1. .... 2k. and letp be

products outside the batches the same negative weight.  {ha number of observations stored in #wh cell, where
p=1,...,m. TheDBM algorithm is

Figure 2: The Idea of Collapsing in DBM

To updateA with the new observation,, givenk.
Initially, beforey1, p=1,m=1,¢=0.

Step 1 Ifthec-th cellhasroomg < m), thenp < p+1
and go to Step 4.

Step 2 If the vector has roone & 2k), then 2.a.
Else 2.b.

2.a Increment the current cell,« ¢ + 1.
2.b  Collapse the vector. Initialize the current
Figure 1: NBM Quadratic-From Coefficienys’ cell ¢ and double the batch size.
for n = 48 andm = 12 Q) For(i=1,...,k)
Ali] < A[2i — 1]+ A[2i];
(2) c<«<k+1andm < 2m.

3 DYNAMIC BATCH MEANS I .
Step 3 Initialize the value op and the sum stored in

the current cell,

In this section, we propose and discuss the Dynamic Batch
: lon, We prop IScd yham p < 1andA[c] = 0.

Mean (DBM) method, which requires only finite memory, L
even whem is not knowna priori. DBM is an updating Step4  Add the new observatigp in the current cell,
= Alc] < Alcl + yu.

procedure for the cumulative statistics to estimate¥ay. Step 5 Return.

3.1 The DBM Method DBM adds a new observation in the current cell if the
) ) ) , number of observations contained in the current gellis
The key idea of developing DBM is collapsing a vector. In  |ggs than the full-batch size, indicating the vector is not
general-purpose computer languages, e.g. C, the observayy - as ong as thec-th cell contains the same number of
tions from simulation are stored in a vector. For DBM, &  opservations as the full-batch size and the vector is full,
practitioner needs to specify the size of the vector where ppg\ collapses thesestZells intok cells. After collapsing

the observations are storedt ®herek is a positive integer. the vector, DBM updates the full-batch size by doubling
A nonoverlapping batch sum, by analogy, is a component previous value.

of the vector or a cell. Instead of keeping each individual
639



Yeh and Schmeiser

3.2 Discussion

Rather than obtaining the state variables;, andm, directly
from the program, DBM could compute these values by
usingn andk alone. Given the values efandk, the values

of m, ¢, and p are also determined. For, its value is
determined by

m = 2M10% §1-1 (5)
wherem = 1,2,4,8,16,.... Given the value ofn from
Equation (5), the current batch is

n
c=1[—1, (6)

m
wherec = 1,...,2k. From Equations (5) and (6), the
number of observations in the current batch is

p=n—(c—1m, @)

wherep € {1, ..., m}. Conversely, the observation number
can be computed using= (¢ — 1)m + p.

As mentioned previously, a practitioner needs to specify
the size of the vector A2 before using DBM. For DBM, once
the number of observations is determined, the number
of DBM batches,c, is determined by Equations (5) and

(6). The value for the number of DBM batches is between
k and % if n > k. The number of batches for NBM

steady-state simulation throughout this paper because the
statistical performances of variance estimators for DBM are
more tractable.

4 ESTIMATING VARIANCE OF
THE SAMPLE MEAN VIA DBM

Given the information about the vectof and its state
variables,c, p, andm from DBM, the sample meaif, is
obtained by {_, A[i]/n. Thei-th batch mean is obtained
by Y; = Ali]/m fori =1,2,...,c —1 and the last-batch
mean in DBM is obtained by, = A[c]/p. Asn increases,
the full-batch sizen also increases. Practitioners may end
up with the situation that the last-batch sigés relatively
large. We propose and study two estimatpg , andVp gy

to estimate vay,,) when the number of observations in the
last batch is not the same as previous full batches.

4.1 Definition of V7 gy and Vpgay

The estimatorf/}gM of var(?,,) is defined as

Z?:l(yi,m - me)z

b(b — 1) ’ ®)

~ bm
Vrgm = (—)
n

whereb is the number of full batche$,= ¢ — 1+ [p/m],
Y. denotes thé-th nonoverlapping batch mean, arig,

Schmeiser citeschmeiser82 suggested can be applied fordgenotes the sample mean¥f ... ., ¥,,. The right fraction

DBM since DBM is NBM in essence. He suggests using
ten to thirty NBM batches for the reasons discussed in
Section 2. The value of we suggest for DBM is between
ten and fifteen, so that the number of DBM batches is in
the range from ten to thirty.

For a fixed value ok, therefore, DBM meets the first
two criteria discussed in Section 1, i.€(1) storage and
O(n) computation time.

The reason we use the idea of doubling batch size
instead of tripling batch size or a higher rate is to reduce
the potential wasting of degrees of freedom. Doubling batch
size is more statistically efficient. In the casemf= 12
andk = 3, using the idea of doubling batch size creates six
batches each of size two. On the other hand, using tripling
batch size creates only four batches each of size three.

DBM can be applied for analyzing outputs from a
simulation experiment with the initial-transient problem by
combining existing methods for the initial-transient prob-
lem, e.g. initial-data truncation. As long as we decide the
truncation point, we start to use DBM after the truncation
point. DBM can be also applied for analyzing outputs with-
out combining the methods for the initial-transient problem
since we can run a simulation experiment via DBM as long
as we desire. As simulation run lengtlincreases, the batch
size in DBM increases. Therefore, the initial bias becomes
asymptotically negligible. Nevertheless, we consider only
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in Equation (8) is the classical NBM estimator of (),
which does not consider the final partial batch.plt= m,

Equation (8) is equivalent to the NBM estimator of ¢&).
The left fraction in Equation (8) is a correction factor;

asymptotically the variance of, over the variance of

Ypm iS (bm)/n. If the batch means are asymptotically
uncorrelated then the correction factor /» is equal to the

asymptotic ratio of the variance df, to the variance of
Ypm. In other words,

. var(Y
lim 14 = 1, wherebm <n. (9)
100 DM viar(Y 1)
The estimatoﬁpBM of var(?,,) is defined as
13 T 2. (P 7 \2
‘7PBM: Z§=1(Yi,m - Yn) + (m)w(Yc,p - Yn) 7 (10)

(€= D=2+ v+ i)

wherew > 0, ¢ is the number of batches stored in DBM,
p is the partial-batch size, ana is the full-batch size.

In Equation (10), we use the functiaqp/m)™¥ to weight
variance of the batch mean for the partial batch compared



Yeh and Schmeiser

to variance of the batch mean for the full batch, which is
weighted to one. _

The estimatoVy gy, can be rewritten as the quadratic
form

%"; if i =1,2,...,bm
andj = f(@),...,1@),
(1) _ —bm o
qij = m |fl—1,2,...,bm—1 (11)
andj =1@G)+1,...,bm,
0 otherwise
where f(i) and [(i) are defined in Section 2. These

guadratic-form coefficients are similar to those quadratic-
form coefficients of the classical NBM estimator in Equa-
tion (4). One can simply multiply the quadratic-form co-
efficients in Equation (4) bybm)/n to get the result in
Equation (11) becausér g considers the partial batch but
truncates it. Therefore/; gy weights zeros to those data
in the final partial batch.

The estimatoVp gy, can be rewritten as the quadratic
form

(c+p/m—2)2+c—2

(c =14 p/m)°m® + (p/w)”
(c+ (p/m" 1+ p/m—2)(c—1
fi=212...,(c—Dm
andj = f(@i),...,10);

—c+1-2p/m+ (p/w)”
(c — 1+ p/m)°m?
(c+ (p/m"+ p/m —2)(c—1)
fi=212...,c—Dm-1
andj =1G@)+1,...,(c—Dm;
(c = Dp®+ (c = D*(p/m)*m?
(c—1+ p/m)zmzp2

(c+ (p/m" L+ p/m—2)(c—1
fi=C—-1Dm+1,....,n
andj=(c—1m+1,...,n;

—(c = D(p/m)"m — p?/m

(c—1+ p/m)zmzp

(c+ (p/m"+ p/m—2)(c—1)
ifminG j)=212,...,(c—1m
and maxi, j) = (c—Lm+1,...,n,

P~

q; 12)

wheref (i) andi (i) are defined in Section 2. The first part of
ql.(jP) is the quadratic coefficient when both the observations
Y; andY; are in the same full batch. The second part of

ql.(jP) is the quadratic coefficient when both the observations

Y; andY; are in different full batches. The third part of

ql.(.P) is the quadratic coefficient when the observations in

wﬁich bothY; andY; are in the partial batch. The fourth
part ofq(P) is the quadratic coefficient when one of the

ij
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observations is in a full batch and the other is in the partial
batch. R

__ To get some intuition for the estimatoférzy and
Vppum, We can view them through three-dimensional graphs
ql.(jT) or ‘L)'(ZP) versus and;j. Using Equations (11) and (12),
we viewVr gy andeBM through three-dimensional graphs
ql.(jT) and qi(f) versusi and j. From Figure 3 we see the
missing partial batch iﬁTBM. From Figures 4-5, we can
see how the quadratic-form coefficientsigf g, change by
setting different value ofv. As w approaches infinity, the

three-dimensional graphs quP ) become almost identical

to the three-dimensional graph quT) except for those

g s within the partial batch. Comparing Figure 2 with

Figure 3, we see h0\A7N and ?TBM weights differently on
the edges of the three-dimensional graphs.

Figure 3: Graph of the Quadratic-Form Coeffi-

cients ofVTBM, ql.(,T.) with a Half Partial Batch:
n =54 b=4 andm =12

60 O

Figure 4: Graph of the Quadratic-Form Coeffi-
cients of Ve, ql.(i), with a Half Partial Batch
andw =1,n=54,¢=5, andm = 12
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Figure 5: Graph of the Quadratic-Form Coeffi-

cients of Vp BM> ql( with a Half Partial Batch
andw = 3, n_54c_5 andm = 12

60 O

Figure 6: Graph of the Quadratic-Form Coeffi-

cients of Vpgu, ¢! ql , with a Half Partial Batch
andw = 50, n_54c—5 andm = 12

4.2 Statistical Properties of Vrgy and Vpguy

For 11D data, Vrpy and Vppy are unbiased (Yeh 1999).

The estlmatorVTBM is biased in general, however, and the
bias of VpBM is not tractable.

Result 4.1 If full-batch means are uncorrelated,
then
~ m264(m)
var(Vrpy) = T(‘M(m) - m) (13)

whereas(m) is the kurtosis of a full-batch mean and(m)
is the variance for the distribution of a full-batch mean,
a function ofm and in turn a function of:.

Proof: From Wilks (1962) p. 200, we have

o%(m) b—3
b3 (0l4(m)—b—l)

Z?:l(?i,m - ?bm)z

var(
bb-1)

) =
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Therefore,
- L om2 Y (Vi — Vm)?
var(Vrgm) = ) var( b(b—l) )
B bZ 4(m)
= T( a(m )——)
26%(m) b—3
= T(azl(m) - m)

Pedrosa (1994) shows that under certain sufficient con-
ditions the variance of the OBM estimatdr,(?’, can be

approximated as
} (14)

where Rg = var(Y;) andyo = Y ;2 pn, and p, is the
lag- autocorrelation. Similar results still hold for (™.
That is,

var(V (@) ~ 2 R2 y? {Z Y @)

i=1j=1

var(VM)y ~ 2 R2 yo? {Z Y @ 2} . (15)

i=1;=1

The varlance oprBM can be computed by Equa-
tion (15) sinceVpgy is just a variant ofV ™), We apply
golden section search to find that the vanancé/png is
minimal whenw = 1 in several different cases. To verify
this statement visually, we generate several graphs of the
variance VPBM with different l)artlal -batch sizes. From
Figures 7-10, the variance dppy is minimized when
w = 1. Whenp = m, the variance ofVpg, is constant
regardless of the value af. For p = m, (p/m)” =1 and
therefore the variance dfp gy, is the same for allv > 0.

variance

0 05 1 15 2 25 3 35 4 45 5

w

Figure 7: Variance oﬂ7pBM as a Function
of w for n=2049,c=3, m=1024, p=1, Ro=1
andyp=1
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A value ofn2b var(VTBM) does not exist. Equations (16) and
1 (17), however, provide asymptotic upper bound and lower
bounds om?2b var(Vrpu).
Asymptotically as(m) — 3 and mo2(m) — Royo.
] Becausek < b < 2k, Equation (13) implies

variance

1 lim supnzb var(VTBM) Ro? Y5 23— —) (16)
ul n—>0o0o
1 and
10 0‘5 ‘1 1‘5 ‘2 2‘.5 C‘i 3.‘5 4‘! A‘S 5 . . o~ 2k —_ 3
w liminf n?b var(Vrgy) = Ro*VEB — =——).  (17)
n—00 2k—1

Figure 8: Variance oF’p 5, as a Function of

w for n=2560,c=3, m=1024, p=512, Ro=1 Another interesting property of the asymptotic value of
and yo=1 n2b var(Vrpy) is that the fractions 3- (k — 3)/(k — 1)

and 3— (2k — 3)/(2k — 1) in Equations (16) and (17) have
some connections to the classical NBM estimatof).
Goldsman and Meketon (1986) show that the classical NBM
estimator has following property:

1

1k

1k

lim n?b var(V")) = Ro?yéc, (18)

n—o0

variance

if b — oo asn — oo, where the variance constanf =

2. Comparing to the fractions 3 (k — 3)/(k — 1) and

3 —(2k — 3)/(2k — 1) in Equations (16) and (17), the

fractions approach 2 d@sgoes to infinity. The value df in

T T T DBM, however, is fixed. Therefore, the variance constant
W for var(Vrpy) is bouncing between-3 (k —3)/(k — 1) and

Figure 9: Variance ofVpgy) as a Function 3—(2k—3)/(2k—1). In other words, asymptoticallyy g

of w for n=3071, ¢c=3, m=1024, p=1023, in DBM is not as efficient as the classical NBM estimator

Ro=1 andyp=1 V) The variance olVp g, exhibits similar behaviors.

e — 5 COMPARISON OF Vygy AND Vpgy FOR
] DEPENDENT AND NON-NORMAL DATA

1 In Section 4, we propose two variance estimatﬁfsBM and

1 Veem, and study some of their statistical properties. The
performances of these estimators are, however, unknown in
] more realistic situations. The question of which estimator

variance

practitioners should use in practice is considered here.
To compare the DBM variance estimatdrsz,, and
Vepm In more-general situations, we examine them using

L non-normal and autocorrelated data, AR(1) and EAR(1)
Sy s (Schmeiser and Song 1989). We empirically compare the
performances oﬁ/TBM and Vpgy and conclude that, as
a practical matteryppy with w = 1 is the mse- optimal
variance estimator. We discuss the design of the Monte
Carlo experiments and present the results next.

Figure 10: Variance oV as a Function
of w for n=3072, ¢=3, m=1024, p=1024,
Ro=1 andyp=1

In the case of dependent data, however, the bias of
Vpsy is not easy to derive. We show empirically in the
next section thatv = 1 works well for dependent, as well
as independent, data.

In DBM, the number of full batche$ is bouncing
betweenk and Z asn increases. Therefore, the limiting

643

5.1 The Monte Carlo Experiment

The purpose of this empirical study is to compare the
performance o¥; g3 andVp gy in @amore realistic situation
and to see how mse changeswask, ¢ and the marginal
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distributions change. The results ffzme and VPBM are
presented in terms of squared bias, variance and mse. ”
At each of the design points, two processes are simu- 15
lated: AR(1) with¢ = 0.85 and EAR(1) with¢ = 0.85. iy
These two processes for each design point are initialized from
the appropriate steady-state distribution. The sample size is
n= 1153 Six estlmators/pBM withw = 0.5, 1, 2, 10, 50
andVTBM, are compared. The DBM parametare choose
in the Monte Carlo experiments is between 2 and 80. Ta-
ble 1 gives the associatddvalue with full-batch sizen,
number of full batches — 1, and partial-batch size when
n = 1153.

TBM
—  PBMw=1]| |

mse

L L L L L L L
10 20 30 40 50 60 70 80

Table 1: The Relationship of Number of Full k
Batches:—1, Full-Batch Sizen, and Partial- Figure 11: MSE ofVypy and Vpgy with
Batch Sizep, for k = 2 to 80 withn = 1153 w = 1 for AR(1) with ¢ = 0.85

k c—1| m p

2 2 512 | 129

. .
- TBM
——  PBMw=1| |

3to4 4 256 | 129
5t09 9 128 | 1
10to 18| 18 64
19to 36| 36 32
37to 72| 72 16
73 to 80| 144 8

R R R e

The results are based on 50 independent micro-
replications within 60 independent macro-replications at
each design point. Common random numbers are used. In

all cases, val,) = 1. Therefore, the degenerate estlmator k

V =0, which is dimensionless, has biasl, varV) = Figure 12: MSE of Vrgy and Vpgy with

and mse= 1. w = 1 for EAR(1) with ¢ = 0.85

5.2 MSE of Vrgy and Vegy 6 CONCLUSION

The numerical studies in Yeh (1999) demonstrate that the we conclude that DBM is a method that satisfies all three
mse of Vpgu with w = 1 is better than the mse ofppm desired properties. For small storage requirement, most of
with w other than 1. Here, we use = 1 for Vprpy and the algorithms require) (n) storage; DBM requires only
compare it toVr gy in this section. _ finite O (1) storage and does not require knowing run length
__ As apractical matteryppy with w = 1is better than 3 priori. For fast computation, in respect to computational
Vrpu. Forkrelatively small, the mse dfppy with w = 1 efficiency, no algorithm can estimate the variance of the
is much smaller than the mse & 5),. Even a tiny partial sample mean in less thai(n) time; DBM requiresO (n)
batch helps to reduce more variance than squared bias it computation time. For good statistical properties, we con-
introduced. Ask increases, mse ofpgy with w = 1 clude that the variance estimatdppy with w = 1, as a
does not dominat&’r 5, but is close to the mse 6fr g practical matter, is the best estimator for use with DBM.
As shown in Figures 11 and 12, the eStlmaWBM with Based on analytical and experimental comparisons with the
w = 1 is often best whert is small and is close to the  power w of Vpgy and with Vrgy, the estimatorVp gy

best whenk is large. The amount by whicWppy with with w = 1 provides a good mse performance in general.
w = 1 loses, in practice, is insignificant. Because we want The estimatorVppy with w = 1 could be applied

to setk small, the estimatoVpy with w =1 is the best iy NBM as well whenever there exists a partial batch.
estimator. Including the information contained in the partial batch

The results of AR(1) are similar to the results of EAR(1)  improves statistical efficiency.
even though the marginal distributions are different. By the
central limit theorem, batch means converge to the normal
distribution as batch size becomes large. Therefore, the
similarity between the results is no surprise.
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