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ABSTRACT criteria: (a) it is narrow enough to be informative, and (b)

its actual coverage probability is close to the nominal level
We summarize the results of an extensive experimental per- 1 — «.
formance evaluation of selected batch means procedures In the simulation analysis method of nonoverlapping
for building a confidence interval for a steady-state ex- batch means (NOBM), the sequence of simulation-generated
pected simulation response. We compare the performanceoutputs{X; : i = 1,...,n} is divided into k adjacent
of the well-known ABATCH and LBATCH procedures ver-  nonoverlapping batches, each of size For simplicity, we
sus ASAP, a recently proposed variant of the method of assume that is a multiple of m so thatn = km. The
nonoverlapping batch means (NOBM) that operates as fol- sample mean for thgth batch is
lows: the batch size is progressively increased until either
(a) the batch means pass the von Neumann test for indepen- 1 mj
dence, and then ASAP delivers a classical NOBM confi- Yj(m)=— Z X; forj=1...k (1)
dence interval; or (b) the batch means pass the Shapiro-Wilk M iem(—D+1
test for multivariate normality, and then ASAP delivers a
correlation-adjusted confidence interval. The latter correc- and the grand mean of the individual batch means,
tion is based on an inverted Cornish-Fisher expansion for
the classical NOBM-ratio, where the terms of the expan- _ 1
sion are estimated via an autoregressive—moving average Y =Y(m k)= k Z Yj(m), 2)
time series model of the batch means. Applying ABATCH, j=1
ASAP, and LBATCH to the analysis of a suite of twenty _ .
test problems involving discrete-time Markov chains, time- IS used as an estimator fpry (note thaty (m, k) = X (n)).
series processes, and queueing systems, we found ASAPWG seek to construct a Cl centered on the estimator (2)
to deliver confidence intervals that not only satisfy a user- If the batch sizen is sufficiently large so that the batch
specified absolute or relative precision requirement but also means{Y;(m) : 1 < j < k} are approximately independent
frequently outperform the corresponding confidence inter- and identically distributed (i.i.d.) normal random variables
vals delivered by ABATCH and LBATCH with respect to ~ With meanux, then we can apply a classical result from

coverage probability. statistics (see, for example, Steiger and Wilson 1999) to
compute a confidence interval fary from the batch means.

1 INTRODUCTION The sample variance of the batch means for batches of
sizem is

In discrete-event simulation, we are often interested in es-

timating the steady-state meary of a stochastic output 2 _ 1
process{X; : i > 1} generated by a single, though long, mk T 1
simulation run. Assuming the target process is stationary
and given a time series of lengtHfrom this process, we see
that a natural estimator @fyx is the sample mean, given by
X(n)=n"1 > ' 1 Xi. We also require some indication of
this estimator’s precision; and typically a confidence inter-
val (CI) for ux is constructed at a certain confidence level Ym, k) + M a/21 Sm.k 4)

1—a, where O< « < 1. The ClI forux should satisfy two vk
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[¥;(m) — Y(m, b)]°. 3)

k
=1

J

As m — oo with k fixed so that: — oo, an asymptotically
valid 1001 — «)% confidence interval fopyx is
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NOBM procedures address the problem of determining
the batch sizesm, and the number of batcheg, that
are required to satisfy approximately the assumptions of
independence and normality of the batch means. If these
assumptions are exactly satisfied, then we will obtain Cls
whose actual coverage probability is exactly equal to the
nominal coverage probability. In this paper we present
results of an experimental performance evaluation of ASAP, a
new NOBM procedure for analysis of steady-state simulation
output, versus the well-known NOBM procedures ABATCH
and LBATCH (Fishman 1996; Fishman and Yarberry 1997;
Fishman 1998). A brief overview of ASAP is given in the
next section; a more complete description may be found in
Steiger and Wilson (2000b).

2 OVERVIEW OF ASAP

ASAP requires the following user-supplied inputs:

1. a simulation-generated output procgss : j =
1,2,...,n} from which the steady-state expected
responseuy is to be estimated,;

a confidence coefficient specifying that the de-
sired confidence-interval coverage probability is
1—¢;and

an absolute or relative precision requirement spec-
ifying the final confidence-interval half-length in
terms of (a) a maximum absolute half-lengit,

or (b) a maximum relative fraction* of the mag-
nitude of the final grand mean.

ASAP delivers the following outputs:

1. anominal 100l — «)% confidence interval fopr x

having the form

Y+ H where H<H* or H<r*Y|, (5
provided no additional simulation-generated obser-
vations are required;

a new total sample size to be supplied to the
algorithm.

If additional observations of the target process must be
generated by the user’s simulation model before a confidence
interval with the required precision can be delivered, then
ASAP must be called again with the additional data; and this
cycle of simulation followed by analysis may be repeated
several times before ASAP finally delivers a confidence
interval.

On each iteration of ASAP, the algorithm operates as
follows. The simulation outputs are divided into a fixed

number of batches (namely, 96 batches); and batch means
are computed. The first two batches are discarded, and the

remaining 94 batch means are tested for independence. If
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the test for independence fails, then the batch means are
tested for joint multivariate normality. If the normality test
fails, then the batch size is increased by a factoy/@fand
the process is repeated until one of the tests is passed.
Upon acceptance of either the hypothesis of indepen-
dence or the hypothesis of joint multivariate normality of the
batch means, a Cl is constructed—either the usual NOBM
Cl (4) (in the case of acceptance of independence) or a
correlation-adjusted CI (6) (in the case of acceptance of
multivariate normality). The correlation correction uses an
inverted Cornish-Fisher expansion (Hall 1983; Kendall, Stu-
art and Ord 1987; Chien 1989) of the classical NOBM Stu-
dentz-ratio [Y (m*, k*) — /Lx]/[Sm*’k*/«/k—*]; and the terms
of this expansion are estimated by fitting an autoregressive—
moving average time-series model (Box, Jenkins and Rein-
sel 1994) to the final set of* batch means for batches
of sizem™*. Based on this approach, a correlation-adjusted
100(1 — @)% confidence interval fopy is

)

kp—1
2

K4
=)t 54%1-a/2

8

Y(m*, k) £ |:Zl—c(/2 (1 -

VarlY (m*)]
— (6)
wherex, andig4 respectively denote estimators of the second
and fourth cumulants of the usual NOBM Studesratio
and\7a\r[Y(m*)] denotes an estimator of the variance of the
batch means—and all these statistics are based on fitting a
time-series model to the (correlated) batch means process.

Subsequent iterations of ASAP that are performed to
satisfy the user-specified precision requirement (if there is
one) do not repeat testing for independence or multivari-
ate normality of the overall set of batch means. These
subsequent iterations require additional sampling, comput-
ing the additional batch means, and reconstructing the Cl,
again discarding the first two batches of the overall data set
(consisting of all original observations plus any additional
observations required by ASAP). Successive iterations of
ASAP continue until the precision requirement is met.

A flow chart of ASAP is depicted in Figure 1. A
formal algorithmic statement of ASAP is given in Steiger
and Wilson (2000b). A standalone Windows-based version
of ASAP and a user’'s manual are available in Steiger and
Wilson (2000c).

3 PERFORMANCE EVALUATION FOR
SELECTED NOBM PROCEDURES

To evaluate the performance of ASAP with respect to the
coverage probability of its confidence intervals, the mean
and variance of the half-length of its confidence intervals,
and its total sample size, we applied ASAP together with the
ABATCH and LBATCH algorithms (Fishman 1996, Fish-
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Figure 1: Flow Chart of ASAP

man and Yarberry 1997) to a suite of twenty test problems. to construct nominal 90% confidence intervals that satisfy
This suite includes some standard problems used for test- three different precision requirements:
ing simulation output analysis procedures, some problems

which more closely resemble real-world applications, and (@) no precision requirement—that is, we continued
some problems possessing characteristics which we believe the simulation of each test problem until ASAP
will stress any output analysis procedure—namely, a pro- delivered a confidence interval based on 94 batches
nounced, slowly decaying correlation structure or markedly of the size at which the batch means passed either
nonnormal marginal distributions (or both). Included in the statistical test for independence or the test
our twenty test problems are the fourteen stochastic mod- for multivariate normality without considering a
els that Law and Carson (1979) used to test their batch precision requirement;

means algorithm. In this section we summarize the results (b) +15% precision—that is, we continued the simu-
of our experimentation on nine of the test problems. The lation of each test problem until ASAP delivered
steady-state mean response is available analytically for each a confidence interval (5) that satisfied the relative
of these test problems; thus we were able to evaluate the precision requirement with* = 0.15; and
performance of ABATCH, ASAP, and LBATCH in terms (c) +7.5% precision—that is, we continued the sim-
of actual versus nominal coverage probabilities for the con- ulation of each test problem until ASAP delivered
fidence intervals delivered by each of these procedures. a confidence interval (5) that satisfied the relative
Experimental results for the eleven remaining test problems precision requirement with* = 0.075.

are not presented here because they contribute little addi- o ]
tional insight into the relative performance of the algorithms. Since ABATCH and LBATCH do not explicitly determine

See Steiger (1999) for complete details on the experimental @ Sample size, we passed to the ABATCH and LBATCH
performance evaluation for all twenty test problems. algorithms the same data sets used by ASAP. Based on all

For each test problem to be simulated, we performed OUr computational experience with ASAP, we believe that

100 independent replications of each batch means procedureth€ results given below are typical of the performance of
ASAP that can be expected in many practical applications.

For a number of reasons elaborated in §3.1.3, it is not clear
629
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that a similar statement can be made about ABATCH and
LBATCH; nevertheless, the results given below do provide
an arguably fair basis for comparing the performance of
ABATCH, LBATCH, and ASAP. Since each confidence
interval with a nominal coverage probability of 90% was

especially in the cases of no precision requirement and a
precision requirement a£15%. For this model, ASAP de-
livered correlation-adjusted Cls based on a nonsignificant
result from the test for multivariate normality (that is, the
batch means passed the Shapiro-Wilk test for multivariate

replicated 100 times, the standard error of each coverage normality) on all 100 replications of ASAP. The Cls from

estimator is approximately 0.03. As explained below, this
level of precision in the estimation of coverage probabilities
turns out to be sufficient to reveal significant differences in
the performance of ASAP versus ABATCH and LBATCH
on many of the test problems.

3.1 Results for Selected Test Problems

3.1.1 Discrete-Time Markov Chain

The first test problem consists of a cost function defined on a
simple two-state discrete-time Markov chain (DTMC) whose

one-step transition probability matrix and cost function are,
respectively,

0 02)9 o<1)1 0 1
P=1<0:01 d99) and h= (5 10). )

The results for this problem are summarized in Table 1.

Table 1: Performance of Batch-Means Procedures for the
2-State DTMC Defined by (7) Based on 100 Independent
Replications of Nominal 90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAPT
NO PRECISION
avg. sample size 3036
coverage 70% 85% 96%
avg. rel. precision 0.069 0.086 0.159
avg. ClI half-length 0.515 0.642 1.20
var. Cl half-length 0.009 0.012 0.172
+15% PRECISION
avg. sample size 5171
coverage 72% 81% 96%
avg. rel. precision 0.060 0.070 0.120
avg. Cl half-length 0.045 0.053 0.906
var. Cl half-length 0.011 0.010 0.023
+7.5% PRECISION
avg. sample size 22711
coverage 81% 86% 99%
avg. rel. precision 0.034 0.038 0.059
avg. Cl half-length 0.253 0.284 0.438
var. Cl half-length 0.003 0.003 0.006

tNo. of classical and adjusted Cls generated by ASAP: 0 and
100, respectively.

ASAP showed somewhat better confidence-interval cov-
erage than did ABATCH and LBATCH in the case of the
two-state Markov chain (7) with high positive correlation,
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ASAP are wider than those from ABATCH and LBATCH,
which is necessary for the improved coverage. However,
the coefficient of variation of the CI half-lengths delivered
by ASAP are smaller than those delivered by LBATCH and
ABATCH.

3.1.2 Autoregressive Process

We also applied ABATCH, LBATCH, and ASAP to an au-
toregressive process of order one—that is, an AR(1) process
given by

Xi=pux +o(Xi—1— ux) + € for i=12,..., (8)
where |¢p| < 1 and theg;’s are i.i.d. normal with mean
zero and variancere2 so that theX;’s have meamy and
variances2 = 02/(1 — ¢?). To ensure that (8) defines a
stationary process, we todk ~ N (uy, 0)2(). This process
also has a geometrically declining positive autocorrelation
function; but among the highly correlated processes tested,
this process exhibits the most rapid convergence to the
desired property of normally distributed batch means since
in fact the batch means are exactly multivariate normal for
every batch size (Kang and Schmeiser 1987). We present
the AR(1) process as a test problem for which all three batch
means algorithms performed well at small batch sizes. For
our simulations, we chose = 0.9, Zg ~ N(2.0,5.263
ande; ~ N(0, 1); and this implies the steady-state mean
ux = 2.0. Table 2 summarizes the experimental results for
this test problem.

3.1.3 Queueing Systems

We applied ABATCH, LBATCH, and ASAP to the waiting
time process in thé4/M /1 queue with server utilization

7 = 0.9 and an empty-and-idle initial condition. This is a
particularly difficult test problem for several reasons: (a)
the initialization bias is large and decays relatively slowly
(Wilson and Pritsker 1978); (b) in steady-state operation the
autocorrelation function of the waiting time process decays
very slowly with increasing lags; and (c) in steady-state
operation the marginal distribution of waiting times has
an exponential tail and is therefore markedly nonnormal.
Because of these characteristics, we can expect slow conver-
gence to the classical requirement that the batch means are
independent and identically normally distributed. This test
problem most dramatically displays one of the advantages
of the ASAP algorithm—namely, that ASAP does not rely
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Table 2: Performance of Batch-Means Procedures for
the AR(1) Process (8) witlp = 0.9 anduy = 2.0
Based on 100 Independent Replications of Nominal
90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH  ASAPYt
NO PRECISION
average sample size 1624
coverage 84% 86% 93%
avg. rel. precision 0.180 0.198 0.228
avg. CI half length 0.351 0.387 0.446
var. Cl half length 0.002 0.005 0.006
+15% PRECISION
average sample size 5862
coverage 88% 88% 93%
avg. rel. precision 0.104 0.107 0.123
avg. CI half length 0.208 0.212 0.244
var. Cl half length 0.001 0.001 0.001
+7.5% PRECISION
average sample size 24860
coverage 87% 88% 91%
avg. rel. precision 0.053 0.054 0.059
avg. ClI half length 0.106 0.108 0.118
var. ClI half length 0.0003] 0.0003 0.0003

tNo. of classical and adjusted Cls generated by ASAP: 2 and
98, respectively.

solely on the von Neumann (1941) test for independence.
In fact, in 96 out of 100 replications of the procedure, ASAP
delivered correlation-adjusted Cls of the form (6).

As can be seen from Table 3, ASAP substantially outper-
forms ABATCH and LBATCH for the case of no precision
requirement. As we demand more precision, we are of
course forced to perform more sampling. For the precision
requirement of+7.5%, the three algorithms gave similar
results. This suggests that ABATCH and LBATCH will give
satisfactory results if these procedures are supplied with an
adequate amount of data; however, ABATCH and LBATCH
provide no mechanism for determining the amount of data
that should be used. A desirable feature of ASAP is that
it usually determines a sample size sufficient to yield ac-
ceptable results, even when no precision requirement is
specified.

Table 4 displays the additional results obtained through
standalone application of LBATCH and ABATCH to waiting
times in theM /M /1 queue witht = 0.9 when LBATCH
and ABATCH operate with a stopping rule based on a user-
specified precision requirement for the final confidence in-
terval. We began the experiments for these systems with

Table 3: Performance of Batch-Means Procedures for
the M/M/1 Queue Waiting Time Process with= 0.9
Based on 100 Independent Replications of Nominal 90%
Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAPT
NO PRECISION
avg. sample size 7719
coverage 44% 60% 83%
avg. rel. precision 0.202 0.301 1.088
avg. Cl half-length 1.70 2.67 11.8
var. Cl half-length 0.683 3.92 523.0
+15% PRECISION
avg. sample size 298950
coverage 79% 80% 88%
avg. rel. precision 0.061 0.069 0.089
avg. Cl half-length 0.543 0.613 0.783
var. Cl half-length 0.027 0.039 0.082
+7.5% PRECISION
avg. sample size 815755
coverage 88% 90% 94%
avg. rel. precision 0.039 0.043 0.046
avg. Cl half-length 0.353 0.382 0.413
var. Cl half-length 0.012 0.039 0.018

tNo. of classical and adjusted Cls generated by ASAP: 4 and
96, respectively.

quirement was not satisfied, then we calculated an estimate
of the number of additional observations needed to satisfy
the precision requirement, we generated the additional ob-
servations, and we executed LBATCH or ABATCH again
with all of the observations accumulated so far. This pro-
cess was repeated until the final Cl delivered by LBATCH
or ABATCH satisfied the precision requirement. Although
LBATCH and ABATCH were not necessarily designed to
be used in this way, we believe that this stopping rule is a
natural approach to planning steady-state simulations and
that the results in Table 4 provide a more complete perspec-
tive on the relative performance of LBATCH and ABATCH
versus ASAP. Since our applications of ABATCH and
LBATCH were completely automated in order to perform
100 replications of each procedure, we did not manually
analyze the convergence of the sample estimators delivered
by LBATCH and ABATCH on each application of these
procedures along the lines suggested in Fishman (1998). We
believe that the results of Tables 3 and 4 highlight the per-
formance advantages achieved by ASAP without requiring
analysis or manual intervention by the user.

From Table 4 we see that in the/M/1 queue with

a sample size of 1536 (the same sample size required for T = 0.9, if LBATCH and ABATCH are run until a certain

the first iteration of ASAP). We then applied a stopping
rule similar to the one used for ASAP. After we performed
the simulation with an initial run length of 1536 observa-
tions, we applied the precision requirement to the final Cl
constructed by LBATCH or ABATCH. If the precision re-
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precision requirement is met, coverage is severely degraded,
especially when the precision requirement is so “loose" that
it leads to relatively little additional sampling. Note that the
sample sizes in Table 4 are much smaller than those required
by ASAP to achieve the same precision. For example, the
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Table 4: Performance of LBATCH and Table 5: Steady-State Expected Waiting Time in Se-
ABATCH under a Relative Precision Re- lected Queueing Systems
quirement forM /M /1 QueueW|th:. = (_)'9 System Utilization t | Expected Waiting
Based on 100 Independent Replications of Time
Nominal 90% Confidence Intervals M/M/1 0.9 9.00
Precision Procedure M/M/1 LIFO 0.8 3.20
Requirement LBATCH ABATCH M/M/1 SIRO 0.8 3.20
NO PRECISION M/M/1/M/1 0.8 6.40
avg. sample size 1536 1536
coverage 35% 54%
avg. rel. precision 0.204 0.338 Table 6: Performance of Batch-Means Procedures for the
avg. Cl half-lengtn ~ 1.648 2.882 M/M/1 LIFO Queue Waiting Time Process with= 0.8
var. Cl half-length 0.552 4.250 Based on 100 Independent Replications of Nominal 90%
+15% PRECISION Confidence Intervals
avg. sample size 34349| 50910 Precision Procedure
coverage 65%|  77% Requirement | LBATCH ABATCH ASAPt
avg. rel. precision 0.121 0.125 NO PRECISION
avg. Cl half-length  .1.071 1.080 avg. sample size 5025
var. Cl half-length 0.0513 0.0336 coverage 72% 75% 72%
+7.5% PREC|S_|ON avg. rel. precision 0.209 0.223 0.210
avg. sample size | 227987 397387 avg. Cl half length| ~ 0.645|  0.693 0.652
coverage 80% 81% var. Cl half length | 0.070  0.113 0.074
avg. rel. precision 0.062 0.062 115% PRECISION
avg. Cl half-length 0.551 0.553 avg. sample size 14317
var. ClI half-length 0.005 0.007 coverage 80% 81% 77%
avg. rel. precision 0.135 0.143 0.119
average sample size used by ABATCH for the waiting time avg. ClI half length 0.426 0.451 0.372
process in théf/M /1 queue with utilizatiorr = 0.9 and a var. CI half length 0.009 0.013 0.004
precision requirement af£7.5% is approximately 397,387. +7.5% PRECISION
This is considerably less than the average sample size of | average sample size 57539
815,755 required by ASAP. For a precision requirement of coverage 86% 89% 82%
+7.5% and 90% confidence-interval coverage probability, gxg' E:el"h%‘:‘i'esr:‘;:‘h 0'%\3 8'%2 g'ggé
Whitt's (1989) approx!mathn for_estlmgtlng the requwed var. Cl half length NA 0.002 0.0006
run lengths of queueing simulations yields an estimated

tNo. of classical and adjusted Cls generated by ASAP: 92 and

sample size of 855,238 for the waiting time process in the g respectively.

M/M/1 queue witht = 0.9. This latter result suggests

that ASAP yields adequate sample sizes when a precision 10 replications of the algorithm, ASAP delivered classical
requirement is specified. . _ (unadjusted) Cls of the form (4).

Our experimental performance evaluation also included From Table 7 we see that for thé/M/1 SIRO queue
the eight queueing systems used by Law and Carson (1979).yith server utilizationr = 0.8, ASAP displayed better

In this paper we discuss the results obtained for three of coverages than LBATCH and ABATCH in the cases with
these queueing systems: (a) ##&'M/1 LIFO queue with no precision requirement and with a precision requirement
server utilizationz = 0.8; (b) the M/M/1 queue with of +£15%. With a precision requirement &f7.5%, ASAP,

service in random order (SIRO) and= 0.8; and (c) the LBATCH, and ABATCH all delivered coverage close to the
tandemM /M /1/M /1 queue withr = 0.8. The simulations nominal level.

of all queueing systems were sfcarted empty and idle. The From Table 8 we see that for thé/M/1/M/1 queue
steady-state expected waiting times for these systems are,yiih server utilizationr = 0.8, ASAP performed better than

given in Table 5. ABATCH and LBATCH for the no-precision requirement

From Table 6 we see that ASAP, ABATCH, and 4.4 forthe precision requirement.5%. With a precision
LBATCH performed similarly for thel/M/1 LIFO queue oqirement of-7.5%, ASAP, LBATCH, and ABATCH all
with 7 = 0.8, showing some evidence of undercoverage qgljivered coverage close to the nominal level.

for the no-precision requirement and for the precision re-
quirement of+15%. All the algorithms showed adequate
coverage for the precision requirementdof.5%. In 92 of
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Table 7: Performance of Batch-Means Procedures for the
M/M/1 SIRO Queue Waiting Time Process with= 0.8
Based on 100 Independent Replications of Nominal 90%
Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH  ASAPYt
NO PRECISION
avg. sample size 6481
coverage 66% 76% 88%
avg. rel. precision 0.168 0.199 0.264
avg. Cl half length 0.534 0.652 0.901
var. Cl half length 0.053 0.196 0.800
+15% PRECISION
average sample size 32544
coverage 81% 82% 92%
avg. rel. precision 0.093 0.102 0.115
avg. ClI half length 0.299 0.328 0.370
var. Cl half length 0.0064| 0.0092 0.0062
+7.5% PRECISION
average sample size 116925
coverage 86% 88% 86%
avg. rel. precision 0.054 0.054 0.056
avg. Cl half length 0.171 0.180 0.179
var. Cl half length 0.0015 0.0017 0.0009

tNo. of classical and adjusted Cls generated by ASAP: 29 and
71, respectively.

Table 8: Performance of Batch-Means Procedures for the
M/M/1/M/1 Queue Waiting Time Process with= 0.8
Based on 100 Independent Replications of Nominal 90%
Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAPT
NO PRECISION
avg. sample size 3152
coverage 65% 75% 85%
avg. rel. precision 0.162 0.222 0.454
avg. CI half length 1.053 1.476 3.250
var. Cl half length 0.119 0.585 14.06
+15% PRECISION
avg. sample size 46610
coverage 80% 80% 93%
avg. rel. precision 0.070 0.074 0.103
avg. ClI half length 0.438 0.465 0.649
var. Cl half length 0.016 0.018 0.030
+7.5% PRECISION
avg sample size 117339
coverage 85% 87% 90%
avg. rel. precision 0.042 0.044 0.050
avg. Cl half length 0.266 0.281 0.318
var. Cl half length 0.005 0.005 0.008

tNo. of classical and adjusted Cls generated by ASAP: 6 and
93, respectively.

3.1.4 Computer Models

Law and Carson (1979) also tested their sequential output
analysis procedure on queueing network models of computer
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systems. The first is a time-shared model with a single
central processing unit (CPU) ardterminals (jobs). Each
terminal “thinks" for a period of time that is exponentially
distributed with rateu; and then sends a job to the CPU
with a service time that is exponentially distributed with
rate up. The jobs join a queue at the CPU, which allocates
a maximum “time slice" ofs* time units to each job in
FIFO order. If the remaining service timeof a job is
less thans*, then the job spends time units plus a fixed
overhead ofz time units at the CPU and then returns to
the terminal. Ifs > s*, then the CPU spends’ + & time
units processing the job; and then the job returns to the
end of the queue. This process is continued until the job is
finished, and then it returns to the terminal. The process of
interest is the response time of the jol&g : i > 1}—that

is, R; is the elapsed time between the instant that job
joins the CPU queue at the end of a “thinking" period and
the instant that jolh completes its last time slice of service
on the CPU. We chose the same parameters that Law and
Carson used, i.eJ = 35,u1 = 1/25, up = 5/4,s* = 0.1,
and 2 = 0.015. (See Law and Carson 1979 for a more
complete description of the model.)

Table 9 summarizes the results for the time-shared
computer system. For this test problem, ASAP exhibits
almost ideal behavior. The sample size for the no-precision
case is small, but coverage is acceptable. With increasingly
stringent precision requirements, the Cls become smaller
and less variable and the coverage improves. For this
model, ASAP delivered correlation-adjusted Cls in all 100
replications of the procedure.

Table 9: Performance of Batch-Means Procedures for the
Time-Shared Model Based on 100 Independent Repli-
cations of Nominal 90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAPT
NO PRECISION
avg. sample size 1765
coverage 73% 79% 92%
avg. rel. precision 0.113 0.139 0.183
avg. ClI half length 0.900 1.102 1.468
var. Cl half length 0.016 0.050 0.139
+15% PRECISION
avg. sample size 4496
coverage 83% 84% 94%
avg. rel. precision 0.088 0.095 0.121
avg. CI half length 0.722 0.772 0.985
var. Cl half length 0.016 0.021 0.021
+7.5% PRECISION
avg. sample size 18747
coverage 86% 87% 98%
avg. rel. precision 0.046 0.048 0.061
avg. ClI half length 0.380 0.392 0.500
var. Cl half length 0.003 0.003 0.003

TNo. of classical and adjusted Cls generated by ASAP: 0 and
100, respectively.
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The second computer model used by Law and Car-
son (1979) consists of a central server (CPU) and- 1
peripheral units labeled 2 througf. The system has a
fixed number jobs,N, in it. When a job is finished at
the CPU, it leaves the system with probabilipy and is
immediately replaced with another job at the CPU queue.
If the job does not leave the system, then it is routed to
a peripheral unit. The probability that the job is routed to
unit i from the CPU isp;, i = 2,..., M. After getting
service at one of the peripheral units, the job leaves the
system and is immediately replaced by a job joining the
CPU queue. The process of interest is the response time
of a job, i.e., the time between its arrival at the CPU queue
and its departure from the system. Law and Carson chose
to simulate this model for four cases. Table 10 displays the
system parameters for cases 2 and 3 of the central-server
model used by Law and Carson (1979). In both these cases
we see that:uq, the service rate at the CPU is 1.9,
the probability that the job leaves the system after service
at the CPU, is zero; and the number of peripheral units is
two. In model 2 the steady-state utilization of the CPU and
peripheral units 1 and 2 are 0.8, 0.8, and 0.8, respectively.
In model 3 these steady-state utilizations are 0.44, 0.88,
and 0.88, respectively.

Table 10: Parameters for the Selected Central Server
Models withM = 3, u1 = 1.0, andp; =0

Expected Initial

Model N pu» pun3 p2 p3 Response Time State
2 8 050 050 05 05 10.000 (1,1)6)
3 8 045 0.05 09 0.1 18.279 (5,1,2)

From Table 11 we see that ASAP achieved good cov-
erage for central server model 2, satisfying the precision
requirements oft15% and+7.5% without increasing the
sample size beyond that used in the no-precision case. Ta-
ble 12 reveals that in central server model 3, the coverage
losses incurred with all three procedures are serious but
not catastrophic. We also ran this model with a precision
requirement of£2% and observed 85% coverage for the
nominal 90% Cls constructed by ASAP. In this system
LBATCH and ABATCH perform similarly to ASAP.

4 CONCLUSIONS

Batching schemes to date have ignored the question of nor-
mality based on the assumption that if the batch size is large
enough for the batch means to be approximately independent,
then the batch size is large enough for the batch means to be
approximately normally distributed. These schemes have

Table 11: Performance of Batch-Means Procedures for
the Central Server Model 2 Based on 100 Independent
Replications of Nominal 90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH  ASAPYt
NO PRECISION
avg. sample size 1580
coverage 87% 90% 86%
avg. rel. precision 0.039 0.040 0.039
avg. Cl half length 0.388 0.400 0.387
var. Cl half length 0.002 0.005 0.003
+15% PRECISION
avg. sample size 1580
coverage 87% 90% 86%
avg. rel. precision 0.039 0.040 0.039
avg. CI half length 0.388 0.400 0.387
var. Cl half length 0.002 0.005 0.003
+7.5% PRECISION
average sample size 1580
coverage 87% 90% 86%
avg. rel. precision 0.039 0.040 0.039
avg. ClI half length 0.388 0.400 0.387
var. Cl half length 0.002 0.005 0.003

TNo. of classical and adjusted Cls generated by ASAP: 67 and

33, respectively.

Table 12: Performance of Batch-Means Procedures for
the Central Model 3 Based on 100 Independent Repli-
cations of Nominal 90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAPT
NO PRECISION
avg. sample size 2277
coverage 75% 79% 78%
avg. rel. precision 0.073 0.076 0.074
avg. ClI half length 1.33 1.40 1.35
var. Cl half length 0.107 0.163 0.135
+15% PRECISION
avg. sample size 2277
coverage 75% 79% 78%
avg. rel. precision 0.073 0.076 0.074
avg. CI half length 1.33 1.40 1.35
var. Cl half length 0.107 0.163 0.135
+7.5% PRECISION
avg. sample size 3389
coverage 75% 76% 79%
avg. rel. precision 0.060 0.062 0.058
avg. Cl half length 1.08 1.11 1.05
var. Cl half length 0.037 0.047 0.028

TtNo. of classical and adjusted Cls generated by ASAP: 76 and

24, respectively.

focused on selecting a batch size large enough to achievestance, rely on the von Neumann test for independence.
near.mdependence of the batch means. _The method of (_je-ASAp is the first method to recognize the frequently oc-
termining whether the batch means are independent varies cyrring phenomenon of approximate multivariate normality

from scheme to scheme. ABATCH and LBATCH, for in-
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being achieved at smaller batch sizes than approximate in-
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dependence (Steiger and Wilson 200@zofar as these Steiger, N. M. 1999. Improved batching for confidence
properties affect the performance of NOBM analysis pro- interval construction in steady state simulation.
cedures and ASAP exploits this phenomenon when it is Doctoral dissertation, Department of Industrial
detected so as to compensate for any remaining dependence  Engineering, North Carolina State University,
between the batch means. Raleigh, North Carolina.  Available on-line via
The experimental evaluation reveals the main advan- <http://www.lib.ncsu.edu/etd/public/
tage of ASAP—it performs with reasonable reliability in etd-19231992992670/etd.pdf>

highly dependent simulation output processes. In these June 18, 2000].

cases, ASAP determines sample sizes that are sufficient for Steiger, N. M., and J. R. Wilson. 1999. Improved batching

achieving adequate Cl coverage but that are not excessively for confidence interval construction in steady-state sim-

large. Taken as a whole, the results of the experimental ulation. InProceedings of the 1999 Winter Simulation

performance evaluation reported in this paper strongly sug- Conferenceed. P. A. Farrington, H. B. Nembhard, D. T.

gest that significant improvements in the performance of Sturrock, and G. W. Evans, 442-451. Piscataway, New

batch means procedures can be achieved using the approach  Jersey: Institute of Electrical and Electronics Engineers.
of ASAP for constructing correlation-adjusted confidence Available online via<http://www.informs-cs.

intervals in situations for which it is difficult to identify a org/wsc99papers/061.PDF> [accessed March

batch size sufficiently large to ensure approximate indepen- 21, 2000].

dence of the batch means. We are continuing to explore and Steiger, N. M., and J. R. Wilson. 2000a. Convergence prop-

refine this approach to the analysis of steady-state simulation erties of the batch means method for simulation output

outputs. analysis.INFORMS Journal on Computingn review.

Available on-line via <ftp://ftp.ncsu.edu/

pub/eos/pub/jwilson/ibssalv6.pdf> [ac-

cessed June 18, 2000].
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