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ABSTRACT 
 
We develop a financial model for a manufacturing process 
where quality can be affected by an assignable cause. We 
evaluate the options associated with applying a statistical 
process control chart using pentanomial lattice and Monte 
Carlo simulation methods. By connecting the aspects of 
market dynamics with the manufacturing operational 
aspects, we now have a way to help decision makers 
address the bottom-line profitability associated with the 
quality control decision. 
 
1 INTRODUCTION 
 
In the forward to Real Options (Trigeorgis, 1999), Scott 
Mason writes: �Flexibility has value. While this statement is 
obvious at the conceptual level, it is surprisingly subtle at the 
applied level.� The question then becomes: Precisely how 
valuable is flexibility? The financial arena was the original 
ground for the application of the options-based framework to 
the valuation of flexibility. More recently, managerial 
operating flexibility has been likened to financial options. The 
goal of our research is to view the flexibility surrounding 
manufacturing operations using financial options.  
 In this paper, we specifically consider the 
manufacturing decision to introduce statistical process 
control (SPC) charts to monitor quality. Precise methods to 
design control charts that minimize the cost or maximize the 
profit of a process have been proposed by a number of 
authors. These methods yield control chart designs known as 
economic designs (Collani et al. 1994; Lorenzen and Vance, 
1986). They result in models that help determine the control 
chart parameters that will best suit a process. However, they 
do not account for the dynamic market conditions that have 
effect on the decisions manufacturers will make and hence 
the profitability of the manufacturing operation. 

We use the options approach to find the value of applying 
an SPC chart during a specified length of time, considering 
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future uncertain market variables. The problem is analyzed 
using a pentanomial lattice and Monte Carlo simulation. 
Results of the two approaches are compared with numerical 
examples. Using the proposed design, a company will be able 
to answer questions about the long-term value of 
implementing control charts. This will go beyond the 
traditional statements such as �SPC improves quality� or �the 
process now produces less scrap� to an ability to determine 
the bottom-line dollar value to the organization that can be 
brought about by using (or not using) control charts. 

This paper is organized as follows. Some of the 
approaches for multivariate option valuation are discussed 
in Section 2. The financial model that will be used to find 
the option value of control charts is defined in Section 3. 
Section 4 defines the two numerical valuation procedures, 
which are pentanomial lattice approach and Monte Carlo 
simulation. Examples and numerical results are given in 
Section 5. We make some concluding remarks in Section 6. 

 
2 OPTION MODELS 
 
Fundamentally, an option is the right, but not the 
obligation, to take an action in the future (Amram and 
Kulatilaka, 1999). Sometimes, options are associated with 
investment opportunities that are not financial instruments. 
These operational options are often termed real options to 
emphasize that they involve real activities or real com-
modities, as opposed to purely financial commodities, as in 
the case, for instance, of stock options (Luenberger, 1998).  

Here, we formulate the control chart problem as a 
series of European options. A European option gives the 
right to exercise the option on the expiration date. In our 
context, this means that the control chart can be used or not 
used (which is the option) in any time period. 

In most manufacturing systems, there are multiple 
sources of uncertainty. Valuing real options for such an 
environment will require the analysis of projects whose 
values depend on multiple state variables. 
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In the case of just one state variable, the binomial 
lattice approach of Cox, Ross, and Rubinstein (CRR) 
(1979) is a powerful and flexible method for valuing 
American options. Boyle (1988) developed an extension of 
the CRR procedure for option valuation in the case of two 
state variables. Boyle, Evnine and Gibbs (BEG) (1989) 
developed an n-dimensional extension of the CRR 
procedure. Kamrad and Ritchken (KR) (1991) developed a 
similar technique for valuing projects for one or more state 
variables. The KR model results in a pentanomial lattice 
and is more general than BEG model because it allows for 
horizontal jumps. The ability to model horizontal jumps is 
important for applications where the state variables may 
not change during a time interval. 

Hull (1997) gives the method for Monte Carlo simulation 
that can be used for valuing options with more than one state 
variable. In our model, the manufacturer can change the 
decision about applying control charts at each time interval. 
Therefore, a decision given in one time interval does not affect 
the succeeding intervals and thus does not start a new path. 
This feature makes it relatively straight-forward to use Monte 
Carlo simulation in this problem. 

 
3 APPLYING FINANCIAL MODELS TO 

MANUFACTURING QUALITY CONTROL 
 
In this section, we provide a framework for the financial 
model that will be used in this paper. Total sales revenue of 
a product has two main sources of uncertainty: price and 
demand. 

Let S1(t) be the price of the product at time t, and let 
S2(t) be the demand for the product at time t for a specified 
time interval. Then, total sales revenue R(t) of that product 
per time interval at time t is 
 

R(t) = S1(t) S2(t) 
 

Total profit P(t) per time interval at time t can be 
defined as 

 
P(t) = R(t) � (Fixed cost + Variable cost) 

 
If we denote the fixed cost per time interval as F, and 

the variable cost per unit product as C, then P(t) can be 
defined as 
 

P(t) = S1(t) S2(t) � F � S2(t) C 
 

Let {S1(t), S2(t)} define the state variable value at time 
t. The manufacturer has an option to apply (or not apply) 
control charts when desired. 

The fundamentals of SPC are addressed in several 
introductory texts (e.g., see Montgomery (1997) or Grant and 
Levenworth (1996)). We consider the X  chart here because it 
is the standard �workhorse� in many SPC applications. 
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Applying X  control charts will result in a fixed cost 
of b per time interval. Let a be the variable sampling cost 
per unit (Collani et al. 1994). Let g be the cost of not 
applying X  control charts per unit product, represented as 
a fraction of price (due to production scrap, product 
returns, loss of market share, etc.). 

With these definitions, the profit per time interval can 
be determined as 
 
P(t)=(1 � g)S1(t) S2(t) � F � S2(t) C   without X  chart  (1a) 
 
or  
 
P(t)=S1(t) S2(t)−(F+ b)−S2(t) (C+a)  with X  chart.   (1b) 
 
4 NUMERICAL PROCEDURES 
 
We will use two numerical procedures, pentanomial lattice 
and the Monte-Carlo simulation, to value the control chart 
option over a decision horizon. Both the procedures use 
Equation (1). The pentanomial lattice approach has the 
advantage of giving a more accurate numerical solution 
compared to Monte Carlo simulation. Monte Carlo 
simulation has the advantage of providing an estimate of 
the variability of the option value, and maximum, average, 
and minimum profits. 
 
4.1 Using a Pentanomial Lattice 
 
First, the two-state KR model will be used to find the 
option value of X  control charts. Two state variables 
under consideration were given as S1(t) (price), and S2(t) 
(demand) in Section 3.  

The two-state KR model is as follows. Assume the 
joint density of the two state variables S1(t) and S2(t) is 
bivariate lognormal. For state variable i (i=1,2), let the 
instantaneous mean be µi = r � σi

2/2, where r is the risk free 
interest rate, and let the instantaneous variance be σi

2. Let ρ 
be the correlation coefficient between the two state 
variables. For each state variable over [t, t+∆t], we have 
 

ln Si(t+∆t) = ln Si(t) + ζi(t) 
 
where ζi(t) is a normal random variable with mean µi∆t and 
variance σi

2∆t.  The instantaneous correlation between ζ1(t) 
and ζ2(t) is ρ. 
 The joint normal random variable {ζ1(t), ζ2(t)} is 
approximated by a pair of multinomial discrete random 
variables with the following distribution  
 

ζa
1(t) ζa

2(t)  Probability 
υ1 υ2 p1 
υ1 -υ2  p2 
-υ1 -υ2 P3 
-υ1 υ2 P4 
0 0 P5 

where υi = λσi t∆  (i = 1,2), and λ ≥ 1.  
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 The convergence of the approximating distribution to 
the true distribution as ∆t→0 is ensured by setting the first 
two moments of the approximating distribution to the true 
moments of the continuous distribution. Specifically, this 
means 
 

E {ζa
1(t)} = υ1 ( p1 + p2 − p3 − p4 ) = µ1∆t 

E {ζa
2(t)} = υ2 ( p1 − p2 − p3 + p4 ) = µ1∆t 

Var {ζa
1(t)} = υ1

2 ( p1 + p2 + p3 + p4 ) = σ1
2∆t + O(∆t) 

Var {ζa
2(t)} = υ2

2 ( p1 + p2 + p3 + p4 ) = σ2
2∆t + O(∆t) 

 
In addition, the covariance terms must also be equal. 

This is achieved by equating the expected value of two 
variables: 

 
E{ζa

1(t) ζa
2(t)}= υ1υ2 ( p1 − p2 + p3 − p4 ) = σ1σ2ρ∆t + O(∆t). 

 
Substituting υi = λσi t∆  (i=1,2), and for sufficiently 

small ∆t, the above equations yield expressions for p1 , p2 , 
p3 , and p4 : 
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Since p1 + p2 + p3 + p4 + p5 = 1, we have 

 

25
11
λ

−=p . (6) 

 
There are five paths leaving each node in the 

pentanomial lattice. An up move for each state variable is 
denoted by u, and a down move is denoted by d. It is 
convenient to impose the condition that ud = 1, so that an 
up followed by a down is equal to 1. The total number of 
nodes after n iterations is 
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In just 10 iterations, a pentanomial lattice will have 

12,207,031 nodes if ud ≠ 1, whereas there will be only 891 
nodes if we impose ud = 1. Figure 1 shows the first two 
iterations of a pentanomial lattice with the condition ud=1. 
The first element in parenthesis shows the change in the 
first state variable, and the second element shows the 
change in the second state variable. As can be seen in 
Figure 1, there are a total of 19 nodes in the pentanomial 
lattice for two iterations when ud = 1. 

 

(u2,u2)
(u2,0)

(u,u) (u,u)
(u2,d2)

(u,d) (u,d)
(0,u2)

(0,0) (0,0) (0,0)
(0,d2)

(d,u) (d,u)
(d2,u2)

(d,d) (d,d)
(d2,0)
(d2,d2)  

Figure 1:  Pentanomial Lattice 
 
We will construct a pentanomial lattice to show the 

profit associated with the option to apply a control chart. In 
that lattice, each node contains a profit value per time step. 
We first construct a pentanomial lattice that contains the 
profits for the case that the control chart is not applied. We 
then construct another pentanomial lattice for the case that 
the control chart is used. We then construct a new lattice 
that contains the profit differences as shown in the 
following equation: 

 
( )[ ]0,chart usingnot by profit chart usingby profit −Max  

 
Backward discounting is applied on the lattice starting 

from the last time interval. First, an expected value is found 
by multiplying the jump probabilities with the corresponding 
profit values in the five nodes. Next, this expected value is 
discounted with the risk free interest rate in one interval. 
This value is the expected amount of profit in the last step 
originated from one of the nodes in the preceding time 
interval. The expected discounted value is added to the profit 
value in the origin node of the five following nodes, so that 
the expected total profit is found for those two time 
intervals.  When this calculation is done for all nodes in one 
time interval, and then for all remaining nodes going back 
one time interval in each iteration, the expected discounted 
value for time zero is determined. 

The program code was written in JavaScript so that it 
could be run using Netscape Navigator 2.0 or Microsoft 
Internet Explorer 3.0 or later versions. First, the user enters 
9



Nembhard, Shi, and Aktan 
 

all parameter values into the input boxes. These values are 
checked to ensure that they are valid. Next, two 
pentanomial lattices are formed with the given number of 
intervals. One of these lattices contains the profit values for 
the case when the control chart is used at all time intervals, 
and the other lattice contains the profit values for the case 
when the control chart is not used. The program stores the 
values for each lattice in separate arrays. 

Table 1 gives a list of the input values required for 
pentanomial lattice program. Section 5 gives the input and 
output windows of the program and results on the 
sensitivity of the option value against g, b, and a, the three 
cost parameters related with control charts. 

 
Table 1: Inputs for Pentanomial Lattice Program 

Input Explanation 
T total time until expiration (in unit time) 
N total number of time intervals until expiration 
r percent interest rate per unit time 

S1(0) initial price of the product 
S2(0) initial demand per time interval 
σ1 (percent volatility of price per unit time)/100 
σ2 (percent volatility of demand per unit time)/100 
ρ correlation between price and demand 
λ stretch parameter (λ > 1) 
F fixed production cost per time interval 
C variable production cost per product 
g cost of not applying X  charts (as % of price) 
b fixed cost of applying X  charts per time interval 
a variable sampling cost per product 

 
4.2 Using Monte Carlo Simulation 
 
Simulation models may be used to give numerous possible 
paths of evolution for underlying state variables from the 
present to the final date in the option. In the commonly 
used Monte Carlo simulation method, the optimal strategy 
on each path is determined and the payoff calculated 
(Amram and Kulatilaka, 1999).  

Suppose that the process followed by the underlying 
variable in a risk-neutral world is 
 

SdzSdtdS σµ += �   (7) 
where dz is a Weiner process, µ�  is the expected return in a 
risk-neutral world (µ� =r), and σ is the volatility. To 
simulate the path followed by S, we divide the life of the 
derivative into N short intervals of length ∆t and 
approximate Equation (7) as 
 

ttSttStSttS ∆+∆=−∆+ εσµ )()(�)()(  (8) 
 
where S(t) denotes the value of S at time t, ε is a random 
sample from a normal distribution with zero mean and unit 
standard deviation. This enables the value of S at time ∆t to 
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be calculated from the initial value of S, the value at time 
2∆t to be calculated from the value at time ∆t, and so on. 
One simulation trial involves constructing a complete path 
for S using N random samples from a normal distribution 
(Hull, 1997). 
 From Ito�s lemma (see Hull, 1997) for a discussion of 
Ito, 1951), the process followed by ln S is 
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 This equation is used to construct a path for S in a 
similar way to Equation (8). Whereas Equation (8) is true 
only in the limit as ∆t tends to zero, Equation (9) is exactly 
true for all ∆t (Hull, 1997). 
 As in our problem that was modeled by pentanomial 
lattice, we continue to let S1(t) be the price of the product at 
time t, and S2(t) be the demand per time interval of that 
product at time t. Profit per time interval can be modeled with 
Equation (1). Required S1(t) and S2(t) values will be obtained 
from Monte Carlo simulation by using equation (9). 
 Two correlated samples ε1 and ε2 are found using a 
two-step procedure. First, independent samples x1 and x2 
from a univariate standardized normal distribution are 
obtained generating U1 and U2 as IID U(0,1), then setting 

)2cos(ln2 211 UUx π−=  and )2sin(ln2 212 UUx π−=  (Law 
and Kelton, 2000).  Second, the required samples ε1 and ε2 
are calculated as: 

11 x=ε  
2

212 1 ρρε −+= xx  
 

where ρ is the coefficient of correlation (Hull, 1997). 
 The program code for the Monte Carlo simulation was 
also written in Javascript, and it can be executed with 
Microsoft Internet Explorer 3.0 or Netscape Navigator 2.0, 
or later versions. 
 When the program is executed, the user is asked to enter 
all required parameter values into the input boxes. After the 
parameter values are entered, the program generates two 
arrays.  The first array contains the S1(t) (price) values of the 
product for all time steps until the expiration date of the 
option, and the second array contains the corresponding S2(t) 
(demand) values of the product. Then, profit values when X  
chart is used, and profit values when X  chart is not used are 
obtained for each time interval. These profit amounts are 
compared for each time step, and the best strategy in each 
time step is found. Then, present value of profit for the best 
strategy, and the option value are calculated. 
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 One of the required inputs is the number of simulation 
runs. A single option value is simulated in each simulation 
run. The expected option value, which is the average of all 
option values obtained from simulation runs, is given in the 
output window. The output window also gives the 
minimum, the maximum, and the average profit obtained 
during the simulation runs and the standard deviation of the 
option value. Table 2 describes all of the required inputs 
for the Monte Carlo simulation program. 
 

Table 2:  Inputs for Monte Carlo Simulation 
Input Explanation 

n number of simulation runs 
T total time until expiration (in unit time) 
N total number of time intervals until expiration 
r percent interest rate per unit time 

S1(0) initial price of the product 
S2(0) initial demand per time interval 
σ1 percent volatility of price per unit time 
σ2 percent volatility of demand per unit time 
ρ correlation between price and demand 
F fixed production cost per time interval 
C variable production cost per product 
g cost of not applying X  charts (as % of price) 
b fixed cost of applying X  charts per time 

interval 
a variable sampling cost per product 

 
5 EXAMPLES AND NUMERICAL RESULTS 
 
In this section, we use the programs discussed above to 
compare the pentanomial lattice and Monte-Carlo 
approaches for valuing the control chart option for a specific 
numerical case. We also investigate the sensitivity of the 
option value to the three key control chart parameters. 
 
5.1 A Comparative Case for Pentanomial  

Lattice and Monte-Carlo Valuation 
 
Table 1 shows the pentanomial lattice input parameters. In 
this case, we use the specific input values and realize the 
output values given in Figure 2a. This allows us to evaluate 
a one-year (12 month) horizon. The option value is 
$14,181 as given in Figure 2b. 

Table 2 shows the Monte-Carlo simulation input 
parameters. In this case, we use the specific input values and 
realize the output values given in Figure 3a and again 
evaluate a one-year horizon. The option value, based on 
10,000 simulation runs, is $14,153 (Figure 3b). This 
simulation average represents a 0.20% difference compared 
to the more accurate pentanomial lattice solution. The 
minimum and maximum option values obtained from 10,000 
simulation runs, and the standard deviation of the option 
value are also reported (Figure 3b). 
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Figure 2a: Input for the Pentanomial Lattice Program. 
 

Option Value = $14,181

 
 

Figure 2b: Output of Pentanomial Lattice Program. 
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Figure 3a:  Input for Monte-Carlo Simulation Program 

 
 

Option Value =  $14,153
Maximum option value = $169,006
Minimum option value = $1,844
Std. Dev. of option value $97

 
Figure 3b: Output of Monte-Carlo Simulation Program. 

 
5.2 Sensitivity of Option Value to Key  

Control Chart Parameters 
 
The last three parameters shown in Tables 1 and 2 � g (cost 
of not applying chart), b (fixed cost of applying chart) and 
a (variable sampling cost per product ) � are characteristic  
60
to the control chart process. Figures 4-6 illustrate how the 
option value changes for our numerical example when each 
of these key factors are independently varied over a range 
(with all other factors held constant. Our analysis of these 
results suggested that there was no substantial interaction 
among the factors. 
 Specifically, Figure 4 suggests that we derive more 
benefit from the option when the cost of not applying 
control charts is relatively high. Figure 5 suggests that 
greater value is achieved when the variable sampling costs 
are small. Figure 6 suggests that the option is preferable 
when the fixed costs are small.  

In general, this type of sensitivity analysis may guide 
the decision maker on which ranges suggest that the 
control charts option should always be used, never used, or 
used with caution. 
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Figure 4: Cost of Not Applying Chart vs. Option Value 
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Figure 5:  Variable Sampling Cost vs. Option Value 
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Figure 6:  Fixed Cost of Charts vs. Option Value 

 
6 SUMMARY AND CONCLUDING REMARKS 
 
In this paper, we have shown how the value of using 
control charts can be determined using a real options 
framework. The need for this approach was motivated by 
the inability of existing economic control chart methods to 
address dynamics in the market condition with respect to 
price and demand.  

By connecting the dynamic aspects with the 
manufacturing operational aspects, we now have a way to 
address a key issue: the bottom-line profitability associated 
with the control decision. Monte-Carlo simulation was key 
in this study because it provided a means for assessing the 
variability associated with an option value.  

Related work is discussed in Nembhard, Shi, and Park 
(2000). Future work will address the possibility of 
generalizing these results, extending them to other control 
decisions, and using them to evaluate issues of flexibility 
in manufacturing operations. 
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