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ABSTRACT

This paper considers the development of envelope metho
as a tool for simulation. Envelope methods are based on
construction of simple envelopes to functions. The propos
envelopes are general, require little input from the user a
are based on the concavity structure of the function or som
transformation of the function. The construction of thes
envelopes facilitates variate generation using the adapt
rejection algorithm.

1 INTRODUCTION

Simulation is fundamental to the investigation of comple
stochastic systems. To that end, various general techniq
have been developed to simulate from particular distrib
tions. For example, inversion and the ratio-of-uniforms alg
rithm are two long-standing strategies for simulating from
continuous univariate distributions (see Fishman, 1996
Nevertheless, there arise in practice non-standard distri
tions for which standard simulation strategies are inapp
cable. In this context it would be useful if “black-box”
generators were available so that variate generation co
be accomplished without extensive effort. Simulation usin
the envelope methods described in this paper is an attem
in this general direction.

The construction of envelopes for general random va
ate generation has historical precedents in the work
Marsaglia and Tsang (1984), Devroye (1986) and Zam
(1991). In Gilks and Wild (1992), a useful generator i
formed by adaptively constructing upper and lower lin
ear splines to the logarithm of log-concave functions an
then applying the rejection algorithm. Hoermann (1995
introduces the idea ofT -concavity which extends variate
generation to densitiesf whereT (f ) is concave.

In Evans and Swartz (1998a, 1998b), generalizatio
of Gilks and Wild (1992) and Hoermann (1995) are con
sidered for the purpose of variate generation. For examp
the notion ofT -concavity is extended,T -convexity is intro-
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duced, the assumptions of unimodality and boundedness a
dropped, special considerations are given to the tails of fun
tions and higher order envelopes are constructed. Evans a
Swartz (1998c) also use envelopes to approximate integra
and provide exact error bounds.

In section 2, we describe the general framework fo
constructing lower and upper envelopes to general function
In section 3, we consider the application of the envelopes
variate generation based on the adaptive rejection algorithm
Various new examples based on non-standard distributio
are provided to highlight the utility of the methods.

2 ENVELOPE CONSTRUCTION

Consider the construction of a lower envelopel(x) and an
upper envelopeu(x) to a functionf (x) defined onR.

We begin with the specification of a transformation
T : [0,∞)→ R and an integern ≥ 0. The specification of
T andn provides the ingredients for envelope construction
There are many possible transformationsT that may be
considered such as the logarithm transformation (Gilks an
Wild, 1992) and the class of power transformationsT (f ) =
f p. This is a very general framework; we may choose
singleT overR or we may defineT piecewise. With respect
to choosing the integern, it is generally true that increasing
the value ofn improves the accuracy of the envelopes a
the expense of simplicity. We expand on the choice ofT

andn as we continue.
Having definedT andn, we obtain the inflections points

x1 < · · · < xm of (T (f ))(n). The inflection points are often
easily obtained via a symbolic package such as Maple. A
demonstrated in Evans and Swartz (1998b), typically th
calculation of inflection points can be entirely avoided. It
follows that the function(T (f ))(n) has constant concavity
in an interval(xl, xr ) wherer = l+1 andl = 1, . . . , m−1.
If (T (f ))(n) is concave on(xl, xr ) then the chord

(T (f ))(n)(xl)+ (T (f ))
(n)(xr )− (T (f ))(n)(xl)

xr − xl (x−xl) (1)
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bounds(T (f ))(n) from below; moreover, an upper bound
on (T (f ))(n) is the tangent

(T (f ))(n)(xl)+ (T (f ))(n+1)(xl)(x − xl). (2)

If (T (f ))(n) is convex on(xl, xr ), then the chord and tangent
expressions are simply reversed.

It is the specification ofT andn, and the calculation of
x1, . . . , xm that we view as the minimal information needed
for envelope construction. Because of the minimal informa
tion, we refer to the resultant algorithms as “semi-automatic
or “nearly black-box” procedures. This development allow
for the construction of envelopes tof (x) on intervals(xl, xr )
as given by the following proposition.

Proposition 1: Consider the interval(xl, xr ). Sup-
pose thatT is an increasing invertible function withn+ 3
derivatives and that(T (f ))(n) is concave. Then for every
x ∈ (xl, xr ), we have thatl(x) ≤ f (x) ≤ u(x) where

l(x) = T −1

[
n∑
k=0

(T (f ))(k) (xl)

k! (x − xl)k

+ (T (f ))(n)(xr )− (T (f ))(n)(xl)
xr − xl

(x − xl)n+1

(n+ 1)!

]

and

u(x) = T −1

[
n+1∑
k=0

(T (f ))(k) (xl)

k! (x − xl)k
]
.

Proof: The proof generalizes Lemma 2 in Evans an
Swartz (1998a) which proceeds by taking the anti-derivative
of (1) and (2)n times and then inverting viaT −1.

If (T (f ))(n) is convex on(xl, xr ) then the expressions
for l(x) and u(x) in Proposition 1 are reversed. The ex-
pressions are again reversed ifT is a decreasing function.

Now there are various way that the approximating en
velopesl(x) andu(x) can be improved. First, the envelopes
can generally be made tighter by choosingn > 0 which
results in higher order envelopes. Whenn = 0, the approx-
imations toT (f ) are linear. Second, it is a simple matter to
improve the envelopes on any interval(xl, xr ) by compound-
ing. By introducing a new pointx∗ wherexl < x∗ < xr , the
concavity structure on(xl, x∗) and (x∗, xr ) is the same as
on (xl, xr ). Therefore improved lower and upper envelope
can be defined on each of the subintervals.

The above development is all that is needed to constru
envelopes for truncated functionsf (x). For suppose that
f (x) has a left truncation pointt1 and a right truncation
point t2. Then we simply setx0 = t1 and xm+1 = t2 and
note that the intervals(x0, x1) and(xm, xm+1) have constant
concavity. Truncated functions are common in Bayesia
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statistics wheref is a density function andx is a parameter
subject to order restrictions.

In problems where we have tails, special consideratio
is given to the construction of the upper envelopeu(x). As
a first priority, we should choosex0 and xm+1 somewhat
extreme so as to limit the impact of tail calculations fo
variate generation. Without loss of generality, suppose th
we are interested in constructing an upper envelope for t
right tail. We should choose a smooth and invertible functio
T such thatT −1(α+βx) is integrable on(xm+1,∞). Now
suppose thatf is T -concave on(xm+1,∞) when T is
increasing orT -convex on(xm+1,∞)whenT is decreasing.
Then forx ∈ (xm+1,∞) we have that

T (f (x)) ≤ T (f (xm+1))+T ′(f (xm+1))f
′(xm+1)(x−xm+1)

whenf is T -concave and

T (f (x)) ≥ T (f (xm+1))+T ′(f (xm+1))f
′(xm+1)(x−xm+1)

whenf is T -convex. Then taking theT -inverse of both of
these inequalities we obtain

u(x) = T −1 {T (f (xm+1))

+ T ′(f (xm+1))f
′(xm+1)(x − xm+1)

}
which serves as an upper bound forf (x) when x ∈
(xm+1,∞).

Example 1: The Exponential Distribution
With such a tractable distribution as the exponentia

there is certainly no need to develop new algorithms
generate exponential variates. However, our methods
easily and effectively implemented, and more importantl
the results provide building blocks for more complex prob
lems.

Therefore consider the functionf (x) = e−x and
chooseT equal to the identity map. Note that

(
e−x

)(n) =
(−1)(n) e−x and so then− th derivative is concave when
n is odd and convex whenn is even. Therefore, on the
interval (a, b), using then − th derivative, we obtain the
upper envelope fore−x which is given by

u(x) =


e−a

∑n+1
k=0

(−1)k

k! (x − a)k n odd

e−a
∑n
k=0

(−1)k

k! (x − a)k
+ (−1)n

(n+1)!
e−b−e−a
b−a (x − a)n+1 n even

and the lower envelope fore−x is obtained by reversing the
expressions forn odd andn even.
3
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3 VARIATE GENERATION

The rejection algorithm is a general method for variate ge
eration from a density that is proportional tof . Suppose
then that the functionf (x) is bounded above by an uppe
envelopeMg(x)whereM > 0 is a known constant andg(x)
is a standard density function from which we can samp
Then generateX ∼ g and generatew ∼ Uniform(0,1). If
w < f (x)/Mg(x), then retainX and note thatX arises
from a distribution with density proportional tof . It is easy
to show thatX is accepted with probability

∫
f (x) dx/M.

Therefore, a successful implementation of rejection sa
pling involves obtainingg andM such thatM is not too
large andg is a density from which we can efficiently
generate variates.

Using the piecewise envelopesu(x) and l(x) from
section 2, implementation of rejection sampling is straigh
forward. We simply setMg(x) = u(x) where the constant
M is determined by integratingu(x) over the support of
f (x). The densityg(x) is viewed as a mixture with mixture
intervals determined byx0, . . . , xm+1.

To sample fromg(x), we must first sample a mixture
component. This is done using the aliasing method (s
Devroye (1986)) and only requires the generation of
single uniform variate. Once the mixture component h
been determined, our second step in the rejection algorit
involves the generation of a variate from the particul
mixture. Suppose then that we are sampling from t
mixture on (xl, xr ). A similar development can be given
for the tails. The distribution function for this mixture is
given by

U(x) =
∫ x
xl
u(z) dz∫ xr

xl
u(z) dz

. (3)

Now, we need to be able to generate variates fromU(x) in
(3). A direct method is to generatep ∼ U(0,1) and then
solveU(X) = p for X. Note that becauseU is strictly
increasing on(xl, xr ), there is a uniqueX and this is the
unique root ofU(x) − p lying in the interval. Note that
if T is the identity map, thenU is a polynomial whose
coefficients are easily calculated. In this case, the ro
can be obtained using polynomial root-finding algorithm
although we have found that the secant method is usua
more efficient. For certain other choices (eg.T = ln and
n = 0), U(x) reduces to convenient forms that are als
easily invertible.

The lower envelopel(x) ≥ 0 which boundsf from
below can also be used in the rejection algorithm. Iff is
computationally expensive to evaluate, then the squeez
conditionw < l(x)/Mg(x) is checked prior to checking
w < f (x)/Mg(x). If the squeezing condition holds, there i
no need to check the expensive conditionw < f (x)/Mg(x)

as we know that it also holds.
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As described above, the final step in the rejection a
gorithm involves checking whether we retain the variateX.
This step leads to an adaptive algorithm. For if we rejec
the variateX, then we replace the interval(xl, xr ) with
the 2 subintervals(xl, X) and (X, xr) and update the en-
velopes. The expensive part of adaptive rejection samplin
is the setup time for aliasing. Accordingly, it makes sens
to stop adapting when the upper and lower envelopes pr
vide accurate approximations tof. As discussed in Evans
and Swartz (1998a), a good rule is to stop adapting in th
interval (xl, xr ) when the ratio∫ xr

xl
l(z) dz∫ xr

xl
u(z) dz

is sufficiently close to 1.
The above algorithm leaves open the question of wha

is a suitable choice of the order of the approximationn? A
natural criterion to assess this is efficiency of computation
namely which choice ofn leads to the fewest rejection
steps or, perhaps more importantly, the fastest computatio
time. However, as is shown in some of the examples, th
choice n = 0 frequently leads to a perfectly satisfactory
algorithm. The real virtue of the higher order polynomial
envelopes is that such envelopes can often be comput
very easily. For example, suppose thatf can be factored
as f (x) = g(x)h(x) where g ≥ 0, h ≥ 0 and we have
linear (i.e. n = 0) envelopeslg ≤ g ≤ ug and lh ≤ h ≤ uh
for these functions. We then have quadratic envelope
lglh ≤ f ≤ uguh for f. Application of techniques similar
to this can often allow us to entirely avoid the computation
of derivatives off and also the need to calculate inflection
points of such derivatives.

Example 2: Generating from Truncated Exponentials
As mentioned in Example 1, there is certainly no need t

develop new algorithms for generating from the exponentia
distribution. Therefore this example serves as somewh
of a worse case scenario for the envelope methodolog
described in this paper. We consider the generation of 106

variates from the standard exponential distribution truncate
on the interval(1.0,5.0). We first use the IMSL procedure
DRNUN to generate a uniform variateu and then obtain the
required variatev = − log[e−1−(e−1−e−5)u] via inversion.
This requires 10 seconds of computation. Note that th
is one of the few practical examples where inversion lead
to an analytic formula. We compare this to the envelop
methodology where a degreen = 0 expansion is used in
the expression given in Example 1. The generation of 106

variates requires 70 seconds of computation.
Example 3: Generating from Truncated Student Dis-

tributions
A naive approach to this problem involves generating

a variatex from the full Student distribution and retaining
the variate if it lies within the required bounds. Evans
4
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and Swartz (1998a) develop a new and simple algorith
for generating from the Student family and truncations o
Students. The approach is based on the recognition t
the Student(α) distribution isT -convex everywhere when
T (f ) = f−1/(λ+1).

As an example, we consider generating from a St
dent(.5) distribution truncated to (-1,2). Generating 106

values using our methods requires 38 seconds of CPU tim
For comparison purposes, generating 106 truncated variates
using the naive approach with IMSL routines requires 7
seconds of CPU time. The advantage of our algorithm
even more dramatic with shorter truncation intervals.

We mention that these sorts of truncated distribution
are common in Bayesian analyses with order restriction
In another context, Evans and Swartz (1996) generate fro
truncated F distributions to implement stratified multivariat
Student importance sampling.

Example 4: Generating from Truncated Polynomial
Distributions

Chan (2000) considered the estimation of pupping pro
abilities of Grey Seals captured over a period of years. Bas
on independent binomial models, latent data and certain
der constraints on the pupping probabilities, the analys
requires simulation from distributions whose densities a
proportional to truncated polynomials.

For example, suppose that we need to generate
variatepx (e.g. the probability that a female Grey Sea
gives birth at agex) where the density ofpx is proportional
to a non-negativeq-th degree polynomialf (px) truncated
betweena and b. The simple but inefficient approach in
Chan (2000) begins with a root-finding algorithm to obtai
the valuep̂ which maximizesf on (a, b). The rejection
algorithm is then used whereu is generated according to
the Uniform(0,1) distribution, px is generated according
to the Uniform(a, b) distribution andpx is retained ifu ≤
f (px)/f (p̂).

Envelope methods can be used in this application b
choosingT equal to the identity map and choosingn = 0.
The critical points are easily obtained using a root-findin
algorithm for polynomials. The adaptive aspect of th
algorithm quickly provides good envelopes to the functio
f . Alternatively, choosingT equal to the identity map and
choosingn = q − 1 gives essentially an inversion method
as the upper envelopeu(px) is equal tof (px).

Example 5: Rational Normal Generators
We consider densities (possibly truncated) that are pro

ucts of normal densities and positive rational functions (i.
the quotient of 2 polynomials). We note that this is a hug
family of distributions accomodating a wide range of shape
Such distributions may have Bayesian applications in pri
elicitation and importance sampling.

Evans and Swartz (1998b) develop algorithms for var
ate generation from these distributions as well as rationa
beta distributions. One approach is based on a dire
57
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implementation of Proposition 1 whereT is chosen as
the identity map and derivatives are obtained via the F
di Bruno formula. As an example, consider the prod
uct of the Normal(0,1) density with the rational function
(x2+ 4x + 4.01)(x2− 4x + 4.01)/(x2+ 1). Using a gen-
erator with ordern = 2, the acceptance rate is a highly
respectable .74.

Example 6: Gibbs Sampling from CIHM
Albert and Chib (1997) consider the Bayesian analys

of conditionally independent hierarchical models (CIHM)
These are a broad and useful class of models which m
be analysed using Markov chain Monte Carlo method
In one such example,yi ∼ Poisson(ηi), θi = ln(ηi) ∼
Normal(xTi β, τ

2) and (β, τ2) are independent withβ ∼
Normal(β0, B

−1
0 ) andτ2 ∼ Inverse Gamma(a, b). For this

problem, the conditional distribution ofθi is proportional
to

exp{yiθi − eθi }φ
(
θi − xTi β

τ

)
(4)

where φ is the density function of the standard norma
distribution.

Albert and Chib (1997) recommend the Gibbs samplin
algorithm with an imbedded Metropolis step to samp
from the non-standard conditional distributions forθi , i =
1, . . . , n. Rather than using the Metropolis step, one ca
sample from (4) directly using the envelope methods in th
paper. For example, perhaps the simplest generator invol
choosingT = ln. In this case, the conditional density is
T -concave and choosingn = 0 gives a slight variation of
the Gilks and Wild (1992) algorithm. Note thatβ and τ
in (4) are changing in each iteration of Gibbs sampling
therefore it does not make sense to spend too much ti
finding efficient generators for specific values ofβ andτ .

Example 7: Generation in FOA Models
Swartz (2000) considered empirical Bayes models wi

latent variables to analyze bidding behaviour in final offe
arbitration (FOA). One step in the posterior analysis requir
simulation from non-standard distributions with densitie
proportional to

f (y) = 1

y2 exp{a + b/y + c/y2}

whered < y < e. Swartz (2000) implements the simulation
using the rejection algorithm based on the rejection dens
g(y) = de(e − d)−1/y2 defined ond < y < e. This also
requires the simple maximization of exp{a + b/y + c/y2}
on d < y < e. The approach can be extremely inefficien
for certain values ofa, b, c, d ande.

Alternatively, an envelope approach can be used in th
application by first obtaining envelopesl(y) and u(y) to
exp{a + b/y + c/y2} based on the exponential expansio
5
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discussed in Example 1. Simple envelopes tof (y) are then
given by l(y)/y2 and u(y)/y2. Note that such envelopes
provide tractable expressions for (3).
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