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ABSTRACT replication is obtained from each system, as we assume.
Section 2 also reviews the relevant literature. In Section 3

We present and evaluate two ranking-and-selection proce- we describe the new procedures, while Section 4 evaluates

dures for use in steady-state simulation experiments when them empirically. We conclude by offering our opinions

the goal is to find which among a finite number of alter- about the key open research questions in Section 5.

native systems has the largest or smallest long-run average

performance. Both procedures extend existing methods 2 BACKGROUND

for independent and identically normally distributed obser-

vations to general stationary output processes, and both In this section we review the two procedures, designed

procedures are sequential. originally for i.i.d. normal data, that we will extend and
enhance for use in steady-state simulation problems. We
1 INTRODUCTION also more precisely characterize what we mean by the

“steady-state simulation problem,” and review the literature

The “steady-state simulation problem” is one of the central on ranking and selection (R&S) procedures designed for
challenges in the design and analysis of stochastic simulation this case.
experiments, and it distinguishes simulation experiments
from classical statistical experiments. At a high level, the 2.1 Two Procedures for i.i.d. Normal Data
steady-state simulation problem is to estimate some property
of a (perhaps vector-valued) random variable that is defined We describe two procedures that guarantee, with confidence
by the limiting distribution of a stochastic process, the limit level at least 1 «, that under certain conditions the system
being taken as the time index of the process goes to infinity. ultimately selected has the largest true mean when the true
Since the random variable is defined in terms of a limit, mean of the best system is at leddietter than the second
realizations of it cannot be obtained (except in special cases best. When there are inferior systems whose means are
that are rarely of practical interest). within § of the true best, then the procedures guarantee to

In this paper we consider the problem of determining find one of these “good” systems with the same probability.
which of a finite number of simulated systems has the The parametes, which defines thendifference zoneis
largest (or smallest) steady-state mean performance. Ourset by the experimenter to the smallest absolute difference
solutions are extensions of existing procedures that have in expected performance that is considered important to
proven performance for the special case of independent detect. Differences of less thahare considered practi-
and identically distributed (i.i.d.) data >from the normal cally insignificant. Procedures of this type are known as
distribution. As we point out in Section 2, few of the indifference-zone ranking and selection procedur€sm-
assumptions underlying the existing procedures will be valid prehensive reviews of ranking and selection procedures can
in steady-state simulation, particularly when only a single be found in Bechhofer, Santner and Goldsman (1995) and
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Goldsman and Nelson (1998). Both procedures studied We will base comparisons on the steady-state means,

here—one from Rinott (1978) and the other from Kim and w1, uo, ..., ug. Our consistency assumption implies that it
Nelson (2000)—are sequential, by which we mean they isreasonable to estimate by X; () for some suitably large
typically require two or more stages of simulation. r. What we need to make statistically valid selections in
Suppose that there are > 2 systems, and leX;; the steady-state simulation environment is a good estimator
denote theth independent observation from systenBoth for the sample mean’s variance. This is relatively easy if
procedures assume that tkig ~ N(u,-,aiz),with Wi andai2 we make replications, rather than a single long run, but

unknown, and that the data across systems are independentthen we have to solve the initialization problem on each
Also let X;(r) = r1 Z;’:l X;; denote the sample mean of  replication. This can be very inefficient if large chunks of
the firstr observations from systemn data need to be deleted from each replication. But worse, if

Rinott's (1978) procedure (RP) requires at most two we do a poor job of initializing then we can allow substantial
stages of simulation; it is one of the simplest and most bias to creep into our estimator. By making a single long
well-known R&S procedures. replication, we minimize the bias.

The fully sequential procedure (FSP), due to Kim and Rather than directly trying to estimate the V& (r)],
Nelson (2000), also allows elimination. This proceduretakes we can instead seek a good estimator of theri-
only a single observation from each alternative system still ance parameteror asymptotic variance consta)mtvi2 =
in play at each stage of simulation, and may choose to |im,_, ., rVar[X;(r)]. A number of relevant variance es-
cease sampling from systems that no longer appear to betimation techniques will be discussed in Section 2.3. We
competitive. incorporate these estimators into extended versions of RP

Both RP and FSP terminate with a single system that and FSP in Section 3.
is reported as the best. They could be applied “as is” to
steady-state simulation experiments provided we are willing 2.3 Variance Estimators
to make multiple replications of each alternative and use
the within-replication averages as the basic observations. |n this subsection we will review a few of the popular

In the following section we discuss reasons why such an estimators for the variance parametén These include

experiment design may not be desirable. batch means, overlapping batch means, and various stan-
. _ dardized time series estimators. All of the methods rely
2.2 Steady-State Simulation on the FCLT assumption (and other moment conditions) to

_ . _ produce asymptotically consistent estimates of the variance
Here we define what we mean by “steady-state simulation” parameter. All are intuitive: The batch means method uses

and set up the key assumptions. _ the sample variance of approximately i.i.d. sample means
Now let Xi1, X;2, ... denote the simulation output pro-  from contiguous batches of observations. The overlapping
cess >from theth alternative system. For exampl¥,; batch means technique, as its name suggests, uses a variance

could be thejth individual waiting time in theth queueing estimate based on a weighted sample variance of overlapped
system .unde?r consideration. These observations are typi- batch means — with full knowledge that these means are
cally neither independent—due to the natural dependence in highly correlated. Standardized time series estimators rely
the process—nor identically distributed—due to initializing on the fact that properly standardized stationary processes
the process in other than long-run conditions. They are also can be readily approximated as Brownian motion.

likely to be non-normal. However, for many processes, In all cases, we will work with batches of observations.
appropriate initialization (selection of initial conditions and  What will differ among the variance estimators is how the
truncation of some initial data) will yield an output pro-  estimation techniques process the batched data.

cess that approximately satisfies the following collection of

assumptions: 2.3.1 Batch Means
Stationarity: X;i1, X;2, ... forms a stationary stochas-

tic process. _ We can dividen observations, X;1, X;2, ..., X;,, into
Consistency: X;(r) — u; a.s. asr — oo. b contiguous batches, each of length (where we
Functional Central Limit Theorem (FCLT) There assume for convenience that = bm); the observa-

exist constantg:; and vi2 > 0 such that tions X, (j—1ym+1, Xi.(j—Dym+2; - - - » Xi.jm cOMprise thejth

batch,j = 1,2,...,b. The quantity
Lre]
1 (Xij — mi)
2 Z ) m
VT X :
Xijm = Z;Xi,(j—l)mﬂ’
p:

for 0 <t < 1, whereW(z) is a standard Brownian motion
(Weiner) process ang= denotes convergence in distribu-
tion asr — oo.

545



Goldsman, Marshall,

is called thejth batch mearfrom systemi. Under mild

conditions, it is known that witlth > 1 fixed,
mo& 2
s _ _
mVg = leZ(Xl/m - Xt(”))
j=1
vPx?(b -1
b—1

asn — oo (implying thatm — o0). The symbolx?(d)
denotes a chi-squared random variable withiegrees of
freedom. It can be shown that if the batch sizeand
the number of batches become large in a certain way
(Damerdiji 1994), themnV3 — v? almost surely (that is,
mV}3 is consistent fow?).

2.3.2 Overlapping Batch Means

Instead of working with asymptotically independent batch
means as we did above, we now considkrbatch means
of the form

1 m—1
Xi(j.m) = ;ZOXI-,W,
p:

for j 1,2,....n — m + 1. The observations
Xi j, Xi j+1, ..., Xi j+m—1 comprise thejth (overlapping)
batch from alternative.

The overlapping batch means (OBM) estimator for the
variance parameteri2 is simply

n—m+1 _ _ )
Yo (XiGom) = Xim)”.

j=1

nm
n—m+21)(n—m)

2 _
mVy, =

It can be shown that as the batch sizeand the ratiob =
n/m become large, the OBM estimator is consistentdl%r
(Damerdji 1994). Further, Meketon and Schmeiser (1984)
find that the distribution of this estimator is approximated

by

vZx%(d)
V2 1 ,
whered = |3(b — 1)/2].
2.3.3 Standardized Time Series

We now look at a completely different methodology for
estimatingvi2 known as standardized time series.
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Fori = 1,2,...,k, j = 1,2,...,b, and h

1,2, ..., m,thehthcumulative meafrom batch; of system
iis
1t
Xijn = ZX;Xi,(j—l)m—s—p-
p:

Fori =21,2,...,k, j=212,...,b,and 0< ¢ < 1, the
standardized time seri€fsom batch; of systemi is given
by

Lmt | (Xi jm — Xi,j,mt))

vi/m '
Schruben (1983) showed thatXf1, X;2, ..., X;, IS a sta-
tionary sequence satisfying certain mild moment and mix-
ing conditions, then ag — oo we haveT; ; ,(t) = B(1),
0 <r <1, a standard Brownian bridge process.

We denote the weighted area under the standardized

time series formed by thgth batch of observations >from
systemi by

Ti,j,m @ =

Aij =

S we/m)T; (€ m),
m

=1

where w(-) is a pre-specified weighting function that is
continuous on [0,1], not dependent an and normalized
so that

1
Var </ w(t)B(t) dt)
0

1 ru
= 2/ f wm)wt)t(l—u)dtdu = 1.
0 Jo

This expression can be simplified considerably; see Golds-
man, Meketon, and Schruben (1990) for details.
The (weighted) area (A) estimator fmf is

12
2 2
mVy ZE Ai’j
j=1

v2x2(b)
T

— b>1

One may ask: Why bother with the complication of
a weighting function? The answer stems from a closer
analysis of the small-sample bias of the variance estimators
for different choices of the weights. A judicious choice of
w(t) can result in the disappearance of the area estimator’s
first-order bias term, e.gw(r) = v/840(3t2 — 3t + 1/2),
which we use.
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2.4 R&S for Steady-State Simulation batches of size:; for the OBM estimator we formg—m+1
batches of size:. The degrees of freedom associated with

The question at hand is how to adapt R&S procedures each estimator aré = b — 1 for BM, d = b for A, and
to steady-state simulation problems. There have been ad = [3(b — 1)/2| for OBM.
number of attempts to do so, primarily extending two-stage Our extension of Rinott's procedure is as follows:
procedures such as RP. Key to any such extension is a way
to characterize the underlying variability of the stochastic Extended-Rinott's Procedure (ERP)
output process from each system, typically via an estimator Setup: Select confidence leveHy, indifference-zone
of the asymptotic variance constamﬁ. Goldsman (1983) parametes > 0, first-stage sample sizg > 2 and batch
and Nakayama (1995) suggest estimatiﬁglsing the batch sizem < no.
means method, while Goldsman (1985) proposes methods Initialization: Obtain Rinott’s constarit = i(d, k, 1—
based on standardized time series. These papers are closest) (Bechhofer, Santner, and Goldsman 1995).
in spirit to our extension of RP. Obtain ng observationsX;;, j = 1,2,...,ng, from

Iglehart (1977) estimated? using the regenerative  each systeni =1,2,....k.
method, a method that is less generally applicable than the Fori =1,2,...,k computenV?, the sample asymp-
ones we employ. Dudewicz and Zaino (1977) based their totic variance of the data from systeinLet
estimator ofv? on the assumption that the simulation out-
put process is well represented by an autoregressive order-1 { "hzm V.Z—‘ }

N; = maxj ng, L

(AR(1)) process, which is clearly not true in general. Sulli- 52
van and Wilson (1989) used an estimator of the simulation

output spectrum at frequency 0. o Stopping Rule: If ng > max N; then stop and select
Some of these procedures are heuristics, but others havey, o system with the largest; (n0) as the best.
provable asymptotic validity a& — O, which is a strategy Otherwise, takeN; — no additional observations
that we also employ. Of course, in a real problemma fixed Xinosts Xingr2 X; n, from each systeni for which
sno E) ,no E) ’ AN

guantity. However, establishing that a procedure is valid N; > no.

in this I|m|t|ng_sense shows that, as we become more and Select the system with the large&t(N;) as the best.
more demanding of the procedure in terms of its ability to

distinguish small differences, then we can be more andmore ~ The FSP is modified similarly, as shown below. In
confident that the procedure works. This seems like a useful the procedure, we estimate the asymptotic variance of the
assurance, since selecting the best is most difficult when difference,v? + vZ, by first forming the differenced series
even tiny differences matter. See also Nakayama (1997) and Di¢j = Xij — X¢j. j = 1,2, ..., then applying one of the
Damerdji and Nakayama (1996, 1999) for related asymptotic Variance estimators from Section 2.3 to the sefes.

analysis of multiple comparison procedures.
Extended-Fully Sequential Procedure (EFSP)

3 NEW PROCEDURES Setup: Select confidence leveHe, indifference-zone
parametes > 0, first-stage sample sizg > 2 and batch

We now assume that the output from each systém,i = sizem < no. Calculate

1,2,....k, j=12,..., is a stationary stochastic process

satisfying the assumptions of Section 2.2, and further that n= 1 {[2 (1 — (- a)l/(k—l)):I—Z/d_ 1} R
the systems are simulated independently. Implicit in these 2

assumptions are effectively solving any initialization-bias
problem, and not using common random numbers to induce at ;
dependence across alternatives. systems §II|| in contentl_on, and le€ = 25d.

We extend RP and FSP to steady-state simulation by ~ Obtain no observationsX;;, j = 1,2,...,no, from
replacing the first-stage variance estimator FSP) with an ©ach system =12, ... k. 5 _
estimator of the appropriate asymptotic variance constant ~ For all i # £ computemVy, the sample asymptotic
from Section 2.3. For RP we need an estimator of the variance of the difference between systeimand (. Let
marginal asymptotic variance, while for FSP we require S
an estimator of the asymptotic variance of the difference Ny — hemV5
between pairs of systems. it 82

To be specific, lei;1, Xio, ..., Xin, be the first-stage
sample from systern From this sample we form batches of and let
sizem and apply a variance estimat@¥f from Section 2.3.

In the case of the BM and A estimators we fabra= [n0/m | Ni = ’EZ.XNM
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Here N; + 1 is the maximum number of observations that
can be taken from system

If no > max N; + 1 then stop and select the system
with the largestX; (no) as the best.

Otherwise set the observation countex ng and go
to Screening

Screening: Set /%9 = J. Let

I = {i:ielO'dand

i) = Re(r)=Wie (), Ve € 199, ¢ £ i}
where

Wie(r) = max3 0, — —-r]t.
2cr

Stopping Rule: If |I] = 1, then stop and select the
system whose index is ih as the best.

Otherwise, take one additional observati®y. 1 from
each systeni € I and setr =r + 1.

If r = max N; + 1, then stop and select the system
whose index is i/ and has the largest; (r) as the best.
Otherwise go tdScreening

2 2
hemVy
52

Notice that in EFSP, as in ERP, the variance estimators
depend only on the first-stage data. We can show that if
mV?2 ~ v2x2(d)/d, then the EFSP achieves the desired
probability of correct selection as— 0. However, at best
this assumption will be approximately true. Therefore, we
also consider a further refinement of the EFSP in which we

update the variance estimators as more data are obtained.

In order to define the EFSP with updates, we need the
concept of a batching sequeneg: A batching sequence
m, is an integer-valued, nondecreasing functiornr ofith

the property thatn, — oo asr — oo.

Extended-Fully Sequential Procedure with Updates (EF-
SPU)

Setup: Select confidence leveHc, indifference-zone
paramete > 0, first-stage sample sizg > 2 and initial
batch sizem,, < ng. Setr = ng. Calculate

n = —log [2 (1 —1- oz)l/(k_l)>] .

Initialization: Let I = {1,2,...,k} be the set of
systems still in contention, and &2 = 2.

Obtain ng observationsX;;, j = 1,2,...,ng, from
each systemi = 1,2, ..., k.

Kim, and Nelson

Update: If m, has changed since the last update, then
for all i # ¢, computemrvl.%(r), the sample asymptotic
variance of the difference between systeiend ¢ based
on b, batches of sizen,. Let

2 2
Nie(r) = L—h m;‘z/iz(r)J

and let

Ni(r) = TEZ,XNM(V).

If r > max N;(r) + 1 then stop and select the system
with the largestX; (r) as the best.

Otherwise go tdScreening

Screening: Set/°d = J. Let

I = {i:ie[o'dand
i) 2 Re) = W), Ve € 199, ¢ £ i}
where
8 [ h?m.V3(r)
Wie(r)_maX{O,E<8—2—r .

Stopping Rule: If |I| = 1, then stop and select the
system whose index is ih as the best.

Otherwise, take one additional observation. 1 from
each systeni € I and setr = r + 1.

If r = max N; + 1, then stop and select the system
whose index is i/ and has the largest; (r) as the best.
Otherwise go tdJpdate.

Under very general conditions we can show that EFSPU
is asymptotically valid ag — O.

4 ANALYSIS

In this section we report on a portion of an extensive
empirical evaluation of ERP, EFSP and EFSPU. For this
study we focus on the ability of a procedure to terminate
quickly with a correct selection.

In the study we controlled the number of systems,
k; the number of first-stage observations,; the batch
sizem (or batching sequence,); the configuration of the
true meansy;; and the dependence structure within the
process. In all cases system 1 was the true best (had the
largest true mean). We obtained the simulation output data
from surrogate output processes that allow us to control the
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mean and dependence structure of the process, and to ini-observations, and the estimated PCS, of ERP and EFSP,
tialize the process in steady state. In this paper we report respectively, when SC configurations were tested and the

results for the AR(1) process outputs were weakly serially correlated. Tables 3 and 4
show corresponding results when the outputs were highly

Xij=pi +¢Xij—1— i) +Z; correlated. Not surprisingly, guaranteeing the nominal PCS

required a larger batch size with highly correlated data. For

where Z; iid N@©,1—¢?) and—1< ¢ < 1. example, the batch size should be larger than 200 when

¢ = 0.9. On the other hand, batches of size 7 could attain
a PCS of at least & « when¢ = 0.3.
Tables 5 and 6 show corresponding results when MDM

How strongly the outputs are correlated depends okiVe configurations were tested antl= 0.9. Note that PCS
varied ¢ over the range—0.3,0,0.3,0.6,0.9 to see the under the MDM configuration is higher than under the SC

4.1 Configurations and Experiment Design

performance of the new procedures under various levels of configuration, as expectgd. . ' .
correlation. When there is negative serial correlation, our variance

Wheng¢ = 0, we have independent data amgl= 24 estimators tend to overestimate the true variance, causing
is an adequate first-stage sample size to obtain variance the PCS of ERP and EFSP to always exceed the nominal

estimators of good quality. However, we need more data '€vel (no results are shown here). _ _
when outputs are highly correlated. To give afair comparison Notice that a choice of large batch size, which helps

across different levels of correlation, we chose the first-stage guarantee achieving the nominal PCS, comes at the cost
sample sizeng such that the ratio of the variance of of a very large total number of observations. Both proce-

observations12(no) = noVar(X (ng)]) and the asymptotic dures incorporate the uncertainty of the variance estimator
variance is approximately equal to 1; more specifically, (through their respectivé constants) when calculating the

11 — v2(ng)/v?| ~ 0.01. This guarantees that there is sampling requirements, with higher uncertainty increasing
enough data so that it is possible to estimae After ng the sampling requirements. The large batch-size choice
was determined (and it can be determined analytically for corresponds to a lower-bias, higher-uncertainty estimator of

the AR(1) process), all divisors ofg were employed as the variance of the data. The higher bias associated with
batch sizesn, implying no/m batches for BM and A, and  the small batch-size choice accounts for the degraded PCS

ng —m + 1 for OBM. performance. . '
The number of systems in each experiment varied over When the largest possible batch size was chosen, ERP

k=2 5.10. usually required fewer observations than EFSP did. How-
The indifference-zone parameter was set dto= ever, as we took smaller batch size, EFSP outperformed

v1/ /M0 Wherevf is the asymptotic variance of the best ERP in the sense that the total number of observations
system. Thuss is approximately the standard deviation of used was smaller, without substantially degrading the PCS

the first-stage sample mean of the best system. performance. ERP is not sensitive to the configuration
Two configurations of the true means were used: The of the means, while EFSP becomes more efficient under

slippage configuration (SC), in whighy was set t&, while the MDM configuration by effectively eliminating inferior

2 = uz = --- = ux = 0. To investigate the effectiveness systems early in the experimentation (see Tables 4 and 6).
of the procedures in eliminating non-competitive systems, 10 compare the performance of the different variance
monotone decreasing means (MDM) were also used. In the &Stimators, we used BM, OBM and A (with weighting

MDM configuration, the means of all systems were spaced functionw (). BM and OBM have about the same bias as
evenly apars from the previous mean. In all cases we set €Stimators of the asymptotic variance, but for lavgandb,
the marginal variance of each system to 1 OBM'’s variance is about/B smaller (Song and Schmeiser

For each configuration, 1000 macroreplications (com- 1995). A is first-ordered unbiased, but the variances of BM
plete repetitions) of the entire experiment were performed. ;nd A ar% about th? séa:cne. Thg exp(?[rlmenti sht())vael\;i thzt
In all experiments, the nominal probability of correct se- € procedures required fewer observations when an

. A where employed, instead of BM. The savings were more
lection (PCS) was set at-1 o = 0.95. ;

noticeable whem: was large. However, OBM usually had
higher PCS and consumed slightly more observations than
A, which implied a more conservative procedure. On the
other hand, A's PCS deteriorated somewhat more quickly
than OBM'’s as the batch size decreased.

Unfortunately, the performance of EFSPU was not good;
in our experiments it did not attain the nominal PCS. The

4.2 Summary of Results

Overall, ERP and EFSP worked well while EFSPU did not.

The nominal PCS, 1 «, was attained as long as the
batch size was not too small for ERP and EFSP. Tables 1
and 2 show the sample average of the total number of basic
549
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Table 1: ERP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1) Processes
Are Tested Withy = 0.3 andng = 70

sC sC
k=2 k=5
Observations PCS Observations PCS

m [ b BM[OBM|[ A[ BMJOBM ]| A BM | OBM | Al BM]JOBM] A
701 21121 0.970 168628 0.976
35| 2 | 20734| 2796 | 2874| 0.968 | 0.983 | 0.958 || 167861| 25176 | 25977 | 0.976 | 1.000 | 0.970
14| 5 || 1292| 1028 | 1108| 0.949| 0.948 | 0.945| 7507 | 5441| 6040 | 0.961| 0.965 | 0.957
10| 7 || 1016| 894 | 921 0.948| 0.945| 0.943| 5363 | 4454 | 4695 0.957 | 0.957 | 0.952
7|10 868 | 796 | 781| 0.943| 0.940| 0.935| 4328 | 3818 | 3842 0.952| 0.948 | 0.942
5|14 770 | 729 | 695|0.939| 0.937| 0.930| 3729| 3436| 3325| 0.948| 0.940 | 0.930
2 |35 563 | 554 | 1007 | 0.915| 0.913| 0.967| 2638 | 2574 | 4689 | 0.903| 0.901 | 0.981

Table 2: EFSP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1)

Processes Are Tested With= 0.3 andng = 70

SC SC
k=2 k=5
Observations PCS Observations PCS

m| b || BMIOBM|[ A[ BM[OBM| A BM [ OBM | Al BM[OBM]| A
70| 1 9004 0.977 362921 0.968
35| 2 || 8631 | 1590 | 1655 | 0.969 | 0.987 | 0.965 || 346873 | 17453 | 17810| 0.968 | 0.998 | 0.957
14| 5 760 665 480 | 0.958 | 0.959 | 0.940 4762 3766 3751 | 0.962 | 0.979| 0.955
10| 7 601 561 | 537 | 0.958| 0.955| 0.936 3193 | 2907 2818 | 0.949| 0.968 | 0.945
7 | 10 508 487 | 448 | 0.948 | 0.946 | 0.931 2442 | 2364 2180 | 0.941| 0.956 | 0.940
5|14 441 432 388 | 0.934| 0.935| 0.927 2068 2019 1814 | 0.936 | 0.951 | 0.930
2 |35 304 306 | 575 | 0.904 | 0.910| 0.970 1345 | 1344 2503 | 0.886| 0.892 | 0.980

Table 3: ERP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1) Processes

Are Tested With¢ = 0.9 andng = 1000

SC sC
k=2 k=5
Observations PCS Observations PCS

m [ b BM[OBM|[ A[ BM[OBM| A BM | OBM | Al BM]JOBM ] A
1000] 1 71182 0.969 227394 0.974
500 | 2 | 70518 | 38080 | 37697 | 0.967 | 0.982 | 0.958 || 227326 | 197880 | 182291 | 0.972| 1.000 | 0.969
250 | 4 | 23374 15980 | 18378| 0.949 | 0.947 | 0.950 || 133463| 86820 | 104375| 0.961 | 0.974 | 0.963
200 | 5 | 18379 14875| 15874 | 0.948 | 0.953 | 0.948 || 103709| 77466 | 85710| 0.961| 0.967 | 0.960
125 | 8 | 13449 | 12016 | 12169 | 0.942| 0.939 | 0.936 | 69625| 59357 | 60520 | 0.953 | 0.949 | 0.942
100 | 10 | 12377 | 11301 | 10580 | 0.947 | 0.939 | 0.933 || 61618 | 54751 52108 | 0.952| 0.951| 0.928
50 | 20 || 9742| 9409 | 6331| 0.930| 0.932| 0.886| 46466 44112| 30072| 0.933| 0.920 | 0.838
40 | 25 || 9022 | 8737 | 5112| 0.926| 0.918 | 0.872| 42327 | 40861 | 24135| 0.921| 0.923| 0.781
25 | 40 | 7346| 7202 | 2941| 0.911| 0.906 | 0.796 || 34400 | 33786 13785 0.885| 0.889| 0.625
20 | 50 | 6558 | 6472| 2291| 0.898| 0.896 | 0.769 || 30566 | 29969 | 10227 | 0.860 | 0.845| 0.541
10 | 100 || 4195| 4200 | 2000 | 0.842| 0.844 | 0.750 | 19411 | 19273| 5003 | 0.738 | 0.730 | 0.344
8 | 125| 3563| 3575| 2000 | 0.822| 0.827| 0.758| 16506 | 16408 | 5000 | 0.680 | 0.676 | 0.347
5 | 200 | 2448 | 2435| 2000| 0.789| 0.785| 0.759 || 11276| 11212| 5000 | 0.574 | 0.569 | 0.344
4 | 250 || 2129 | 2122| 2000| 0.765| 0.763| 0.760 | 9283 | 9215| 5000 | 0.519| 0.518 | 0.349
2 | 500| 2000| 2000| 2000 0.763| 0.765| 0.768| 5269 | 5273 | 5000 | 0.381| 0.381| 0.341

550




Goldsman, Marshall, Kim, and Nelson

Table 4: EFSP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1) Processes Art
Tested With¢ = 0.9 andng = 1000

sC sC
k=2 k=5
Observations PCS Observations PCS

m [ b BM | OBM | Al BM]JOBM] A BM | OBM | Al BM]JOBM] A
1000] 1 126041 0.959 5095955 0.960
500 | 2 | 119560 | 23306 | 24074| 0.966 | 0.975| 0.968 || 4874550 244495| 250245| 0.969 | 0.998 | 0.967
250 | 4 13831 | 10994 | 10713 | 0.956 | 0.952 | 0.944 || 103105| 67388| 69124 | 0.964 | 0.976 | 0.962
200 | 5 10915| 9588 | 9475| 0.940| 0.942 | 0.942 || 67271| 53183| 53352 0.954| 0.977 | 0.965
125 | 8 7946 | 7536 | 7166 | 0.940| 0.939 | 0.934 || 40957 | 37768| 34832 | 0.950| 0.968 | 0.932
100 | 10 7139 | 6935| 6065| 0.931| 0.940 | 0.924| 34962 | 33562| 29251| 0.942| 0.957 | 0.925

50 20 5437 | 5424 3558 | 0.919| 0.920 | 0.869 24843 | 24554 15173 | 0.921| 0.929 | 0.818
40 25 4976 | 4977 2957 | 0.910| 0.916 | 0.828 22362 | 22230 11659 | 0.910| 0.913 | 0.758
25 40 3996 | 3995 2169 | 0.885| 0.884 | 0.782 17298 | 17233 6806 | 0.892 | 0.870 | 0.646
20 50 3615 | 3613 2054 | 0.872| 0.871 | 0.766 15061 | 15051 5702 | 0.836 | 0.846 | 0.579
10 | 100 2476 | 2472 2000 | 0.815| 0.809 | 0.749 8954 8946 5002 | 0.703 | 0.707 | 0.497
8 120 2275 | 2276 2000 | 0.788 | 0.790 | 0.749 7635 7635 5000 | 0.670 | 0.668 | 0.496
5 200 2064 | 2063 2000 | 0.765| 0.765 | 0.749 5847 5850 5000 | 0.586 | 0.590 | 0.496
4 250 2028 | 2028 2000 | 0.756 | 0.755 | 0.749 5440 5439 5000 | 0.555| 0.554 | 0.496
2 500 2000 | 2000 2000 | 0.749 | 0.749 | 0.749 5022 5022 5000 | 0.499 | 0.498 | 0.496

Table 5: ERP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1) Processes Are
Tested With¢ = 0.9 andng = 1000

MDM MDM
k=2 k=10
Observations PCsS Observations PCS

m [ b BM [ OBM [ A BM [ OBM [ A BM [ OBM [ A BM [ OBM [ A
1000 | 1 227439 0.990 476269 0.994
500 2 227293 | 198000| 182388 0.989 | 1.000 | 0.987 || 476523 | 465164 | 423794 | 0.995| 1.000 | 0.994
250 4 133365| 86683 | 104241 | 0.985| 0.989 | 0.988 || 345137 | 239476 | 285257 | 0.992 | 0.995| 0.994
200 5 103616 | 77483 | 85654 | 0.986| 0.987 | 0.986 || 284246 | 211784 | 239353 | 0.992 | 0.996 | 0.993

125 8 69617 | 59302 | 60542 | 0.986| 0.981 | 0.982 || 190422 | 157110| 163794 | 0.990 | 0.992 | 0.991
100 | 10 61562 | 54751| 52103 | 0.984 | 0.982 | 0.976 | 165393 | 144198 | 139748 | 0.993 | 0.991 | 0.988
50 20 46472 | 44112| 30080 | 0.977| 0.976 | 0.953 || 121198 | 114408 | 78225| 0.988 | 0.986 | 0.967
40 25 42340 | 40828 | 24146 | 0.976| 0.977| 0.932 || 110617 | 105759 | 62608 | 0.988 | 0.986 | 0.950
25 40 34384 | 33786| 13783 | 0.960 | 0.964 | 0.865| 88956 | 86658 | 35666 | 0.980| 0.980 | 0.906
20 50 30573 | 29969 | 10227 | 0.956 | 0.956 | 0.834 || 79192 | 77045| 26296| 0.974| 0.970| 0.868
10 | 100 19407 | 19281 5003 | 0.915| 0.911| 0.738 | 49901 | 49622 | 10307 | 0.942| 0.935| 0.728
8 125 16507 | 16401 5000 | 0.891| 0.893 | 0.735| 42459 | 42178| 10000 | 0.921| 0.920| 0.724
200 11273 | 11213 5000 | 0.843 | 0.846 | 0.725| 28828 | 28694 | 10000 | 0.882| 0.878| 0.729
250 9282 9214 5000 | 0.817 | 0.818 | 0.734| 23736| 23751| 10000 | 0.850| 0.853| 0.732
500 5270 5273 5000 | 0.731| 0.735| 0.722 12765| 12759| 10000| 0.762 | 0.768 | 0.736

N &~ O1
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Table 6: EFSP’s Sample Average Total Number of Basic (Unbatched) Observations and PCS When AR(1) Processes A
Tested With¢ = 0.9 andng = 1000

MDM MDM
k=2 k=10
Observations PCS Observations PCS
m | b BM [ OBM | Al BM[OBM]| A BM [ OBM | Al BM[OBM]| A
1000| 1 3094055 0.986 16678305 0.993
500 2 3006572 | 150354 | 154090| 0.987 | 1.000 | 0.985 |[16863872| 394457| 384010| 0.994 | 1.000 | 0.997
250 4 61829 | 42802 42919 | 0.985| 0.992 | 0.988 128588 | 80301 82144 | 0.990 | 0.997 | 0.995
200 5 41548 | 33898 33358 | 0.986 | 0.991 | 0.988 78519 | 60704 60317 | 0.996 | 0.998 | 0.993
125 8 25892 | 23887 22127 | 0.982| 0.987 | 0.983 44429 | 40656 38477 | 0.991 | 0.995| 0.989
100 10 22241 | 21245 18315| 0.978 | 0.984 | 0.982 37461 | 35593 31254 | 0.995| 0.994 | 0.989
50 20 15727 | 15773 10534 | 0.975| 0.979 | 0.943 26254 | 26087 18296 | 0.988 | 0.989 | 0.962
40 25 14476 | 14372 8569 | 0.972| 0.975| 0.912 23930 | 23759 15438 | 0.982 | 0.984 | 0.946
25 40 11526 | 11535 5999 | 0.958 | 0.952 | 0.832 19496 | 19416 11607 | 0.974 | 0.975| 0.867
20 50 10286 | 10268 5380 | 0.943| 0.943 | 0.785 17666 | 17636 10710 | 0.964 | 0.967 | 0.809
10 100 7125 7127 5001 | 0.891| 0.891| 0.721 13161 | 13171 10006 | 0.921 | 0.918 | 0.735
8 120 6398 6404 5000 | 0.863| 0.862 | 0.718 12226 | 12210 10000 | 0.899 | 0.897 | 0.733
5 200 5486 5485 5000 | 0.788| 0.787 | 0.718 10873 | 10872 10000 | 0.824 | 0.825| 0.732
4 250 5267 5267 5000 | 0.771| 0.773| 0.718 10476 | 10476 10000 | 0.802 | 0.802 | 0.732
2 500 5015 5015 5000 | 0.725| 0.725| 0.718 10042 | 10042 10000 | 0.744 | 0.743 | 0.732
key factors in the performance of our fully sequential pro- « Even assuming the initialization-bias problem is

cedures are the variance estimators and the parameter
In EFSPU, the computation of is based on the assump-
tion that the variance estimator is very close to the true
asymptotic variance; essentially, we are pretending tRat

is known. Although this is asymptotically valid &s— 0, in
practice it results in a continuation region that is too narrow,
leading to a greater than desired chance that good systems
are eliminated. For instance, even with independent data
the PCS of EFSPU was aroundB0 We are investigating
modifications of this procedure that use a larger valug of
because we believe that variance updating has the potential
to lead to improved procedures.

5 THE FUTURE

The empirical evidence presented here, as well as other
analysis we have undertaken, convinces us that R&S proce-
dures can be applied to steady-state simulation problems in
which only a single replication is obtained from each system.
Procedure ERP has the advantage that data can be collected
from each system without reference to the others, making it

solved, there is still a fundamental question of
when enough data have been collected to have a
statistically valid first-stage sample (what we call
np). For ERP and EFSP, enough data must be
collected to have an approximately (scaled) chi-
squared variance estimator with low bias. When
data are highly dependent this is difficult to de-
termine. Since EFSPU updates the variance es-
timators, it may be able to overcome errors in
determining an acceptable initial sample size or
batch size provided it does not terminate too early.
None of the new procedures introduced here di-
rectly incorporate the variance reduction technique
of common random numbers (CRN). CRN can be
effective at reducing the sample size required to
reach a correct selection, as shown in Kim and
Nelson (2000) for FSP. Because CRN induces
dependence across systems, and we already have
dependence within replications, it becomes difficult
to provide procedures that account for both.
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