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ABSTRACT

What actuaries call cash flow testing is a large-scale
simulation pitting a company�s current policy obligation
against future earnings based on interest rates.  While life
contingency issues associated with contract payoff are a
mainstay of the actuarial sciences, modeling the random
fluctuations of US Treasury rates is less studied.
Furthermore, applying standard simulation techniques,
such as the Monte Carlo method, to actual multi-billion
dollar companies produce a simulation that can be
computationally prohibitive.  In practice, only hundreds of
sample paths can be considered, not the usual hundreds of
thousands one might expect for a simulation of this
complexity.   Hence, insurance companies have a desire to
accelerate the convergence of the estimation procedure.
This paper reports the results of cash flow testing
simulations performed for Conseco L.L.C. using so-called
quasi-Monte Carlo techniques.  In these, pseudo-random
number generation is replaced with deterministic low
discrepancy sequences.  It was found that by judicious
choice of subsequences, the quasi-Monte Carlo method
provided a consistently tighter estimate, than the traditional
methods, for a fixed, small number of sample paths.  The
techniques used to select these subsequences are discussed.

1 INTRODUCTION

The insurance industry faces a number of challenging
simulation problems.  Of course, the actuarial sciences are
largely devoted to modeling human life expectancy and the
occurrence of disease.  But the financial health of the
insurance providers themselves heavily depends on making
the proper response to the changing economic landscape.
Their ability to payoff insurance contracts 30 years from
now is strongly tied to investment decisions made today.

Being aware of this, federal regulation requires
insurance providers to prove they will be solvent 30 years
from now.  This area of actuarial science is called cash
flow testing.  Each year, insurance companies must run
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simulations of their investment earnings pitted against the
multiplicity of obligations they incur.  In principle, their
investment strategies should be market independent in the
sense that money will remain to pay off all contracts
regardless of the behavior of the marketplace.

Of course, investment strategies of an insurance
company are also regulated and are mostly limited to
investing in bonds with various levels of limited risk.  The
value of these bonds is derived from the prevailing interest
rates.  Since insurance companies are allowed to move
their investments from short-term to long-term bonds as
the market changes, simulating long-term solvency
ultimately focuses on modeling the 90-day and 10-year
treasury rates.   (Intermediate rates are interpolated from
these base rates.)

Federal regulation of cash flow testing requires
insurance providers to consider a set of possible interest
rate scenarios called the New York Seven.  These represent
seven simple market behaviors from boom to bust.  It is
important to note the actuarial software required to
demonstrate solvency in these situations does not depend
directly on the nature of the New York Seven, allowing a
more ambitious simulation.  By modeling the short-term
and long-term interest rates as stochastic processes, it is
possible to use this existing software to perform a Monte
Carlo estimation of the company�s future profit, allowing
management to fine-tune investment procedures.

There are two major challenges to this simulation
process.  First, a good model of the interest rates is needed.
In this paper, we used an interest rate model commonly
accepted in the industry, and our examination of the
stochastic scenarios produced using this model found they
reasonably replicated the distribution of the historical rates.
But even with this foundation, the run-time of the resulting
Monte Carlo simulation is stifling.  Sometimes days are
required to get even a crude estimate.

A possible means of overcoming these challenges
involves the use of deterministic low discrepancy
sequences instead of pseudo-random number in the
simulation.  Using number theoretic methods, a low
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discrepancy sequence attempts to fill space uniformly, not
mimic randomness.  Monte Carlo simulations using these
sequences, dubbed quasi-Monte Carlo, have outperformed
traditional methods in a number of complex financial
simulations.  While this technique was not expected to
shorten the run-time length, it was hoped the quasi-Monte
Carlo approach would tighten the estimate, given the
available computation time for the simulation.

The main difficulty encountered in apply quasi-Monte
Carlo methods to cash flow testing simulations is the
limited number of sample paths.  The performance gains
obtained from the use of low discrepancy sequences are
observed for a large number of sample paths, maybe even
hundreds of thousands.  Limited attention has been given
to the small sample path case.  Motivated by a few existing
observations, we used various techniques to encourage
rapid convergence in this small sample path setting.  We
were able to consistently improve the quality of the
estimates, as compared to traditional Monte Carlo methods,
for a variety of actual insurance products and companies.
While some of the techniques we utilized have been
suggested in the literature, others are original and based on
our empirical investigations.  We believe this work
strongly justifies further analytical investigation into our
construction techniques and are currently pursuing it.

Section 2 examines interest rate models and discusses
the one we used.  Section 3 introduces low discrepancy
sequences and examines how we accelerated convergence
of the simulation by using subsequences of the originally
posed constructions.  In Section 4, we present the results of
several simulations using actual corporate models.

2 INTEREST RATE MODELS

The 90-day and 10-year interest rates are modeled using a
coupled, two-factor, mean reverting random walk.  Of
course, two-factor refers to the number of rates being
modeled.  The rates are coupled in the sense a change in
one affects the other.  As an example of this coupling, we
would anticipate the 10-year rate to be higher than the 90-
day rate, since a longer commitment warrants a larger
return.  When this is not the case, it is called an inversion.
There have been several instances of inversions since the
1970�s. (See Figure 1.) The rates are mean reverting in that
they do not grow without bound, unlike traditional stock
market models.  Instead, they tend to oscillate around an
average level for prolong periods of time.   Of course, this
is due to strong governmental and market forces designed
to keep interest rates in check.

2.1 Review of Interest Rate Models

Unlike the lognormal random walk used in Black &
Scholes models of the stock market, interest rate models
rarely offer an explicit solution of the underlying stochastic
51
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Figure 1:  Historical 90-Day (Darker Line) and 10-Year
Treasury Rates (Lighter Line).

differential equation.  Various approximate solutions and
special cases have been explored in the literature.  Vasicek
(1977) proposed a basic mean-reverting model

*)( ttt dWdtbradr σ+−=

where tr  is the short term rate, *
tW  is a one dimensional

Brownian motion, and a , b , and σ  are positive constants.
This model is considered mean-reverting because it admits
a stationary Gaussian distribution with mean ba /  and
variance )2/(2 bσ , which is viewed as the mean interest
rate distribution.  Various other single-factor, mean
reverting models have been proposed, such as those of
Cox, Ingersoll, and Ross (1985) and Longstaff (1989).
Most of the variations have features improving
implementation in a particular form of financial derivative.

In simultaniously modeling short-term and long-term
interest rates, one must account for their natural coupling.
This gives rise to so-called two-factor models.  The one
described by Ho (1995) closely resembles our
implementation.  (Note that he gives credit to Brennan and
Schwartz (1979) and Longstaff and Schwartz (1992).)
Consider rates tr  and ts  satifying

*
2

*
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ttt

tttt

dVsds
dWrdtbradr
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σ
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where ),( **
tt VW  is a two-dimensional Brownian motion

with dependent components satisfying dtdVdW tt ρ=** .

1σ  and 2σ  are the standard deviations of the short-term
and long-term rates and ρ  is a measure of their

correlation.   Notice the short-term rate, tr , is much like

the Vasicek model. The long-term rate, ts , is basically
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derived from the short-term rate via the correlation of the
two Brownian motions.  Ang and Sherris (1997) have
examined specific application of two-factor models to the
cash flow testing problem.

2.2 Discussion of TAS Model

For purposes of the experiments performed at Conseco, we
used the interest rate model employed by the Tillinghast
Actuarial Systems (TAS), which is the software system used
by Conseco to perform cash flow testing, among many other
tasks.  The TAS algorithm for generating an interest rate
scenario is based upon the lognormal distribution.  For each
quarter over the duration of the simulation (up to 31 years),
two uniformly distributed pseudo-random numbers are
generated.  These are transformed into lognormal deviates,
using volatility parameters specified by the actuaries.  The
90-day rate is transformed first, and then this value is
coupled to the 10-year rate using the correlation factor.
These two random walks, as they evolve in time, are subject
to a series of somewhat empirical transformations to force a
desired qualitative behavior. For example, one
transformation involves forcing the return of the interest
rates to a specified mean, at a specified rate, in a user-
controlled time period.  Another empirical transformation
controls the duration of an inversion.  Finally, artificial
boundary conditions are imposed on the interest rates.  The
rates are given an elastic response, as specified by the
actuaries, to upper and lower boundaries. This causes the
rates to literally �bounce back� into the desired range.  For
more detailed information on this interest model, see the
formulae section of the TAS documentation

This model includes a number of financial and non-
financial parameters.  Before proceeding with the
simulations, the actuaries study the distribution of the
generated scenarios in comparison with historical rates.
Non-financial parameters are then adjusted improve the
replication of historical behavior.

3 QUASI-MONTE CARLO SIMULATIONS

A traditional Monte Carlo simulation using the TAS
generated interest rates calculates the desired quantity,
such as profit, for each interest rate scenario.  A number of
these scenarios are generated, and the desired estimation is
the arithmetic average of the profits corresponding to each
individual scenario.  This amounts to an estimation of the
profit�s expected value, which is an integration over the
sample space.  In this case, the sample space has dimension
248 (8 random numbers per year times 31 years).
Traditionally, the Monte Carlo method has been the
preferred technique for such high dimensional numerical
integration.  It can be shown that the errors in the estimates
converge to zero like )/1( NΟ  where N  is the number of
sample paths, Niederreiter (1992).
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Recently, attention has been given to a sister
technique, known aptly as the quasi-Monte Carlo method.
Instead of using pseudo-random numbers, a low
discrepancy sequence is generated in the unit hypercube.
Low discrepancy sequences do not attempt to mimic
randomness, but instead attempt to fill the hypercube as
uniformly as possible.  Numerical integration using low
discrepancy sequences in a Monte Carlo-like fashion often
has an observed order of convergence of )/1( NΟ . (See
Ninomiya and Tezuka (1995) for solid examples of this
behavior. Note the actual proven bound is less generous,
Niederreiter (1992).)

The claims of the convergence rates are particularly
attractive to the actuaries performing cash flow testing
simulations since the number of sample paths is limited to
hundreds by practical considerations, instead of tens of
thousands to millions as in most academic investigations.
As an example of the practical limitations, a single scenario
for the American Life Company, a multi-billion dollar
insurance provider owned by Conseco, takes about 20
minutes on a Pentium II 450MZ.  To do a Monte Carlo
simulation involving hundreds of scenarios takes days and
generates many gigabytes of data and challenges system
resouces.  Therefore, the simulations are limited to 100 to
200 scenarios in practice, which creates their desire to have a
consistently tight estimate for this number of sample paths.

3.1 Low Discrepancy Sequences

Discrepancy is a set theoretic measure of the distribution of
a point set in the unit hypercube of some space.  Intui-
tively, a sequence is declared as having low discrepancy if
it uniformly fills space as the number of points in the
sequence goes to infinity.  The original constructions of
low discrepancy sequences belong to Faure (1982), Halton
(1962), and Sobol� (1967), to name a few.  Niederreiter
(1992) has developed a unifying construction technique
that encompasses much of the earlier work.  Tezuka (1993)
has produced a generalization of Niederreiter�s construc-
tion, uniting it with Halton sequences.

The basic elements in constructing a low discrepancy
sequence have been the same for most of the past decade
and are succinctly described in Niederreiter (1992).  The
construction process involves sub-dividing the unit
hypercube into boxes of fixed volume that have faces
parallel to the cube�s faces.  The goal is to put a point in
each of these boxes before proceeding to a finer scale.

To generate the thn  element of a low discrepancy
sequence in s dimensional space, a prime integer b  is
chosen and n  is expanded in base b .  That is,

r
r

r
bnan )(
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where }1,,2,1,0{)( −∈ bnar K .  The thi component of the
thn  element of the sequence is
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All of the arithmetic is done modulo b  to ensure that
}1,,2,1,0{)( −∈ by i

nj K .   The collection of coefficients )(i
jrc  is

known as the thi generator matrix.  How these matrices are
constructed distinguishes the various methods.

3.2 Choice of Generator Matrices

While most of these sequences have been explored in the
setting of computational finance, the work of Ninomiya
and Tezuka (1995) suggested two types seem to have the
best performance for a variety of high-dimensional finance
problems.  Following their lead, we implemented the
Nedereitter construction for a base 2 sequence, (Bratley,
Fox, and Niederreiter (1992)), and Tezuka�s (1994) so-
called Generalized Faure sequence based upon polynomial
Halton sequences.

3.2.1 The Niederreiter Generator Matrices

Let )(xpi be an irreducible polynomial over the finite field

2F .  It is used to generate the coefficients of the thi
generator matrix by choosing certain coefficients in the
Laurent series expansion

∑
∞

−=

−−=
kr

ri
j
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.

The coefficients ),,()( rkja i  are determined by multiplying
both sides of the equality by j

i xp )( , expanding the right-
hand-side, grouping together powers of x , and equating
coefficients of the x  terms.  The )(i

jrc  are chosen from
among these in a manner detailed by Niederreiter (1992).
Working in base 2 is particularly attractive since the finite
field operations reduce to the standard binary XOR and
5

AND. (See Niederreiter (1992) and Bratley et al (1992) for
details).

The uniformity of the sequence being generated can be
shown to depend on the quantity

∑ =
−=

s

i ib psT
1

)1)(deg()( .

This dependence is such that small )(sTb  implies low
discrepancy.  Therefore, the irreducible polynomials of a
specific degree should be exhausted before moving to a
higher degree in order to achieve the lowest discrepancy.

3.2.2 The Generalized Faure Generator Matrices

Unlike the recursion formula described above, Tezuka and
Tokuyama (1994) produced a closed-form expression for
the generator matrix.  Their algorithm requires a prime
number sb ≥ .  Then the ),( ji  component of the thh
generator matrix is

∑
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The numbers sbbb ,,, 21 K are distinct elements of the finite
field of order b .  Since the elements of Pascal�s triangle
can be computed with a simple recursion relation, these
generator matrices are a fairly simple computation.

Sequences produced using this type of generator matrix
are called �Generalized Faure� because of the similarity with
the sequences constructed by Faure.  The generator matrices
in Faure�s construction are powers of the triangular matrix
associated with Pascal�s triangle. Both Niederreiter and
Tezuka have produced general construction algorithms that
ultimately include some form of binomial coefficients,
suggesting an interesting tie between low discrepancy
sequences and combinatorial theory.

3.3 Selected Subsequences

Since low discrepancy sequences are not attempting to
mimic randomness, the first elements of the sequence often
appear in a very predictable fashion.  In fact, a large
number of elements may be required before the unit
hypercube has been covered.  For example, in Figure 2, the
first 500 points of the Generalized Faure sequence in 250-
dimensional space have been calculated, and the first and
second coordinates have been plotted.
20
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Figure 2:  Components 1 and 2 of the First 500 Elements of
the Generalized Faure Sequence in 250-dimensional Space.

Obviously, the components were nearly identical.
Increasing to 3000 points, Figure 3 demonstrates the
banded nature of the filling process.  Apparently, a large
number of points would be required before the hypercube
is covered. With a moments reflection, it is seen an
individual coordinate of the initial elements of the
sequence is of the from

21 )251()251( −− + ba ,

since 251 is the first prime larger than 250.  For this choice
of generator matrix, it is also observed that for all
coordinates, we have

K+= −1
0

)(
)( )251)((nax i

n .
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Figure 3:  Components 1 and 2 of the First 3000
Elements of the Generalized Faure Sequence in 250-
dimensional Space.
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Hence the work of covering the cube is being done by
higher order terms, suggesting that over 2250  elements are
needed to �cover� the cube.  From this, one might deduce
Generalized Faure sequences are not appropriate for cash
flow testing, since this number is many orders of
magnitude too high for their simulations.  However, using
the subsequence constructions to be discussed, some
success was achieved.

On surface appearance, the Niederreiter sequences
have more promise because the generator matrices are not
identical for the first term in the expansion.  Furthermore,
the method does not require working in a base higher than
the dimension of the space.  In fact, base 2 is standard due
to the simplicity of the finite field operations.

Figure 4 seems to support our hopes.  The distribution
of the first 500 points has few gaps and offers a uniform
covering.  However Figure 5 is less encouraging.  As can
be seen, coordinates 47 and 48 of the sequence were quite
similar.  After careful examination, it is revealed the
generator matrices for these coordinates are nearly identi-
cal, and this is traceable to the irreducible polynomials
used to produce the matrices.  The polynomials differ only
slightly in the highest powers.  In fact, many of the
irreducible polynomials of the finite field of order 2 differ
only in two coefficients and that is for a term of degree 8 or
higher.  Said in another way, the generator matrices for
these coordinates will create elements that differ only for
larger values of n .  Once again, this seems to preclude
cash flow testing simulations.
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Figure 4:  Coordinates 1 and 2 of the First 500 Points in a
Niederreiter Sequence  Base 2.

3.3.1 Subsequence Selection

Our motivation for using subsequences to accelerate the
simulation process originated with a paper by Kocis and
Whiten (1997).  To provide a historical perspective of their
work, it had been suggested earlier that 40=s  was the
1
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practical limit for quasi-Monte Carlo simulations (Bratley
et al (1992)).  In the time since that paper, a number of
applied simulations in high dimension have observed
excellent performance.  For instance, Paskov and Traub
(1995) saw excellent convergence results for a
collateralized mortgage obligation with 360=s .  As an
attempt to formally challenge this limitation, Kocis and
Whiten (1997) performed a thorough investigation of
numerical integration over domains of dimension up to
400.  They concluded low discrepancy sequences
performed well, thereby further dispelling the concerns of
Bratley et al (1992).  Kocis and Whiten also recognized the
problem with the initial elements systematically filling
space and introduced leaping over some elements of the
sequence to accelerate the filling of space.  By leaping they
mean, selecting a periodic subsequence, say every thp
term.  Their analysis was focused primarily on Halton
sequences, though they did offer some comment on Sobol�
sequences.  They did not examine either of the sequences
in this paper.  Yet their empirical success encouraged our
similar investigation using the Niederreiter and
Generalized Faure sequences.

The process we used to select the subsequence
involved two parameters: the starting integer 0N  and the
leaping factor p .   The subsequence used in the simulation
can be expressed as

)()(
0

i
npN

i
n x +=χ .

The governing premise in the selection of 0N  and p  is
the quasi-Monte Carlo simulation will be improved, when
only a limited number of sample paths is available, if the
subsequence nχ  covers the 250-dimensional hypercube as
uniformly as possible.  (It should be noted there is no
additional computational cost in this implementing this
premise since the intermediate p  elements do not need to
be calculated.)  One approach to implementing this premise
would be to generate N  points for a given 0N  and p then
calculate the discrepancy of the resulting point set.  This
could be repeated for a large set of choices of these
parameters.  The values selected for implementation would
be the ones corresponding to the lowest discrepancy.
Unfortunately, the mathematical definition of discrepancy
of a point set in the unit hypercube involves a supermum
over all Lebesgue-measurable subsets.  This, of course,
would require an uncountable number of operations.

An alternative approach would be to use the 2L -
discrepancy examined by Hickernell (1996).  Calculating
the 2L -discrepancy involves a double summation over the
point set of size N .  Using the process described above, it
should be possible to estimate optimal choices of 0N  and
52
p  for fixed N .  This approach is currently under
investigation.

What is offered in this paper is a softer, more
empirical version of the above stated procedure, which can
be (and was) accomplished in a corporate setting. While
this method will probably not find the optimal parameters
in a strict mathematical sense, it was easy to do and has
performed well in a variety of applications.

Basically, a qualitative study was done.  Some thought
was given to properties p  should process, and then cross
sectional pictures, such as those in Figures 2-5, were
examined.  The goal was to find values of 0N  and p  that
would make the cross section in Figure 5 look more like
that in Figure 4, for example, uniformly across all 250
coordinates for the chosen number of points N .
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Figure 5:  Same as Figure 4 Except Coordinates 47 & 48.

3.3.1.1  Niederreiter Sequences

Beginning with the Niederreiter sequence, the choice of p
focused on the irreducible polynomials for base 2.  The
algorithm used to produce the generator matrices, as
described above, utilizes a recursive relationship involving
the coefficients of the polynomials.  To produce a low
discrepancy sequence in a 250-dimensional hypercube, the
first 250 irreducible polynomials are required. Grouping
the polynomials by degree and exhausting the list of
polynomials of one degree before going to the next higher,
means that degree 11 is reached.  Furthermore, it was
observed that often only two coefficients of the
polynomials differ.  For example,
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11111101101

2

2

2



Hilgers
(Note that the coefficients are just 0 or 1 in the finite field
of order 2, so polynomials can be succinctly expressed as a
string of bits.)  Intuitively speaking, there will be a
similarity between the generator matices of adjacent
coordinates for similar polynomials.  Furthermore, the base
2 expansion of n  will need some of the higher powers of 2
in order to captialize on the difference between the
generator matrices.  As a starting point, we examined

rp 2=  where r  is larger than the degree of the term for
which the polynomials differ. It was soon observed that

1024210 ==p produced a nice dispersion for 500 points,
see Figure 6.
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Figure 6:  Same as Figure 5 with a Leap of 1024.

One other observation resulting from this qualitative
study of the discrepancy of subsequences of the Niederreiter
construction was that the coordinates produced by
irreducible and non-primitive polynomials seemed
problematic.  Niederreiter required irreducible polynomials
for his construction so he could perform a partial fraction
decomposition of a rational function.  Further restricting to
primitive polynomials would raise the value he labeled as

)250(2T , which describes the fineness of the distribution of
the sequence thereby increasing the discrepancy of the
sequence.  Ultimately, for our cash flow testing simulation,
all non-primitive polynomials were omitted.  In fact, some
primitive polynomials were omitted, because they did not
cooperate with a choice of p  that seemed to work well with
most of the other 250 coordinates.

This analysis was attempted for 100,250,500=N .
The smaller values of N  increased the values of p . For

500=N , the value of 0N didn�t seem to matter and was
taken to be 1.  The value 108822 610 =+=p  seemed to
perform best.  Likewise, for 250=N , the values of

129127
0 =+=N  with 1310711217 =−=p  were identi-
5

fied as reasonable choices. Little success was achieved for
100=N .

3.3.1.2  Generalized Faure Subsequences

It proved to be more difficult to produce appropriate
choices of 0N and p  for Generalized Faure subsequences.
The diagonal bands of Figures 2 & 3 seemed present in
most subsequences.  As with the Niederreiter subse-
quences, powers of the base b seemed a reasonable place
to begin.  For 250-dimensional sequences, the next larger
prime number is 251=b .  Examining Figure 7, we see that
for 500=N , 10 =N , and 251== bp  a series of
diagonal strips was produced.
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Figure 7:  Same as Figure 2 with Leap of 251.

Many other values of the leap parameter were tried.
Most involved powers of the base shifted by a small amount.
Inevitably, some coordinates produced cross-sectional
graphs like Figure 7 or with even fewer diagonal strips.
Examining the generator matrices offered some insight as to
why these patterns are produced, but no choice of para-
meters seemed to uniformly remove it.  These matters are
under further investigation.  For purposes of this simulation,
we used the values of the parameters already mentioned.

4 CASH FLOW TESTING SIMULATIONS

Three simulations were performed.  The first was a
simulation of a single premium deferred annuity.  The
others involved cash flow simulations of entire companies
owned by Conseco.  A mid-sized company, Massachusetts
General Life, was chosen for the second simulation.  The
final simulation involved the largest insurance provider
owned by Conseco, American Life Company.  In all of the
studies, the quantity estimated was the present value of the
book profit after taxes.
23
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4.1 A Single Premium Deferred Annuity

The numerical experiments began with a quasi-Monte
Carlo simulation of a single product an insurance company
might carry.  We chose a single premium deferred annuity
product carried by one of Conseco�s subsidiary companies.
This product can be viewed as an interest bearing bank
account into which a single deposit is made.  The amount
of interest paid depends on current market conditions.
First, we attempted to measure the improvement the use of
our subsequences might offer relative to the originally
posed algorithms.

Figure 8 shows the estimate produced by the standard
algorithm is still increasing after 750 interest rate
scenarios. The simulations utilizing the subsequences seem
to have converged fairly quickly and are not far from the
resulting estimate at the desired value of 250 scenarios.
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Figure 8:  Niederreiter with and without Leaping

The situation is even more dramatic for the
Generalized Faure sequences, as shown in Figure 9.  As
observed earlier, the standard algorithm produces a
sequence that fills the cube in a slow, systematic fashion.
The estimate is again increasing and has not converged by
750 scenarios.  However, the subsequence selection
discussed above produced an estimate that seems to have
approximately converged within the specified number of
scenarios, even with the problems that where identified.

Figure 10 shows the modified quasi-Monte Carlo
simulations converge to the same estimate and also agree
with a traditional Monte Carlo simulation using the
pseudo-random number generator in TAS.  Furthermore,
the estimates produced by the use of low discrepancy
subsequences are much tighter in the 100 to 200 ranges
than was the traditional simulation approach.  So our use of
subsequences in the quasi-Monte Carlo method in this cash
flow testing simulation achieved the desired goal.
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Figure 9:  Generalized Faure with and without Leaping.
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Figure 10:  Comparing against Random Number Generation.

4.2 Massachusetts General Life

Encouraged by the results of a cash flow simulation of a
single product, the experiment continued with the
simulation of an entire company.  Now facing the real
world constraints of time and space, this simulation was
limited to 400 interest rate scenarios.   It is difficult to
conclude from any of the performances that the simulation
had converged.  Note that the dollar amounts involved
were large.  The book profit was on the order of
$27,000,000.

In Figure 11, the relative errors of several of the
simulations are plotted.  The Niederreiter subsequences
and TAS generated random numbers were in some
agreement at the end of the simulation, so their estimations
were used to calculate the relative errors.  Notice the
Generalized Faure subsequences did not perform as well
for this much larger simulation.  Also, the estimate they
produce depends, in this case, strongly on the seed used to
initiate the pseudo-random number generation. This has
been observed in other financial simulations and cannot be
24
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Figure 11:  Convergence Study of MGL Including Two
Different Random Number Sequences Differing by Choice
of Initial Seed.

remedied by increasing the number of sample paths.  Since
the seed is a non-financial parameter in the simulation, this
dependence is particularly disturbing in the arena of cash
flow testing.

We observe the Niederreiter subsequences are within
1% to 2% of the final value in the desired range of 100 to
200 scenarios.  However, the simulation using the pseudo-
random numbers beginning with 26 as initial seed
happened to provide a better estimate in this range, while
the simulation with 29 as the initial seed did not.  Perhaps,
the most significant fact to conclude from the first two
stages of this simulation process is that the Niederreiter
subsequences have perform consistently and acceptably in
two very different situations.  The same cannot be said for
the traditional methods.

4.3 American Life Company

American Life Company is a large company whose
holdings are on the order of a billion dollars.  It carries a
wide variety of customers and products.  As a result, the
cash flow testing simulation is almost prohibitively large.
The simulations being reported herein took days to run on
a dedicated computer.  In practice, the runs are often
interrupted by server problems and so on.  It is difficult for
the team of actuaries with the responsibility of doing the
testing to perform the estimations using more than 100
scenarios.  For these simulation experiments, 250 scenarios
were used and the run time was 72 hours.  Nearly a
gigabyte of data was produced for each simulation.

The Generalized Faure subsequences continued their
poor performance for the larger simulations.  In fact, the
performance was so poor, it has been omitted from the
graph to reduce the visual clutter.
52
Again, it is difficult to argue that any of the methods
had converged.  To produce this relative error plot, the
average of the final estimates of all three methods was
used.  Two traditional Monte Carlo simulations were
included to demonstrate the variance in the estimate due to
changes in the initial seed.  One of the traditional
simulations produced an estimate that was reasonable in
the 100 to 200 scenario range, while the other was off
several percent.  Meanwhile, the Niederreiter subsequences
were in the 1% to 2% error range over the critical number
of interest rate scenarios.  Hence, the method of
subsequence construction examined in this paper produced
a quasi-Monte Carlo simulation of cash flow testing that
consistently out-performed the traditional approach in this
limited number of sample paths environment.
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Figure 12:  ALC with Two Different Random Number
Sequences and the Niederreiter Subsequence

5 CONCLUDING REMARKS

On the basis of these results, Conseco has chosen to use the
quasi-Monte Carlo method utilizing the Niederreiter
subsequences as examined in this paper.  But this does not
mean the problem being addressed has reached a
conclusion.  A less qualitative approach to subsequence
selection is desirable.  Perhaps the 2L -discrepancy method
previously mentioned holds the answer. We are
investigating.  Furthermore, a thorough examination of the
Generalized Faure method is in order.  Since it offers the
simplest generator matrix construction, it is desirable to use
these sequences; yet, its performance in this small number
of sample paths environment was less than satisfactory.

It is believed that the empirical results of this study
show that further study of the use of low discrepancy
sequences in high dimensional, low number of sample
paths  problems is warranted.
5
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