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ABSTRACT

Quasi-Monte Carlo methods are designed to improve upo
the Monte Carlo method for multidimensional numerica
integration by using a more regularly distributed point se
than the i.i.d. sample associated with Monte Carlo. La
tice rules are one family of quasi-Monte Carlo methods
originally proposed by Korobov in 1959. In this paper, we
explain how randomized lattice rules can be used to co
struct efficient estimators for typical simulation problems
and we give several numerical examples. We are interest
in two main aspects: Studying the variance of these e
timators and finding which properties of the lattice rule
should be considered when defining a selection criterio
to rate and choose them. Our numerical results for thre
different problems illustrate how this methodology typically
improves upon the usual Monte Carlo simulation method

1 INTRODUCTION

Usually, in simulation problems, the goal is to estimat
the expectation of a measure of performance defined ov
a stochastic system. The random input in the simulatio
program generally comes from a pseudorandom genera
that output numbers between 0 and 1. These numbers
assumed to imitate a sequence of i.i.d. uniform rando
variables between 0 and 1, that are then transformed
follow the probability distributions specified by the model.

Thus, we can say that the goal of the simulation is t
estimate an integral of the form

µ =
∫
[0,1)s

f (u)du, (1)

wheref is a real-valued function that can be seen as a “blac
box” taking as an input a sequence ofs numbers between 0
and 1, represented by the pointu ∈ [0,1)s , and outputting
an observationf (u) of the measure of performance we are
interested in. From this point of view, each simulation ca
be represented by a pointu in [0,1)s . Moreover, the method
5
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that consists in doingn independent simulations (where the
ith simulation uses a random and uniform pointui), and
then taking

1

n

n∑
i=1

f (ui ) (2)

as an estimator ofµ corresponds to using the Monte Carlo
(MC) method for estimating the integralµ.

The MC method has some features that are important
the simulation context. The estimator (2) forµ is unbiased
since eachui has the uniform distribution over[0,1)s and
thus E(f (ui )) = µ. The variance of (2) is equal toσ 2/n,
whereσ 2 = ∫[0,1)s f 2(u)du − µ2 is the variance off (U)
whenU is uniform over[0,1)s , and can be estimated easily.
In addition, confidence intervals forµ can be computed via
the central limit theorem.

On the other hand, it would make sense to take advanta
of more accurate methods to estimate (1) than what
achieved by MC. A natural way to improve upon MC
is to try to sample the unit hypercube[0,1)s in a more
regular way than by taking a set ofn i.i.d. pointsui that
have the uniform distribution over[0,1)s . This improved
(and deterministic) sampling scheme roughly defineslow-
discrepancy point sets, which are at the basis ofquasi-Monte
Carlo (QMC) methods. Among these methods we have th
lattice rules, which are based on point sets in[0,1)s that have
a lattice structure, i.e., which are closed under addition an
subtraction modulo 1. We refer the reader to Niederreite
(1992) for a detailed overview of QMC methods.

Once we have a low-discrepancy point set, we ca
feed the simulation program with it instead of using a
pseudorandom generator. A disadvantage of this approa
is that the use of a deterministic source means that th
unbiasedness and the usual error estimation methods are l
However, this problem can be easily fixed by randomizing i
an appropriate way the low-discrepancy point sets on whic
the QMC methods are based. We then have a method th
can compete with MC to run our simulations.
09



Lemieux and L’Ecuyer

d
d

h
r

l

l

t
o

6
l

e

e

ce
r

C

t

l-

g

nt

n
,

a

n
a

In this paper, we recall how this methodology can
be easily implemented with randomized lattice rules an
summarize the theoretical results underlying this metho
We give simulation examples where this method is teste
against the MC method. Our goal is to show that randomize
lattice rules can be used as a variance reduction technique t
can be added to the toolbox of the simulation practitione
More precisely, we explain in Section 2 how to construc
a special case of randomized lattice rules and give resu
on the variance of the estimators based on this method.
Section 3, we give the definition of a selection criterion
for lattice rules and argue why it should provide estimator
with reduced variance for many problems. We provide thre
simulation examples, in Section 4, where this methodolog
is applied successfully.

2 RANDOMIZED LATTICE RULES

To construct the low-discrepancy point sets needed for th
QMC method, we useKorobov lattice rules(Korobov 1959),
which are point sets of the form

Pn =
{
(i − 1)

n
(1, a, . . . , as−1) mod 1, i = 1, . . . , n

}
,

(3)
where n is the number of points inPn, a is an integer
between 1 andn − 1 and the modulo 1 operation is done
component-wise. We discuss in the next section how th
integera can be chosen. It can be shown that thisPn is
the intersection of anintegration latticeL with the unit
hypercube[0,1)s , an integration lattice being a discrete
subset of IRs closed under addition and subtraction and
containing the set of integer vectorsZZs as a subset. This
property ofPn is the one defining lattice rules in genera
(see, e.g., Sloan and Joe 1994).

As we discussed in the introduction, it is convenien
to randomize low-discrepancy point sets for the purpose
error estimation. For lattice rules, a simple way of doing
this has been proposed by Cranley and Patterson (197
Their method requires to generate randomly and uniform
a vector1 in [0,1)s , which is then used to translate all the
points inPn modulo 1. This provides the estimator

µ̂LR = 1

n

n∑
i=1

f ((ui +1) mod 1)

for µ. We assume here that the setPn = {u1, . . . ,un}
defining µ̂LR is a Korobov lattice rule. To estimate the
variance ofµ̂LR, one just needs to repeat this procedur
with m independent random shifts, thus obtainingm i.i.d.
copies ofµ̂LR. This is what we do in Section 4 to com-
pare empirically the variance of the randomized lattice rul
estimators with the MC estimators.
ce
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We now recall some results on the theoretical varian
of µ̂LR and compare it with the variance of the MC estimato
µ̂MC based on the same number of pointsn. An important
concept required to analyze the variance ofµ̂LR is that of the
dual latticeto the latticeL such thatPn = L∩[0,1)s . It is
defined as the setL⊥ = {h ∈ ZZs : h·ui ∈ ZZ, i = 1, . . . , n}.
It is a subset ofL and it has the property of containing
n times less points thanZZs . We can show (L’Ecuyer and
Lemieux 2000):

Proposition 1 If f is square-integrable (i.e.,σ 2 =
Var (f ) <∞), thenE(µ̂LR) = µ and

Var (µ̂LR) =
∑

06=h∈L⊥
|f̂ (h)|2,

wheref̂ (h) = ∫[0,1)s f (u)e2π
√−1h·udu is the Fourier coef-

ficient off evaluated inh.
Proposition 1 shows that̂µLR is an unbiased estimator

whose variance is smaller than the variance of the M
estimatorµ̂MC based onn points if and only if “on average”
the squared Fourier coefficients|f̂ (h)|2 are smaller onL⊥
than onZZs . To see this, remember thatZZs is n times as
“dense” asL⊥ and observe that

Var (µ̂MC) = 1

n

∑
06=h∈ZZs

|f̂ (h)|2

(L’Ecuyer and Lemieux 2000). This result warns us tha
there exist worst-case functions for which Var(µ̂LR) = σ 2 =
nVar (µ̂MC), which means that stronger assumptions onf

must be made to guarantee that Var(µ̂LR) ≤ Var (µ̂MC).
This is what we do in the following proposition (Lemieux
2000) where the special case of linear functions (i.e., mu
tivariate polynomials of degree 1) is considered:

Proposition 2 If f is a square-integrable linear
function over[0,1)s and if gcd(n, a) = 1, then

Var (µ̂LR) = 1

n
Var (µ̂MC).

Of course, analytical formulas forµ can be derived when
f is a linear function. Nevertheless, this result is interestin
because it tells us that iff is a complicated function that can
be well approximated by a linear function, then an importa
part of f will benefit greatly from the use of a lattice
rule instead of MC, and we should expect Var(µ̂LR) �
Var (µ̂MC) in this case. An example of this behavior ca
be found in L’Ecuyer and Lemieux (2000), Section 10.1
where the convergence rate of 1/n2 for Var (µ̂LR) implied
by the preceding proposition is observed empirically for
nonlinear function.

Another way to support the idea that lattice rules ca
do better than MC is to look at the average variance for
certain class of lattice rules and compare it to the varian
0
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of µ̂MC. We do this in the following proposition (Lemieux
2000), whereA represents the set of allrank-1 lattice rules
that haven points. A rank-1 lattice rule is obtained by
replacing the vector(1, a, . . . , as−1) in (3) by any vector
in [1, . . . , n− 1]s .

Proposition 3 If f is square-integrable andn is a
prime number, then

1

|A|
|A|∑
i=1

Var (µ̂LR,i) ≤

n

n− 1
Var (µ̂MC)+ n− 2

n− 1
Var (µ̂grid),

whereµ̂LR,i is based on theith lattice rule inA,

µ̂grid = 1

ns

n−1∑
m1,...,ms=0

f
(((m1, . . . , ms

n

)
+1

)
mod 1

)
,

and1 is uniformly distributed over[0,1)s .
Notice that the estimator̂µgrid is based onns evaluations

of f in comparison withµ̂MC (and µ̂LR,i ) where onlyn
evaluations are done. This suggests that Var(µ̂grid) should
be much smaller than Var(µ̂MC) for most functionsf .
If this is true, Proposition 3 means that on the averag
lattice rules cannot do much worse than the MC estimat
Moreover, since “bad” lattice rules can be found among th
setA, i.e., lattice rules that yield high variance estimator
for most functions (e.g., the Korobov lattice rule based o
a = 1), one can infer that there must be some “good” lattic
rules inA, i.e., lattice rules that should do well on mos
functions. In the next section, we discuss how to find the
“good” lattice rules.

3 SELECTION CRITERION

The goal here is to find, for a given number of pointsn,
a lattice rule that should provide estimators reducing th
variance compared to MC for most functions encountered
practice. Note that in the case of Korobov rules, choosin
a lattice means choosing a generatora in (3). Thus, one
possible approach to find a “good” Korobov rule is to defin
a figure of merit forPn that can be computed reasonabl
fast, and then to search over a prespecified set of genera
a to find the one whose associated setPn optimizes the
figure of merit. In order to reach our goal, the figure of mer
should also imitate (in some sense) the variance ofµ̂LR
for a large class of functions. Hence, we must make som
assumptions about the functions we are likely to encoun
in practice. As a first approximation, we assume that
most cases,f is a function that can be well approximated
by a sum of low-dimensional functions. Let us explai
511
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what we mean by that, and we will see later how this i
translated into the definition of our selection criterion.

We use the ANOVA functional decomposition off
(Hoeffding 1948; Efron and Stein 1981; Owen 1998), which
writes any square-integrable functionf as a sum

f (u) =
∑

I⊆{1,...,s}
fI (u),

wherefI (u) is the part off that depends on the variables
uj whose indexj is in I . These componentsfI (u) are
defined so that

∫
[0,1)s fI (u)du = 0 if I is non-empty and∫

[0,1)s f∅(u)du = µ. This decomposition is orthogonal, i.e.,∫
[0,1)s fI (u)fJ (u)du = 0 if I 6= J , and thus

σ 2 = Var (f ) =
∑

I⊆{1,...,s}
σ 2
I ,

whereσ 2
I := Var (fI ). The functionf is said to have an

effective dimension ofd in the superposition sense(Caflish,
Morokoff, and Owen 1997) if

∑
I :|I |≤d σ 2

I ≈ σ 2. When
this holds, it suffices to make sure that thed-dimensional
structure ofPn is good in order to define an estimatorµ̂LR
having a small variance, i.e., one must verify that for eac
subsetI such that|I | ≤ d, the projectionPn(I) of Pn
over the subspace of[0,1)s indexed by the coordinates in
I is well distributed. This means that even if a function
is defined over a very large dimensional space, point se
Pn providing better estimators than with MC can still be
constructed iff has a low effective dimension.

The second hypothesis that we make aboutf is to
assume that its most important squared Fourier coefficien
|f̂ (h)|2 are those associated with small vectorsh. Using
Proposition 1, this means (roughly) that the fewer sho
vectors can be found in the dual latticeL⊥ of a rulePn,
the smaller is the variance of the estimatorµ̂LR provided
by Pn. One way to verify thatPn has this property is to
apply thespectral test(Coveyou and MacPherson 1967,
L’Ecuyer and Couture 1997), i.e., to compute the quantit
`s = min06=h∈L⊥ ‖h‖2, and to make sure that`s is as large as
possible. In addition, the spectral test can be applied to a
projectionPn(I), i.e, one can definèI = min06=h∈L⊥I ‖h‖2,

whereL⊥I is the dual lattice to the latticeLI such that
Pn(I) = LI ∩ [0,1)s . For more on the link between the
spectral test and lattice rules, we refer the reader to Entach
Hellekalek, and L’Ecuyer (2000).

Combining this test to the preceding arguments abo
the choice of subsetsI for which the projectionsPn(I)
should be inspected leads to the following selection criterio
(L’Ecuyer and Lemieux 2000):

Mt1,...,td = min

[
min

2≤j≤t1
`j

`∗j (n)
, min

2≤j≤d, I∈S(j,tj )
`I

`∗|I |(n)

]
,
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whereS(j, tj ) = {I = {i1, . . . , ij } : 1 = i1 < · · · < ij ≤
tj }, and `∗j (n) is an upper bound oǹI for |I | = j that
can be found in L’Ecuyer (1999). We thus wantMt1,...,td

to be as close to 1 as possible. For more on this criterio
and its links with criteria previously used to chooselinear
congruential generators, see L’Ecuyer and Lemieux (2000).

We give in Table 1 the best Korobov rules we found
using the criterionM32,24,12,8. The search has been done for
two different values ofn (which are prime numbers close to
some power of 2), and over all integersa that are primitive
element modulon. Such generatorsa lead to especially
simple implementations for the point setsPn (Entacher,
Hellekalek, and L’Ecuyer 2000; L’Ecuyer 1999). The rules
in this table are the ones we use in the next section for o
numerical examples. The best rules for other values ofn

and with respect to other criteria can be found in Lemieu
(2000) and L’Ecuyer and Lemieux (2000).

Table 1: Besta’s with respect to
M32,24,12,8

n 251 1021
a 184 76
M32,24,12,8 0.31632 0.29344

4 EXAMPLES

In this section, we present three simulation problems o
which we successfully use shifted lattice rules (LR) to
construct estimators having a smaller empirical varianc
than the MC estimators based on the same total number
replications. Since the LR estimator is faster to comput
it means that theefficiencyis improved by the LR method.
For all problems, we always use inversion to generate th
non-uniform random variables.

4.1 The Bank Example

This example is taken from Bratley, Fox, and Schrag
(1987). Consider a bank that opens at 10:00 and closes
15:00 (or 3 p.m.). Customers arrive from 9:45 to 15:00
according to a non-stationary Poisson process having a r
of 1 customer per minute from 11:00 to 14:00, and 0.
otherwise. The number of tellers varies between 1 and
with a probability q3 = 0.85 of being 3,q2 = 0.15 of
being 2, andq1 = 0.05 to be 1. If a customer arrives and
finds a waiting queue of ten customers, hebalksand goes
away. If onlyq < 10 customers are waiting, he balks with
probability (q − 5)/10 if q > 5 and stays otherwise. All
customers that have arrived before 15:00 and did not balk a
served. The service times are independent random variab
having a gamma distribution with parametersα = 2 and
λ = 1. We are interested in estimating the expected numb
of customers served in one day of operation of this bank
51
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In the context of (1), the dimensions of this problem is
random and related to the numberC of customers arriving
in a day, which has no upper bound, i.e., formally,s = ∞.
At least one random variable is required per customer for th
interarrival time, with possibly a second one to generate th
service time and a third one when a decision of balking o
not must be taken. An additional random variable is require
to generate the number of tellers. Thus, the dimensions is
betweenC + 1 and 3C + 1. The functionf in (1) is the
transformation that maps a point of[0,1)s to an observation
of the number of customers served during a day.

Many variance reduction techniques can be used fo
this problem (Bratley, Fox, and Schrage 1987). In ou
experiments, we use some of them and also look at differe
combinations. LetX denote the number of customers serve
in a day. The naive estimator for E(X) is X. With indirect
estimation(ind), one uses instead E(C) − B, where E(C)
can be computed exactly andB is the number of customers
that have balked. The random variableC can also be used as
a control variable(cv) for this problem, i.e., one replaces
X by X + β(E(C) − C), whereβ is a coefficient to be
estimated. Whenstratification is used, the total number of
simulationsN is allocated to the three different possible
values forz, the number of tellers. Denote byNz the number
of simulations done withz tellers. Then one replacesX
byNX(0.851z=1/N1+0.151z=2/N2+0.051z=3/N3). The
value ofz can either be generated randomly at the beginnin
of the simulation or can be fixed in a deterministic way (an
then the dimensions decreases by 1). TakingNz = Nqz is
calledproportional allocation, and choosing theNz’s in a
way that minimizes the variance is calledoptimal allocation
(str-op). In the latter case, the optimal values of theNz
must be estimated through pilot runs and depend on th
variance ofX1z=j for j = 1,2,3. For a general review
of these variance reduction techniques, see, e.g., L’Ecuy
(1994).

In Table 2, we give the variance reduction factors ob
tained when using MC or LR in combination with the above
techniques. Two different numbers of pointsn for LR are
considered, and in each case 100 independent random sh
are used to estimate the variance of the LR estimators. T
MC estimators are based on 100n independent simulations.
The coefficientβ required to apply the control variable
technique is estimated with 600 pilot runs, and so are th
numbersNz defining the estimator using stratification with
optimal allocation. With LR,N equalsn in the definition
of the stratification estimator (and we get 100 copies of th
estimator), whereasN equals 100n with MC. It seems
that the variance reduction factors brought by LR do no
increase with the number of pointsn for this example. This
can happen when the dimension is large and it is the ca
here, as we computed the average dimension to be arou
500 for this problem. When no stratification is done, LR
reduces the variance by significant factors. It also bring
2
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Table 2: Variance Reduction Factors for the Bank
n = 251 n = 1021

MC LR MC LR
naive 1.0 6.8 1.0 4.7
ind 1.4 20 1.4 19
cv 1.4 23 1.4 21
str-op 3.1 5.7 3.0 5.8
str-op + ind 46 55 44 56
str-op + ind + cv 71 109 70 114

some additional improvement after the stratification, but b
factors not larger than 2. We think that this is still interes
ing, especially if we take into account the fact that LR i
faster than MC and thus, that efficiency is clearly improve
by using LR for this problem.

4.2 A Time-Sharing Computer System

This example is taken from Law and Kelton (2000), Sec
tion 2.5. Consider an old-fashioned time-sharing comput
system withT independent and identical terminals using
the same CPU. The user of each terminal submits a ta
to the CPU, waits for the answer, and then thinks for
random length of time before submitting a new task, and
on. The thinking time follows an exponential distribution o
meanν, and the CPU time required by a task has a Weibu
distribution of parametersα andλ. The waiting tasks form
a queue for the CPU, and are served in a “round-robin
fashion with quantum of sizeq. When a task gets the CPU,
if less thanq seconds are required to finish it, it occupies th
CPU until its completion. Otherwise, the task occupies th
CPU forq seconds and goes back to the end of the waitin
line. In both cases,h seconds of overhead are needed t
remove the task from the CPU and, if required, put a ne
one.

The response timeof a task is defined as the elapsed
time between the instant when it leaves the terminal an
the instant when it leaves the CPU upon completion. W
want to estimate the expected response time in steady st
This is achieved by simulating this system untilN tasks are
completed, assuming that initially, allT terminals are in
the thinking state. The initial bias due to this hypothesis
decreased by simulatingN0 tasks until completion before
starting to accumulate the statistics. See L’Ecuyer (200
for more details on the simulation of this system.

When translating this problem in terms of (1), we
get a large dimensional problem because the measure
performance of interest is a long-term average and thus ea
simulation must run for a long time. More precisely, the
dimensions is at least equal to 2N since each of theN tasks
is defined by two random variables (thinking and processin
times). It is smaller or equal to 2(N+T −1) because when
theN th task ends, at most two random variables have be
51
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required to simulate theT −1 other terminals that are either
thinking or waiting for the end of a task. Thus, the dimension
is random for this problem too, but bounded, and one ca
take, e.g.,s = 2(N + T − 1). The functionf transforms a
point of [0,1)s into an observation of the average response
time for the lastN −N0 tasks simulated. This estimator is
biased, which means that the integral

∫
[0,1)s f (u)du is not

equal to the expectation we are looking for, but it converges
to it asN →∞.

In Table 3, we give the variance reduction factors
obtained by the LR estimators on this problem, for two
different number of pointsn, and two different values for the
quantum sizeq. The other parameters are set toh = 0.001,
ν = 5.0,α = 0.5, andλ = 1. We choseN = 1100 andN0 =
100, which means that the problem has a dimension of at lea
2200. We used 100 random shifts to estimate the varianc
of the LR estimators, and the MC estimators are base
on 100n independent simulations. For this problem, LR
reduces the variance by factors of at least 13 in compariso
with MC.

Table 3: Variance Reduction Fac-
tors for the Time-Sharing System

q = 0.1 q = 0.2
n = 251 13 13
n = 1021 36 29

We considered the possibility of using common ran-
dom numbers (CRN) in combination with LR in order to
estimate the difference between the expected response tim
for the two values ofq given in Table 3. Using CRN with
LR simply means that we use the same random shifts t
estimate both quantities. When we tried it, we obtained
better results for the CRN estimator than for the LR+CRN
estimator. However, for other sets of parameters leadin
to more important differences in the two configurations
compared, the combination LR+CRN did better than CRN
Note that configurations with say, different mean process
ing times, present a bigger challenge for CRN because th
synchronization between the two systems is unlikely to be
achieved for a given simulation, whereas configurations tha
only differ by their quantum size as those studied in Table
3 are more likely to be synchronized. In the next subsec
tion, we will see another example where the two system
are perfectly synchronized for any simulation and where
LR+CRN does significantly better than CRN alone.

4.3 Estimating Sensitivities (Derivatives)
of Asian Option Prices

The third problem is taken from Broadie and Glasserman
(1996), and consists in doing sensitivity analysis in the
context of option pricing. Anoption is a financial contract
whose value depends on the price of someunderlying asset.
3
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We are interested in estimating the sensitivity of an option
fair price (or value) with respect to different parameters. W
thus need to estimate the derivative of the value of this optio
with respect to each of the chosen parameters. In this pap
the word “derivative” is used in the ordinary mathematica
sense (i.e., rate of variation), not to denote a class of financ
products as commonly done in the world of finance. In th
case we describe, there is no analytical expression for the
derivatives and simulation is an appropriate tool to estima
them.

The contract considered is anAsian optionon a dividend-
paying asset that follows a geometric Brownian motion
Denote byS(t) the price of this asset at timet . Under the
risk-neutral measure, we have

dS(t) = (r − δ)S(t)dt + σS(t)dB(t),

whereB(·) is a standard Brownian motion,r is the risk-
free interest rate,δ is the dividend rate, andσ > 0 is the
volatility parameter. The option contract is assumed to hav
its expiration date at timeT , and the current time is set to
0. Its payoff is defined as

C(T ) = max(0, S̄ −K),

whereS̄ = (1/s)∑s
i=1 S(ti), theti ’s are some prespec-

ified observation dates for the price of the asset, andK is
the strike price, a parameter specified in the contract. Th
valueof the option at time 0 is

C(0) = E(e−rT C(T )),

where the expectation is taken under the risk-neutr
measure. For more on option pricing, see Duffie (1996).

In L’Ecuyer and Lemieux (2000), we used lattice rules
to reduce the variance of MC estimators ofC(0). Here, we
are interested in estimating the partial derivatives ofC(0)
with respect to the initial valueS(0) of the underlying asset
and with respect to the volatilityσ , i.e.,

µd = ∂C(0)

∂S(0)
andµv = ∂C(0)

∂σ
.

These quantities are calleddeltaandvega, respectively,
in the world of computational finance.

We experiment here with two of the three method
presented in Broadie and Glasserman (1996) to estima
these derivatives; thepathwise method(or infinitesimal per-
turbation analysis (IPA); see Glasserman (1991) for more
on this method), andresimulation(or finite differences with
common random numbers (FDC)). With the IPA method,
the derivative estimators are obtained by interchanging th
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expectation and derivative operators. This yields the es
mators (Broadie and Glasserman 1996):

µ̂d = e−rT ∂C(T )
∂S(0)

= e−rT 1S̄≥K
S̄

S(0)

µ̂v = e−rT ∂C(T )
∂σ

= e−rT 1S̄≥K
1

sσ

s∑
i=1

S(ti) [ln(S(ti)/S(0))

−(r − δ + 0.5σ 2)ti

]
.

It is shown in Broadie and Glasserman (1996) thatµ̂d
andµ̂v are unbiased estimators ofµd andµv, respectively.
The quantities that need to be simulated in order to compu
µ̂d and µ̂v are the pricesS(ti), which follow a lognormal
distribution with parameters lnS(0) + (r − δ − 0.5σ 2) ti
andσ 2ti . In the framework of (1), it means that for both
derivatives, the dimensions is equal to the number of prices
entering the mean valuēS (since we need to generate one
normal random variable per observationS(ti)), with the
function f being the transformation that maps a point o
[0,1)s into an observation of̂µd or µ̂v.

With the FDC method, the partial derivative∂C(0)/∂θ
(for some parameterθ ) evaluated atθ = θ0 is estimated
as follows: In addition to a simulation done atθ = θ0,
a second one is done atθ = θ0 + h, whereh is a small
quantity. If we denote bye−rT C(T , θ) the discounted
payoff obtained with the simulation done atθ , the estimator
is defined as(e−rT C(T , θ0+h)−e−rT C(T , θ0))/h. These
two simulations atθ0 andθ0+h are performed withcommon
random numbers(L’Ecuyer and Perron 1994, Law and
Kelton 2000, Broadie and Glasserman 1996). We thus ha
an s-dimensional integral: The integrandf in this case is
the function that maps a point of[0,1)s into an observation
of e−rT (C(T , θ0 + h) − C(T , θ0))/h. The FDC method
yields biasedestimators, i.e.,

∫
[0,1)s f (u)du 6= ∂C(0)/∂θ ,

but the bias converges to 0 ash→ 0. Using the results of
L’Ecuyer and Perron (1994), it can be shown that these FD
estimators have the same asymptotic convergence rates
the IPA estimators ifh → 0 fast enough whenn → ∞.
We should therefore expect the two methods to give almo
identical results whenh is very small.

As pointed out in Broadie and Glasserman (1996
variance reduction techniques that apply to the estimatio
of the option’s price can also be used for the purpose o
derivative estimation. Following this, these authors hav
used the terminal underlying asset priceS(T ) as a control
variable for the different problems they considered. In th
special case of Asian options, another possibility is to us
the price of an Asian option based on thegeometricaverage
as a control variable (Kemna and Vorst 1990).
4
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In Tables 4 and 5, we give the variance reduction facto
obtained by the LR estimators in comparison to the M
approach for the quantitiesdelta and vega, respectively,
with IPA. We consider four different estimators: Thenaive
one does not use any control variable, CV1 uses the fin
underlying asset price, CV2 uses the price of the option
the geometric average, and CV12 uses these two con
variables together. As expected, the results obtained w
the FDC method (not shown in the tables), withh = 0.0001,
were practically identical to those obtained with IPA. Thi
has also been observed by Broadie and Glasserman (19
The variance of the LR estimators is estimated with 10
random shifts, and the MC estimators are based on 10n

independent simulations, wheren = 1021 is the number of
points in the lattice rule.

Table 4: Variance Reduction Factors for Delta, with IPA
MC LR

S(0) 90 100 110 90 100 110
naive (1.7e-6) (2.8e-6) (1.3e-6)4.8 7.8 9.2
CV1 (9.5e-7) (1.1e-6) (6.5e-7)2.4 2.5 3.5
CV2 (7.2e-7) (1.3e-6) (7.1e-7)3.5 2.1 3.3
CV12 (6.3e-7) (1.1e-6) (6.5e-7)2.2 2.0 3.2

Table 5: Variance Reduction Factors for Vega, with IPA
MC LR

S(0) 90 100 110 90 100 110
naive (5.0e-3) (6.2e-3) (1.2e-2)10 27 19
CV1 (2.7e-3) (2.2e-3) (4.5e-3)2.4 3.3 3.9
CV2 (7.2e-4) (8.9e-5) (2.0e-3)7.2 16 7.0
CV12 (6.5e-4) (4.6e-5) (8.7e-4)2.2 0.99 1.3

Each column in Tables 4 and 5 corresponds to a differe
initial price S(0). The numbers in parentheses in the MC
columns represent the estimated variance of these estima
(the reduction factors are equal to 1 for all of them). We giv
these numbers to indicate how well each control variab
performs in comparison with the naive approach. Th
numbers in the columns labeled by LR correspond to t
variance reduction factors obtained with the LR estimat
in comparison with the corresponding MC estimator (i.e
whose variance is on the same line, three columns to
left).

The parameters of the option are as in Broadie a
Glasserman (1996):r = 0.1,K = 100,δ = 0.03,σ = 0.25,
T = 0.2 year and the average is taken over the last 30 da
before the expiration. This means that the dimension of t
problem iss = 30.

Reduction factors as large as 27 are observed by us
LR instead of MC for vega. As it was noted for the
estimation of Asian option prices in L’Ecuyer and Lemieu
(2000), the LR estimator brings more improvement wit
the naive method than when a control variable is use
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Here, we can also say that the improvement by LR is mor
important when only one control variable is used rather tha
the combination CV12. CV2 works better than CV1 for
the estimation ofvegawhereas fordelta, the two control
variables give similar results. CV2 works especially wel
for vegawhenS(0) ≈ K, and the added benefit of LR is
also more important in this case. The combination CV1
improves upon each of CV1 and CV2 forvega, and has
about the same variance as the best between CV1 and C
for delta.

Given the reduction factors obtained by LR for this
problem and knowing that the FDC method gave essential
the same results as those shown in Tables 4 and 5, we c
say that the combination of CRN (which is used in FDC)
with LR is successful for this application.

In the context where sensitivities need to be estimate
for optimization purposes, e.g., to feed a stochastic approx
mation algorithm, a method like LR that leads to estimator
with smaller variance without increasing the computation
time would lead to a faster convergence towards the opt
mum, as explained in L’Ecuyer and Yin (1998).
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