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ABSTRACT

Quasi-Monte Carlo methods are designed to improve upon
the Monte Carlo method for multidimensional numerical
integration by using a more regularly distributed point set
than the i.i.d. sample associated with Monte Carlo. Lat-
tice rules are one family of quasi-Monte Carlo methods,
originally proposed by Korobov in 1959. In this paper, we
explain how randomized lattice rules can be used to con-
struct efficient estimators for typical simulation problems,
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that consists in doing independent simulations (where the
ith simulation uses a random and uniform pain}, and
then taking

1 n
=Y fw) 2)
n“
i=1
as an estimator gf corresponds to using the Monte Carlo
(MC) method for estimating the integral.
The MC method has some features that are important in

and we give several numerical examples. We are interested the simulation context. The estimator (2) foris unbiased

in two main aspects: Studying the variance of these es-
timators and finding which properties of the lattice rules
should be considered when defining a selection criterion
to rate and choose them. Our numerical results for three
different problems illustrate how this methodology typically
improves upon the usual Monte Carlo simulation method.

1 INTRODUCTION

Usually, in simulation problems, the goal is to estimate

since eachy; has the uniform distribution ove6, 1) and
thus H f(u;)) = . The variance of (2) is equal 1©%/n,
whereo? = [ 15 f2(u)du — 2 is the variance off (U)
whenU is uni#o’rm over[0, 1)*, and can be estimated easily.
In addition, confidence intervals far can be computed via
the central limit theorem.

Onthe other hand, it would make sense to take advantage
of more accurate methods to estimate (1) than what is
achieved by MC. A natural way to improve upon MC
is to try to sample the unit hyperculi®, 1)* in a more

the expectation of a measure of performance defined over regular way than by taking a set ofi.i.d. pointsu; that

a stochastic system. The random input in the simulation

have the uniform distribution ovg0, 1)*. This improved

program generally comes from a pseudorandom generator (and deterministic) sampling scheme roughly defitue-
that output numbers between 0 and 1. These numbers arediscrepancy point setsvhich are at the basis gfiasi-Monte

assumed to imitate a sequence of i.i.d. uniform random

Carlo (QMC) methods. Among these methods we have the

variables between 0 and 1, that are then transformed to lattice rules, which are based on point setirt)* that have

follow the probability distributions specified by the model.
Thus, we can say that the goal of the simulation is to
estimate an integral of the form

W= / F(wdu,
[0,1)"

wheref is a real-valued function that can be seen as a “black
box” taking as an input a sequencesafiumbers between 0
and 1, represented by the pointe [0, 1)%, and outputting

an observatiory (u) of the measure of performance we are
interested in. From this point of view, each simulation can
be represented by a poimin [0, 1)°. Moreover, the method
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a lattice structure, i.e., which are closed under addition and
subtraction modulo 1. We refer the reader to Niederreiter
(1992) for a detailed overview of QMC methods.

Once we have a low-discrepancy point set, we can
feed the simulation program with it instead of using a
pseudorandom generator. A disadvantage of this approach
is that the use of a deterministic source means that the
unbiasedness and the usual error estimation methods are lost.
However, this problem can be easily fixed by randomizing in
an appropriate way the low-discrepancy point sets on which
the QMC methods are based. We then have a method that
can compete with MC to run our simulations.
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In this paper, we recall how this methodology can
be easily implemented with randomized lattice rules and
summarize the theoretical results underlying this method.
We give simulation examples where this method is tested
against the MC method. Our goal is to show that randomized

We now recall some results on the theoretical variance
of 1_.r and compare it with the variance of the MC estimator
amvc based on the same number of pointsAn important
concept required to analyze the variancé.pf is that of the
dual latticeto the latticeL such thatP, = LN[0, 1)S. Itis

lattice rules can be used as a variance reduction technique thatdefined asthe sét- = (he Z° :h.u; € Z, i =1,...,n}.

can be added to the toolbox of the simulation practitioner.
More precisely, we explain in Section 2 how to construct

It is a subset ofL and it has the property of containing
n times less points thaZ’. We can show (L'Ecuyer and

a special case of randomized lattice rules and give results Lemieux 2000):

on the variance of the estimators based on this method. In

Section 3, we give the definition of a selection criterion

for lattice rules and argue why it should provide estimators
with reduced variance for many problems. We provide three
simulation examples, in Section 4, where this methodology
is applied successfully.

2 RANDOMIZED LATTICE RULES

To construct the low-discrepancy point sets needed for the

QMC method, we uskKorobov lattice rulegKorobov 1959),
which are point sets of the form
(1,a,...,a‘971) mod 1 i:l,...,n},

" { @)

wheren is the number of points inP,, a is an integer
between 1 and — 1 and the modulo 1 operation is done
component-wise. We discuss in the next section how the
integera can be chosen. It can be shown that tRisis
the intersection of anntegration lattice L with the unit
hypercube[0, 1)*, an integration lattice being a discrete
subset of R closed under addition and subtraction and
containing the set of integer vecto’ as a subset. This
property of P, is the one defining lattice rules in general
(see, e.g., Sloan and Joe 1994).

As we discussed in the introduction, it is convenient
to randomize low-discrepancy point sets for the purpose of
error estimation. For lattice rules, a simple way of doing

(i-17

n

this has been proposed by Cranley and Patterson (1976).

Their method requires to generate randomly and uniformly
a vectorA in [0, 1)*, which is then used to translate all the
points in P, modulo 1. This provides the estimator

. 1¢
iR = ;;f«uiw) mod 1

for u. We assume here that the sBt = {uy,...,Uu,}
defining fiLr is a Korobov lattice rule. To estimate the
variance of{i r, one just needs to repeat this procedure
with m independent random shifts, thus obtaining.i.d.
copies offi r. This is what we do in Section 4 to com-
pare empirically the variance of the randomized lattice rule
estimators with the MC estimators.
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Proposition 1 If f is square-integrable (i.eq? =
Var (f) < o0), thenE(fi r) = 1 and

Var (fiLR) = Z |f (2,

0#£heLt

where f(h) = Jio.1ys F(we2rvV=Iugy is the Fourier coef-
ficient of f evaluated inh.

Proposition 1 shows thal g is an unbiased estimator
whose variance is smaller than the variance of the MC
estimatorivc based om points if and only if “on average”
the squared Fourier coefficierit,é(h)|2 are smaller oLt
than onZ*. To see this, remember th&’® is n times as
“dense” asL' and observe that

1 A
Var (jime) = = 3 If(I?

0#heZ®

(LEcuyer and Lemieux 2000). This result warns us that
there exist worst-case functions for which VAL r) = 02 =
n Var (jimc), which means that stronger assumptionsfon
must be made to guarantee that Yarr) < Var (fimc).
This is what we do in the following proposition (Lemieux
2000) where the special case of linear functions (i.e., mul-
tivariate polynomials of degree 1) is considered:
Proposition 2 If f is a square-integrable linear
function over[0, 1)* and if gcd(n, a) = 1, then

. 1 .
Var (iiLr) = ;Var (Amc).

Of course, analytical formulas farcan be derived when
f is alinear function. Nevertheless, this result is interesting
because it tells us that jf is a complicated function that can
be well approximated by a linear function, then an important
part of f will benefit greatly from the use of a lattice
rule instead of MC, and we should expect Varr) <«
Var (imc) in this case. An example of this behavior can
be found in LUEcuyer and Lemieux (2000), Section 10.1,
where the convergence rate ofi for Var (fiLr) implied
by the preceding proposition is observed empirically for a
nonlinear function.

Another way to support the idea that lattice rules can
do better than MC is to look at the average variance for a
certain class of lattice rules and compare it to the variance
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of iimc. We do this in the following proposition (Lemieux
2000), whereA represents the set of alink-1 lattice rules
that haven points. A rank-1 lattice rule is obtained by
replacing the vectotl, a, ...,a*"1) in (3) by any vector
in[l,...,n—1}".
Proposition 3
prime number, then

If f is square-integrable and is a

|Al

— Y Var(iR,) <
Al =

n n—2
——Var (i ——Var (figri
n—1 (ame) + n—1 (Igrid),

where i r,i is based on théth lattice rule in A,

(25 e d).

and A is uniformly distributed ovefO0, 1)°.

Notice that the estimatglgiq is based on® evaluations
of f in comparison withiimc (and i r.i) where onlyn
evaluations are done. This suggests that(¥gfq) should
be much smaller than Vafiuyc) for most functionsy.
If this is true, Proposition 3 means that on the average,
lattice rules cannot do much worse than the MC estimator.
Moreover, since “bad” lattice rules can be found among the
set.A, i.e., lattice rules that yield high variance estimators
for most functions (e.g., the Korobov lattice rule based on
a = 1), one can infer that there must be some “good” lattice
rules in A4, i.e., lattice rules that should do well on most
functions. In the next section, we discuss how to find these
“good” lattice rules.

1 n—1
Agrid = —~ Z

MY, Mg=

3 SELECTION CRITERION

The goal here is to find, for a given number of points

a lattice rule that should provide estimators reducing the
variance compared to MC for most functions encountered in
practice. Note that in the case of Korobov rules, choosing
a lattice means choosing a generatoin (3). Thus, one
possible approach to find a “good” Korobov rule is to define
a figure of merit forP, that can be computed reasonably

fast, and then to search over a prespecified set of generators

a to find the one whose associated gt optimizes the
figure of merit. In order to reach our goal, the figure of merit
should also imitate (in some sense) the variancei g

for a large class of functions. Hence, we must make some
assumptions about the functions we are likely to encounter
in practice. As a first approximation, we assume that in
most casesf is a function that can be well approximated
by a sum of low-dimensional functions. Let us explain

what we mean by that, and we will see later how this is
translated into the definition of our selection criterion.

We use the ANOVA functional decomposition gf
(Hoeffding 1948; Efron and Stein 1981; Owen 1998), which
writes any square-integrable functighas a sum

fay= > fiw,

IC{L,....s)

where f;(u) is the part off that depends on the variables
u; whose indexj is in I. These componentg;(u) are
defined so thay[o’l)x fr(wdu = 0 if I is non-empty and
f[o,l)s fs(Wdu = u. This decomposition is orthogonal, i.e.,
f[o,l)s fr(w) fr(wdu=0if I £ J, and thus

% =Var(f) = Z o?,

Wherea,2 := Var (f7). The function f is said to have an
effective dimension ef in the superposition seng€aflish,
Morokoff, and Owen 1997) ify_,. ., 07 ~ o%. When
this holds, it suffices to make sure that #ielimensional
structure ofP, is good in order to define an estimaidrg
having a small variance, i.e., one must verify that for each
subset/ such that|I| < d, the projectionP,(I) of P,
over the subspace ¢0, 1)* indexed by the coordinates in

I is well distributed. This means that even if a function
is defined over a very large dimensional space, point sets
P, providing better estimators than with MC can still be
constructed iff has a low effective dimension.

The second hypothesis that we make abguis to
assume that its most important squared Fourier coefficients
| (h)|2 are those associated with small vectbrs Using
Proposition 1, this means (roughly) that the fewer short
vectors can be found in the dual latti¢ge- of a rule P,,
the smaller is the variance of the estimafgrr provided
by P,. One way to verify thatP, has this property is to
apply thespectral test(Coveyou and MacPherson 1967,
L'Ecuyer and Couture 1997), i.e., to compute the quantity
€5 = ming_pc 1 [Ih]l2, and to make sure thét is as large as
possible. In addition, the spectral test can be applied to any
projectionP, (1), i.e, one can defing; = mino#heLll IIhll2,

where L,L is the dual lattice to the lattic&; such that
P,(I) = L; Nn[0,1)°. For more on the link between the
spectral test and lattice rules, we refer the reader to Entacher,
Hellekalek, and L'Ecuyer (2000).

Combining this test to the preceding arguments about
the choice of subset$ for which the projectionspP,(7)
should be inspected leads to the following selection criterion
(LEcuyer and Lemieux 2000):

¢ }
E‘*”(n) ’

min ——, min
2<j=n £5(n) 2=j=d.1€S(j.t))
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whereS(j,t;) ={I = {iy,...,ij}:1=i1 <--- <ij <
tj}, and éjf(n) is an upper bound o#; for |I| = j that
can be found in LEcuyer (1999). We thus wam, . ,,

In the context of (1), the dimensionof this problem is
random and related to the numb@rof customers arriving
in a day, which has no upper bound, i.e., formaly: co.

to be as close to 1 as possible. For more on this criterion Atleast one random variable is required per customer for the

and its links with criteria previously used to chodsear
congruential generatorsee L'Ecuyer and Lemieux (2000).

We give in Table 1 the best Korobov rules we found
using the criterion32.24.128. The search has been done for
two different values of: (which are prime numbers close to
some power of 2), and over all integerghat are primitive
element modulo:. Such generatora lead to especially
simple implementations for the point sefs (Entacher,
Hellekalek, and L'Ecuyer 2000; L'Ecuyer 1999). The rules
in this table are the ones we use in the next section for our
numerical examples. The best rules for other values of
and with respect to other criteria can be found in Lemieux
(2000) and L’Ecuyer and Lemieux (2000).

Table 1: Besta’s with respect to

M3224128
n 251 1021
a 184 76
M3224128 | 0.31632 0.29344
4 EXAMPLES

In this section, we present three simulation problems on
which we successfully use shifted lattice rules (LR) to
construct estimators having a smaller empirical variance

interarrival time, with possibly a second one to generate the
service time and a third one when a decision of balking or
not must be taken. An additional random variable is required
to generate the number of tellers. Thus, the dimensi@n
betweenC + 1 and ¥ + 1. The functionyf in (1) is the
transformation that maps a point[@ 1)° to an observation

of the number of customers served during a day.

Many variance reduction techniques can be used for
this problem (Bratley, Fox, and Schrage 1987). In our
experiments, we use some of them and also look at different
combinations. LeX denote the number of customers served
in a day. The naive estimator for ) is X. With indirect
estimation(ind), one uses instead(€) — B, where EC)
can be computed exactly amlis the number of customers
that have balked. The random variablean also be used as
a control variable (cv) for this problem, i.e., one replaces
X by X + B(E(C) — C), where g is a coefficient to be
estimated. Whestratificationis used, the total number of
simulations N is allocated to the three different possible
values forz, the number of tellers. Denote B, the number
of simulations done with; tellers. Then one replaces
by N X(0.851,_1/N1+0.151,_5/N>+0.051,_3/N3). The
value ofz can either be generated randomly at the beginning
of the simulation or can be fixed in a deterministic way (and
then the dimension decreases by 1). Taking, = Ng. is

than the MC estimators based on the same total number of called proportional allocation and choosing theV.’s in a

replications. Since the LR estimator is faster to compute,
it means that thefficiencyis improved by the LR method.
For all problems, we always use inversion to generate the
non-uniform random variables.

4.1 The Bank Example

This example is taken from Bratley, Fox, and Schrage

way that minimizes the variance is calleptimal allocation
(str-op). In the latter case, the optimal values of thig
must be estimated through pilot runs and depend on the
variance ofX1,_; for j = 1,2,3. For a general review
of these variance reduction techniques, see, e.g., LEcuyer
(1994).

In Table 2, we give the variance reduction factors ob-
tained when using MC or LR in combination with the above

(1987). Consider a bank that opens at 10:00 and closes atechniques. Two different numbers of pointdor LR are

15:00 (or 3 p.m.). Customers arrive from 9:45 to 15:00

considered, and in each case 100 independent random shifts

of 1 customer per minute from 11:00 to 14:00, and 0.5
otherwise. The number of tellers varies between 1 and 3,
with a probability g3 = 0.85 of being 3,42 = 0.15 of
being 2, andg; = 0.05 to be 1. If a customer arrives and
finds a waiting queue of ten customers, ks and goes
away. If onlyg < 10 customers are waiting, he balks with
probability (¢ — 5)/10 if ¢ > 5 and stays otherwise. All

MC estimators are based on Xihdependent simulations.
The coefficientg required to apply the control variable
technique is estimated with 600 pilot runs, and so are the
numbersN, defining the estimator using stratification with
optimal allocation. With LR,N equalsn in the definition

of the stratification estimator (and we get 100 copies of this
estimator), wherea®/ equals 108 with MC. It seems

customers that have arrived before 15:00 and did not balk are that the variance reduction factors brought by LR do not
served. The service times are independent random variablesincrease with the number of poinisfor this example. This

having a gamma distribution with parameters= 2 and

can happen when the dimension is large and it is the case

A = 1. We are interested in estimating the expected number here, as we computed the average dimension to be around

of customers served in one day of operation of this bank.

512

500 for this problem. When no stratification is done, LR
reduces the variance by significant factors. It also brings
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Table 2: Variance Reduction Factors for the Bank

n=251 n=1021

MC LR MC LR
naive 1.0 6.8 10 47
ind 14 20 14 19
cv 14 23 14 21
str-op 31 57 30 58
str-op + ind 46 55 44 56
str-op +ind + cv| 71 109 70 114

some additional improvement after the stratification, but by
factors not larger than 2. We think that this is still interest-
ing, especially if we take into account the fact that LR is
faster than MC and thus, that efficiency is clearly improved
by using LR for this problem.

4.2 A Time-Sharing Computer System
This example is taken from Law and Kelton (2000), Sec-

tion 2.5. Consider an old-fashioned time-sharing computer
system withT independent and identical terminals using

the same CPU. The user of each terminal submits a task

to the CPU, waits for the answer, and then thinks for a
random length of time before submitting a new task, and so
on. The thinking time follows an exponential distribution of
meanv, and the CPU time required by a task has a Weibull
distribution of parameterg andi. The waiting tasks form
a queue for the CPU, and are served in a “round-robin”
fashion with quantum of sizg¢. When a task gets the CPU,
if less thang seconds are required to finish it, it occupies the
CPU until its completion. Otherwise, the task occupies the
CPU forgq seconds and goes back to the end of the waiting
line. In both casesk seconds of overhead are needed to
remove the task from the CPU and, if required, put a new
one.

The response timef a task is defined as the elapsed
time between the instant when it leaves the terminal and
the instant when it leaves the CPU upon completion. We

required to simulate th& — 1 other terminals that are either
thinking or waiting for the end of atask. Thus, the dimension
is random for this problem too, but bounded, and one can
take, e.g.s = 2(N + T — 1). The functionf transforms a
point of [0, 1)® into an observation of the average response
time for the lastV — Ng tasks simulated. This estimator is
biased, which means that the integfﬁil)s f(udu is not
equal to the expectation we are looking for, but it converges
toitasN — oo.

In Table 3, we give the variance reduction factors
obtained by the LR estimators on this problem, for two
different number of points, and two different values for the
quantum sizeg. The other parameters are sefite- 0.001,

v =50,0 =0.5,andh = 1. Wechos&v = 1100andvVy =

100, which means that the problem has a dimension of at least
2200. We used 100 random shifts to estimate the variance
of the LR estimators, and the MC estimators are based
on 100: independent simulations. For this problem, LR
reduces the variance by factors of at least 13 in comparison
with MC.

Table 3: Variance Reduction Fac-
tors for the Time-Sharing System
gq=01 ¢=0.2

13 13

36 29

n =251
n =1021

We considered the possibility of using common ran-
dom numbers (CRN) in combination with LR in order to
estimate the difference between the expected response time
for the two values of; given in Table 3. Using CRN with
LR simply means that we use the same random shifts to
estimate both quantities. When we tried it, we obtained
better results for the CRN estimator than for the LR+CRN
estimator. However, for other sets of parameters leading
to more important differences in the two configurations
compared, the combination LR+CRN did better than CRN.
Note that configurations with say, different mean process-
ing times, present a bigger challenge for CRN because the

want to estimate the expected response time in steady state.synchronization between the two systems is unlikely to be

This is achieved by simulating this system umMiltasks are
completed, assuming that initially, all terminals are in
the thinking state. The initial bias due to this hypothesis is
decreased by simulatinyp tasks until completion before
starting to accumulate the statistics. See L'Ecuyer (2000)
for more details on the simulation of this system.

When translating this problem in terms of (1), we

achieved for a given simulation, whereas configurations that
only differ by their quantum size as those studied in Table
3 are more likely to be synchronized. In the next subsec-
tion, we will see another example where the two systems
are perfectly synchronized for any simulation and where
LR+CRN does significantly better than CRN alone.

get a large dimensional problem because the measure of4.3 Estimating Sensitivities (Derivatives)

performance of interest is a long-term average and thus each

simulation must run for a long time. More precisely, the
dimensiors is at least equal to/2 since each of th&/ tasks

is defined by two random variables (thinking and processing
times). Itis smaller or equal to(® + T — 1) because when

of Asian Option Prices

The third problem is taken from Broadie and Glasserman
(1996), and consists in doing sensitivity analysis in the
context of option pricing. Aroptionis a financial contract

the Nth task ends, at most two random variables have been whose value depends on the price of samderlying asset

513
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We are interested in estimating the sensitivity of an option’s
fair price (or value) with respect to different parameters. We
thus need to estimate the derivative of the value of this option
with respect to each of the chosen parameters. In this paper,
the word “derivative” is used in the ordinary mathematical
sense (i.e., rate of variation), not to denote a class of financial
products as commonly done in the world of finance. In the
case we describe, there is no analytical expression for these
derivatives and simulation is an appropriate tool to estimate
them.

The contract considered is Asian optioron a dividend-
paying asset that follows a geometric Brownian motion.
Denote byS(¢) the price of this asset at tinre Under the
risk-neutral measurewe have

dSt) = —8)Stt)dt + o S(t)dB(t),

where B(-) is a standard Brownian motiom, is the risk-
free interest rate§ is the dividend rate, and > O is the
volatility parameter. The option contract is assumed to have
its expiration date at tim&, and the current time is set to
0. Its payoff is defined as

C(T) = max(©0, S — K),

whereS = (1/s) >_!_; S(4;), thet;'s are some prespec-
ified observation dates for the price of the asset, &nid
the strike price a parameter specified in the contract. The
value of the option at time 0 is

C(0) =E T (1)),

where the expectation is taken under the risk-neutral
measure. For more on option pricing, see Duffie (1996).

In LEcuyer and Lemieux (2000), we used lattice rules
to reduce the variance of MC estimators@f0). Here, we
are interested in estimating the partial derivativesC@0)
with respect to the initial valu§(0) of the underlying asset
and with respect to the volatility, i.e.,

aC(0)

B _9C(0)
O - '

do

Hd and iy

These quantities are calle@ltaandvega respectively,
in the world of computational finance.

We experiment here with two of the three methods
presented in Broadie and Glasserman (1996) to estimate
these derivatives; theathwise metho¢br infinitesimal per-
turbation analysis (IPA)see Glasserman (1991) for more
on this method), andesimulation(or finite differences with
common random numbers (FDC)With the IPA method,
the derivative estimators are obtained by interchanging the
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expectation and derivative operators. This yields the esti-
mators (Broadie and Glasserman 1996):

. _roC(T)  _ S
rT — rTq_

Ha ¢ %so ¢ TS=Kg(0)

. _70C(T)

My = € rT_aU

§O £

. 1
R S ZlS(zi)[ln(S(ri)/S(O»
-5+ 0.502)ti] :

It is shown in Broadie and Glasserman (1996) that
and/i, are unbiased estimators @f; and ., respectively.
The quantities that need to be simulated in order to compute
g and i, are the pricesS(s;), which follow a lognormal
distribution with parameters I§(0) + (r — 8§ — 0.502) ;
ando?s;. In the framework of (1), it means that for both
derivatives, the dimensianis equal to the number of prices
entering the mean valug (since we need to generate one
normal random variable per observatisi;)), with the
function f being the transformation that maps a point of
[0, 1)* into an observation ofiy or fi,.

With the FDC method, the partial derivatia€ (0)/96
(for some parametef) evaluated ab = 6p is estimated
as follows: In addition to a simulation done ét= 6o,

a second one is done ft= 6y + h, whereh is a small
quantity. If we denote by "7 C(T,0) the discounted
payoff obtained with the simulation done@tthe estimator

is defined age™" T C(T, 6g+h) —e™"T C(T, 6p))/ h. These

two simulations aflp andép+ /1 are performed witltommon
random numbergL'Ecuyer and Perron 1994, Law and
Kelton 2000, Broadie and Glasserman 1996). We thus have
an s-dimensional integral: The integranfl in this case is

the function that maps a point @8, 1)° into an observation

of e T(C(T,0p + h) — C(T, 6p))/h. The FDC method
yields biased estimators, i.e.f[o’l)s f(udu # aC(0)/00,

but the bias converges to 0 As— 0. Using the results of
L'Ecuyer and Perron (1994), it can be shown that these FDC
estimators have the same asymptotic convergence rates as
the IPA estimators ifi — 0 fast enough when — ooc.

We should therefore expect the two methods to give almost
identical results whem is very small.

As pointed out in Broadie and Glasserman (1996),
variance reduction techniques that apply to the estimation
of the option’s price can also be used for the purpose of
derivative estimation. Following this, these authors have
used the terminal underlying asset pri$g’) as a control
variable for the different problems they considered. In the
special case of Asian options, another possibility is to use
the price of an Asian option based on tlepmetricaverage
as a control variable (Kemna and Vorst 1990).
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In Tables 4 and 5, we give the variance reduction factors Here, we can also say that the improvement by LR is more
obtained by the LR estimators in comparison to the MC important when only one control variable is used rather than
approach for the quantitiedelta and vega respectively, the combination CV12. CV2 works better than CV1 for
with IPA. We consider four different estimators: Thaive the estimation ofvegawhereas fordelta, the two control
one does not use any control variable, CV1 uses the final variables give similar results. CV2 works especially well
underlying asset price, CV2 uses the price of the option on for vegawhen S(0) ~ K, and the added benefit of LR is
the geometric average, and CV12 uses these two control also more important in this case. The combination CV12
variables together. As expected, the results obtained with improves upon each of CV1 and CV2 feega and has
the FDC method (not shown in the tables), witk= 0.0001, about the same variance as the best between CV1 and CV2
were practically identical to those obtained with IPA. This for delta
has also been observed by Broadie and Glasserman (1996).  Given the reduction factors obtained by LR for this
The variance of the LR estimators is estimated with 100 problem and knowing that the FDC method gave essentially
random shifts, and the MC estimators are based om 100 the same results as those shown in Tables 4 and 5, we can
independent simulations, whete= 1021 is the number of say that the combination of CRN (which is used in FDC)
points in the lattice rule. with LR is successful for this application.

In the context where sensitivities need to be estimated

Table 4. Variance Reduction Factors for Delta, with IPA ¢4, optimization purposes, e.g., to feed a stochastic approxi-

MC LR mation algorithm, a method like LR that leads to estimators
S(0) |90 100 110 90 100 110 with smaller variance without increasing the computation
naive | (1.7e-6) (2.8e-6) (1.3e-6)4.8 7.8 9.2 time would lead to a faster convergence towards the opti-
CV1l | (9.5e-7) (1.1e-6) (6.5e-7)2.4 25 35 mum, as explained in L'Ecuyer and Yin (1998).
CV2 |(7.2e-7) (1.3e-6) (7.1le-7)3.5 2.1 3.3
CV12| (6.3e-7) (1.le-6) (6.5e-7)2.2 2.0 3.2 ACKNOWLEDGMENTS
Table 5: Variance Reduction Factors for Vega, with IPA ~ This work has been supported by NSERC-Canada grant
MC LR No. ODGP0110050 and FCAR Grant No. OOER3218 to
s© |90 100 110 90 100 110 the second author, and via an FCAR-Québec postdoctoral

naive | (5.06-3) (6.26-3) (1L2e-)10 27 19 scholarship to the first author.

CV1l | (2.7e-3) (2.2e-3) (4.5e-3)2.4 33 3.9
CV2 | (7.2e-4) (8.9e-5) (2.0e-3)7.2 16 7.0

CV12| (6.5e-4) (4.6e-5) (8.7e-4)2.2 0.99 1.3 Bratley, P., B. L. Fox, and L. E. Schrage. 198X guide to
aimulation Second ed. New York: Springer-Verlag.
Each column in Tables 4 and 5 corresponds to a different Broadie, M. and P. Glasserman. 1996. Estimating secu-
initial price S(0). The numbers in parentheses in the MC rity price derivatives using simulation Management
columns represent the estimated variance of these estimators ~ Science 42:269-285.
(the reduction factors are equal to 1 for all of them). We give Caflish, R. E., W. Morokoff, and A. Owen. 1997. Val-
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