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ABSTRACT istic continuous spaces pose a much more difficult problem.
In a continuous search space, for example the domain of
Many artificial intelligence techniques rely on the notion robot path planning, there is in principle an infinite number
of a “state” as an abstraction of the actual state of the of ways to partition the search space into states. The choice
world, and an “operator” as an abstraction of the actions of states is intimately linked to the choice of operators,
that take you from one state to the next. Much of the art of since the operators effect changes in state.
problem solving depends on choosing the appropriate set The formulation of the problem space gives rise to
of states and operators. However, in realistic, and therefore an interesting trade-off. If the operators are too primitive,
dynamic and continuous search spaces, finding the right and correspondingly the state space large, the solution to
level of abstraction can be difficult. If too many states are a given problem will involve a deeper search through the
chosen, the search space becomes intractable; if too few arespace than if the state space were smaller. If the operators
chosen, important interactions between operators might be become too abstract, however, they start to gloss over all
missed, making the search results meaningless. We presenthe interactions between operators and the world that made
the idea of simulating operators usikgtical points as a the problem worth solving in the first place.
way of dynamically defining state boundaries; new states Consider path planning as an example: Assume a robot
are generated as part of the process of applying operators.on a 2D plane hasmove operator that will allow it to move
Critical point simulation allows the use of standard search a certain distancé. If d is chosen too small, the problem
and planning techniques in continuous domains, as well as quickly becomes intractable because there are too many
the incorporation of multiple agents, dynamic environments, possible paths to be considered.dlfis too large—larger
and non-atomic variable length actions into the search algo- than some of the obstacles on the map—the robot might
rithm. We conclude with examples of implemented systems jump over an obstacle during the search process, something

that show how critical points are used in practice. that it cannot do in the real world. There are better solutions
to this particular problem, but that is not the point. The
1 THE PROBLEM: DEFINING STATES IN point is that by defining the state space and operator set
CONTINUOUS DOMAINS a priori, one can make the problem unnecessarily hard or
overly simplified.
Many conventional artificial intelligence techniques rely on In this paper, we will discuss an approach that avoids this

a clear mapping from the target domain to a state space. Op-dilemma. The state space is not specified a priori, instead
erators transition from one state to the next. Classical searchit is generated dynamically as operators are executed. The
and problem solving algorithms (see (Korf 1988) for a sur- operators themselves define state boundaries. A simulation
vey), theorem provers, and STRIPS-based planners (Fikes modelis used to determine the effects of operator application.
and Nilsson 1971, Fikes and Nilsson 1993) share the as- Operators are no longer atomic in terms of the state space:
sumption that the world can naturally be divided into states, there can be state boundaries between the beginning and
and that what happens as we move from one state to the ending of an operator.
next is something that can safely be abstracted away.

For simple and discrete problems, defining the state
space is indeed often quite straightforward. However, real-
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2 THE SOLUTION: CRITICAL POINTS

During search, operators move you into different states
depending on their outcome. It only makes sense to distin-
guish state A from state B if the consequences of being in
state A differ from those of being in state B. Consequences
might be the set of operators that is now applicable, or a
difference in an arbitrarily defined reward function. If—as

was stated in the previous section—we no longer assume
that operators take equally long to execute, or that a state
space is defined a priori, then we must be given some sort
of additional information about the operator in order to

establish what state should be entered upon the operator’s

completion. This information must be sufficient to allow us
to computehow (with what outcome) andhenthe operator
completes. In effect, we require enough information to be
able tosimulatethis operator.

Simple actions, such as moving from point A to point
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Figure 1: An Example for a Critical Point while Ex-
ecuting an Attack Action

gone somewhere else, the attack will be successful and the
flag will be destroyed.

Note that critical points are only bounds, they are not
the exact times at which a decision will be made. In the

B over unobstructed terrain, have completion times that above example, the black force might move to protect its
are easily estimated given the terrain type and the agent’s flag right away, in which case White will abandon the attack
typical movement speed. The type of completion is also sooner than the critical time predicted. In this case the real

easy to predict: without any obstaclegnave will always
complete successfully. More complex actions miakernal
decisionsthat influence the action’s completion time and

world will differ quantitatively, but not qualitatively, from
the outcome we arrived at through critical point simulation.
In contrast, if we had simulated without critical points and

type. In the general case, these decisions are conditional simply completed White’s attack action in the face of an

on the state of the worldt the time the decision is made
So we are faced with a problem: to compute an action’s
outcome (to simulate the action), we need to know what
the state of the world every time the action has to make
decision.

In order to tackle this problem, we introduce the concept
of a critical point:

Definition:

A critical point is a time during the execution of

an action where a decision might be made, or
the time at which it might change its behavior. If
this decision can be made at any time during an
interval, it is thelatestsuch time.

For actions without internal decisions, such as the afore-
mentionedmove or instantaneous actions such as pushing a
button, the only critical point is the completion time. More
complicated actions have larger critical point sets.

The attack action depicted in Figure 1 makekeaision
during its execution: it will abandon the attack if the target
is protected by an agent stronger than the attacker. In this
example, a white force is attacking a black flag and there
is a large black force nearby. The critical point is the time
at which the white force is closer to the flag than the black
force is now (Step 2). This is the latest point in time at
which Black could interfere with the attack action. If Black
has started moving to the flag by this time, White will
abandon the attack. If Black has remained stationary or
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approaching black defender, there would have been a large
gualitative difference between the simulated and the real
world: The simulation would have generated the outcome
that White attacked and was subsequently destroyed by
Black, whereas in reality White fled before it came to that.
This kind of discrepancy arises exactly in those cases where
in simulation we skip over times when important events
happen that should have been taken into consideration.

In order to use critical points to simulate an action,
every action and plan must have two functions associated
with it. The first computes the next critical point for this
action. The secondadvancet), takes as an argument a
time parameter and changes the world state to reflect the
execution of this actiom time units into the future. These
functions are currently written by the designer of the action.
Critical point estimations are local to the action; they are
based on what this action is likely to do based ondineent
state of the world and predictions that can be made from
it. In the case of the attack action shown in Figure 1, the
decision about whether or not to abort depends on whether
the white force can get closer to the black flag than any
black force. A simple approximation of the critical point
would be the time it will most likely take, given the terrain,
to get as close to the black flag as the closest black force is
now. A more accurate approximation would take the current
velocities of all black forces into account, since some might
be moving towards the flag.

Figure 2 shows the basic algorithm for simulating a
group of actions. Simulation time has to be advanced to
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the minimum of all critical points. To understand why this
is necessary, let us consider actidn the action with the
minimum critical timer. The decision thaf” must make

This game is deceptively simple. The player must allocate
forces for attack and defense, and decide which of the
opponent’s units or flags he should go after. The player

at timer depends on the state of the world at that time.
The state of the world is affected by all the other actions
that are executing. If the world had not been advanced

must react to plans that do not unfold as expected, and
possibly retreat or regroup. We model limited visibility and
inaccurate sensor data. This leads to additional strategies

by the minimum of all critical times7 might not make
the same decision in simulation as it would have if it had
actually executed. The downside of having to take the used in conjunction with search, we created a reduced CtF
minimum is that forward simulation will take shorter and scenario depicted in Figure 3. There are two units on either
shorter jumps as the number of simulated actions increases.team. Black's goal is to defend its three flags, White’s
This makes sense, though, since the more actions you have,is to destroy them. In order to keep things simple, Black
the more possible interactions there might be. (One way behaves reactively in this scenario, meaning that White need
to alleviate this problem is to prune the number of actions not consider alternative actions for Black. The purpose of
by eliminating those that will most likely have no effect on the search algorithm is to generate a schedule of actions
the action being evaluated.) The upside is that no action for White that will destroy the flags in the shortest possible

involving feints, sneak attacks, and ambushes.
In order to demonstrate how critical points might be

has to concern itself with the critical point computation of
any other action.

Loop until all actions have completed:
11 Compute the minimum critical point
¢t of all actions being simulated.

Advance all actions by ¢ time units;
update world state.

1.2

Figure 2: The Basic Action Simulation Algorithm using
Critical Points.

If a critical point is very hard to compute, itis acceptable
for it to be underestimated. This will cause the simulated
world state to advance to a time sooner than the actual critical
point, and the action will have another chance to estimate
it correctly. In the extreme case, an action can report the
smallest time increment possible. The evaluation process
for this action will degenerate into tick-based simulation.

3 USING CRITICAL POINTS FOR
STATE-BASED SEARCH

Critical points were motivated by the need to estimate how
and when an action completes, but in effect they are defining
a set of interesting states that will occur during the execution
of this action. In this capacity, they can be exploited by

traditional Al search techniques.

We have been developing a continuous, dynamic, and
adversarial domain in which to test our ideas on critical
points. This domain is based on the game of “Capture
the Flag” (CtF). In CtF there are two teams; each has a
number of movable units and flags to protect. Their number
and starting locations are randomized. They operate on a
map which has different types of terrain. Terrain influences
movement speed and forms barriers. A team wins when it
captures all its opponent’s flags. A team can also go after its
opponent’s units to reduce their strength and effectiveness.
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Figure 3: The Initial Configuration of the
Critical Point Search Scenario.

White’s operator set is basic: It can only attack enemy
flags. Since there are three possible targets for White and two
White blobs, this results in3possible action combinations
for White—a branching factor of 9. The attack action has
two critical points: The first is its estimated completion
time, and second one the time at which it will be closer to
the target than any enemy unit is now. The attack action
aborts if its target is being protected by an enemy that it
cannot defeat.

Figure 4 outlines the basic algorithm used. For sake of
simplicity, we use depth-first search, but in principle any
state-based search algorithm could be used. The function
cp-searchhas two arguments: the first vgorld-state the
state of the world at the time thep-searchis called; the
second isschedule which contains the best sequence of
actions for every agent in the world-state starting at the
current time until the game ends. The functgmsearch()
evaluates all combinations of actions that are applicable in
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Define function cp-searctiworld state, schedule)
1. Let A be the set of all possible action com-
binations that can be executed in this world
state. Loop over all a € A:
1.1 In simulation, loop until game end
conditions are met or some agent’s ac-
tion has completed:

111 Compute the minimum critical
time ¢ of all actions being simulated.
1.1.2  Advance all actions by ¢ time
units; generate a new-world-state.

1.2.  If game is over, evaluate new-world-
state; return this value as the score for
a.

1.3. If an action has completed, re-

cursively call cp-search(new-world-state
schedule) return the score of the re-
turned schedule as the score for a.
2. Add the action combination with highest
score to the schedule.
3. Return the schedule.

Main Body:
1. Call cp-search(initial-world-state, nil)
2. Execute the actions in the returned schedule
sequentially for every agent.

Figure 4: A Search Algorithm Based on Critical Points

the current world state and adds the best one to the schedule searchs-cps and the reduced versioncps

At the very heart otp-search()is the familiar loop which
advances the world ahead to the next critical time. The
world state is advanced until an action completes (or the
game ends), at which poinp-search()is recursively called
on the updated world state. Time is modeled explicitly—
time always advances to the next critical point. The search

al completesa2 completesa3 completes
' a4 completes

! (a3,a5)’

c2 < >

Figure 5: An lllustration of How Search Integrates
with Action Simulation

COMPARISON BETWEEN CLASSICAL
AND CRITICAL POINT SEARCHES

It is instructive to investigate how a classical depth-first
search compares to the critical point search in the CtF sce-
nario. In practice, this is not easy to do, since a standard
state-based search has trouble dealing with concurrent ac-
tions that take varying amounts of time to execute. The next
best thing, however, is to compare a standard critical point
search with a search involving only the minimal number
of critical points. For ease of reference, call the standard
. r-cps
uses only the critical points that estimate an action’s com-
pletion time,s-cps uses all critical points. In our simple
scenario, this means that in addition to completion critical
points, the critical point that predicts aborting the attack
action is used.

Figures 6 and 7 show the best schedule found by the two

branches when more than one operator (action) can be versions of the algorithm, respectively. Since Black-Flag-1

executed.
In effect, the world state branches every time an agent

completes (or aborts) its action. State boundaries are beingtake this flag. r-cps

is being defended by a unit with greater strength (indicated by
the larger size) than White-1, White-1 cannot successfully
does not take this into account

created dynamically depending on the execution of the during the search process and consequently generates a
actions being simulated. When an agent goes idle, every schedule which is not executable (during execution, White-
new possible action is considered for it. Figure 5 illustrates 1 is defeated and Black-Flag-1 is not destroyesicps

this process for a hypothetical tree with branching factor 2: on the other hand, generates a schedule which takes slightly

At time 0, two actions:1 anda?2 are being simulated. They
have the corresponding completion timdsandc2 (when
may themselves be the result of several critical point jumps
in the inner-most simulation loop). Whei completes, two
actions,a3 anda4 are considered to replace it. Actia2

is still present in both search paths, and when it completes,

it too is replaced by one of two possible alternative actions.
Since both branches of the initial tree are now simulating
distinct sets of actions, their completion times no longer
line up.
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longer, but ensures that White can win the engagements it
gets involved in.

Table 1 summarizes how each algorithm performed on
this trial run. “Critical points considered” is the total number
of jumps that occurred within the inner-most simulation loop
(bullet 1.2 in Figure 4). Understandabbrcps considers
a larger number.

r-cps is not taking an important piece of information
into account, namely that the attack action may abort. The
only way to address this problem in traditional search is
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Figure 6: The Best Schedule Found in
s-cps , using the Additional Critical Point
for Aborting the Attack Action
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Figure 7: The Best Schedule Found in
r-cps , using Only Critical Points for Com-
pletion

to redefine the operator set, effectively splittiaiack

5 USING CRITICAL POINTS
FOR PLAN EVALUATION

Critical points have a wider applicability than just search.
The full version of CtF has many agents and flags on
each side; any generative planning solution would have
to face an enormous branching factor since many possible
action combinations can be executed at any given time. To
cope with this problem, we rely on a partial hierarchical
planner (Georgeff and Lansky 1986), which retrieves plans
from a set of pre-compiled skeletal solutions, and uses
heuristics to allocate resources in a reasonable way (for
example, arattack plan will never attack a target with

a smaller force than the force defending it).

When several plans apply, partial hierarchical planners
typically select one according to heuristic criteria. Military
planners will actually play out a plan and determine how
the opponent might react to it. A wargame is a qualitative
simulation. The CtF planner does the same: it simulates
potential plans at some abstract level, then applies a static
evaluation function to select the best plan. The static evalu-
ation function incorporates such factors as relative strength
and number of captured and threatened flags of both teams,
to describe how desirable this future world state is.

Simulation is a costly operation, and in order to do it
efficiently, CtF must be able to jump ahead to times when
interesting events take place in the world. Again we face
the problem of having to impose “states” on a continuous
domain. Critical points are essential for plan evaluation
in the CtF planner, since they are used to guide forward
simulation. The basic idea behind forward simulation is
that instead of advancing the world tick by tick, which is
time-consuming, we jump right to the next critical point.
Forward simulation proceeds as outlined in Figure 8.

This application of critical points is different from the
one in the previous sections in that no search need be
conducted. One plan is given, and the goal is to determine
what the world state would look like if this plan were to
execute. What makes this interesting is that CtF is an

into two operatorsmove-past-defense-line and
attack-with-greater-numbers . Increasing the op-
erator set will greatly increase the number of nodes that
have to be searched, something thaes nothappen when

a critical point is added to an action. The number of critical
points influences the efficiency of the simulation loop, not
the branching factor.

Table 1:s-cps vs. r-cps in the CtF Scenario

search method s-cps | r-cps
critical points considered 111 88
est. completion time 110 104
actual completion time 120 -
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Add the plan P to be evaluated to all the

actions currently ongoing in the simulator.

In simulation, loop either until a fixed time

in the future or until too many errors have

accumulated in the simulation:

2.1 Compute the minimum critical time ¢
of all actions being simulated.

2.2 Advance all actions by ¢ time units;
update world state.

Evaluate the resulting world state; return this

value as the score for the plan P.

Figure 8: The Plan Evaluation Algorithm.
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adversarial domain. In lieu of a detailed opponent model, to plan a path from a cell to any other. Skeletonization
we simply assume the opponent would do what we would methods, for example those used to generate Voronoi dia-
do in his situation. During forward simulation, the action grams, collapse the infinite number of possible points in the
list also contains opponent actions. When CtF starts plan traversable space to a roadmap that defines safe paths be-
evaluation, it simply puts the top-level goain-the-game tween obstacles. The roadmap is a graph, and graph search
for the opponent into the action list. The opponent action’s methods can be used for path planning. Note that while all
critical times are computed just like ours, and they are these approaches are general, they impose an a priori state
advanced in the same way. Whereas our side evaluates alldecomposition on the search space, unlike critical points,
plans and chooses the best one, the opponent chooses thevhich generate state boundaries based on the action set. If
worst one (for us). This is a form a minimax search, with one were to do path planning with critical points, theve

the two sides executing their plans in parallel. action would report, given the size of the agent and the
This brings up another point: in our previous example direction it was going, where the next decision point would

we only had to simulate fairly simple actions likeove have to be.

andattack , but now we have to generate critical points One of the biggest open issueisw, given an action,

for complex plans such awin-the-game . As actions one should go about defining its critical points. We have

get more complex, their critical point computations become stated that this process involves estimating, through expe-
more complex as well. This problem is mitigated, however, rience or insight, at which times a decision has to be made
by the fact that actions and plans are organized hierarchically within the action. Critical points are the times at which

in CtF. Just as actions lower in hierarchy can be used as an action might take a different course depending on the
building blocks to achieve some goal of a higher level action, state of the environment. We do want to emphasize that
so can critical points of more complex actions base their this problem is indeed easier than partitioning the complete
computations on simpler ones. Consider as an example search space into states. When estimating critical points,

the actionfollow , which repeatedly schedulesove to one can look at one action in isolation, to partition the
chase a moving target. Let us assuimitow  periodically state space one has to decide dtirpossible actions what
checks the position of the target and redirects the currently characteristics of the space are relevant.

executingmove if need be.follow  will also schedule a Finding critical points can be compared to the problem
new move if the the current one aborts for some reason. of learning planning operators. They are one more thing
follow s critical points are simply the union ohove’s that has to be specified in addition to pre- and postconditions

critical points and the target check period. These are the when designing operators. It might even be feasibledon
times at whichfollow has to make a decision about critical points. Recent work in nonlinear dynamics (Rosen-

changing course. stein and Cohen 1998) has shown how it is possible to
cluster conceptually related actions based time series of
6 DISCUSSION AND RELATED WORK associated sensor readings. We have the hypothesis that in

such clusters, critical points are the points at which groups

To the best of our knowledge, the idea of using critical points of time series diverge.
to make any continuous search space suitable for classical Al While critical points can be used to generate dynamic
methods has not been put forth in this general form before. state boundaries, they do not by themselves reduce the
That is not to say that intellectual precedents don't exist, potentially high branching factor of searches in continuous
however. Others have used simulation to evaluate (Lee and domains. The reason we used a patrtial hierarchical planner
Fishwick 1994) or test plans (Beetz and McDermott 1994, in the Capture the Flag domain, and not a search algorithm,
Hammond 1990, Lesh, Martin, and Allen 1998). Not all is precisely due to the high branching factor.
planning approaches represent state in the same way, and
there is indeed an entire subfield of planning that seeks to ACKNOWLEDGMENTS
reason about continuously changing processes (e.g. (Dean
and Wellman 1991, Penberthy and Weld 1994)). This research is supported by DARPA/USAF under con-

Critical points are well known in Qualitative  tract numbers N66001-96-C-8504, F30602-97-1-0289, and
Physics (Weld and deKleer 1989, Forbus 1984). Roboticists, F30602-95-1-0021. The U.S. Government is authorized to
in particular those dealing with motion planning (Canny reproduce and distribute reprints for governmental purposes
1988, Latombe 1991), have long had to face the problem notwithstanding any copyright notation hereon. The views
of continuous search spaces. Many approaches for quan-and conclusions contained herein are those of the authors and
tizing these search spaces exist, here we will only touch should not be interpreted as necessarily representing the offi-
on the most common: Cell decomposition methods overlay cial policies or endorsements either expressed or implied, of
the continuous space with a finite number of often regu- the Defense Advanced Research Projects Agency/Air Force
larly shaped cells. Conventional search algorithms are used Materiel Command or the U.S. Government.
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