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ABSTRACT

Many artificial intelligence techniques rely on the notion
of a “state” as an abstraction of the actual state of th
world, and an “operator” as an abstraction of the action
that take you from one state to the next. Much of the art
problem solving depends on choosing the appropriate s
of states and operators. However, in realistic, and therefo
dynamic and continuous search spaces, finding the rig
level of abstraction can be difficult. If too many states ar
chosen, the search space becomes intractable; if too few
chosen, important interactions between operators might
missed, making the search results meaningless. We pres
the idea of simulating operators usingcritical points as a
way of dynamically defining state boundaries; new state
are generated as part of the process of applying operato
Critical point simulation allows the use of standard searc
and planning techniques in continuous domains, as well
the incorporation of multiple agents, dynamic environment
and non-atomic variable length actions into the search alg
rithm. We conclude with examples of implemented system
that show how critical points are used in practice.

1 THE PROBLEM: DEFINING STATES IN
CONTINUOUS DOMAINS

Many conventional artificial intelligence techniques rely o
a clear mapping from the target domain to a state space. O
erators transition from one state to the next. Classical sea
and problem solving algorithms (see (Korf 1988) for a su
vey), theorem provers, and STRIPS-based planners (Fik
and Nilsson 1971, Fikes and Nilsson 1993) share the a
sumption that the world can naturally be divided into state
and that what happens as we move from one state to
next is something that can safely be abstracted away.

For simple and discrete problems, defining the sta
space is indeed often quite straightforward. However, rea
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istic continuous spaces pose a much more difficult problem
In a continuous search space, for example the domain
robot path planning, there is in principle an infinite numbe
of ways to partition the search space into states. The cho
of states is intimately linked to the choice of operators
since the operators effect changes in state.

The formulation of the problem space gives rise t
an interesting trade-off. If the operators are too primitive
and correspondingly the state space large, the solution
a given problem will involve a deeper search through th
space than if the state space were smaller. If the operat
become too abstract, however, they start to gloss over
the interactions between operators and the world that ma
the problem worth solving in the first place.

Consider path planning as an example: Assume a rob
on a 2D plane has amove operator that will allow it to move
a certain distanced. If d is chosen too small, the problem
quickly becomes intractable because there are too ma
possible paths to be considered. Ifd is too large—larger
than some of the obstacles on the map—the robot mig
jump over an obstacle during the search process, someth
that it cannot do in the real world. There are better solution
to this particular problem, but that is not the point. The
point is that by defining the state space and operator s
a priori, one can make the problem unnecessarily hard
overly simplified.

In this paper, we will discuss an approach that avoids th
dilemma. The state space is not specified a priori, inste
it is generated dynamically as operators are executed. T
operators themselves define state boundaries. A simulat
model is used to determine the effects of operator applicatio
Operators are no longer atomic in terms of the state spa
there can be state boundaries between the beginning a
ending of an operator.
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2 THE SOLUTION: CRITICAL POINTS

During search, operators move you into different stat
depending on their outcome. It only makes sense to dist
guish state A from state B if the consequences of being
state A differ from those of being in state B. Consequenc
might be the set of operators that is now applicable, or
difference in an arbitrarily defined reward function. If—a
was stated in the previous section—we no longer assu
that operators take equally long to execute, or that a st
space is defined a priori, then we must be given some s
of additional information about the operator in order t
establish what state should be entered upon the operat
completion. This information must be sufficient to allow u
to computehow(with what outcome) andwhenthe operator
completes. In effect, we require enough information to b
able tosimulatethis operator.

Simple actions, such as moving from point A to poin
B over unobstructed terrain, have completion times th
are easily estimated given the terrain type and the agen
typical movement speed. The type of completion is als
easy to predict: without any obstacles, amove will always
complete successfully. More complex actions makeinternal
decisionsthat influence the action’s completion time an
type. In the general case, these decisions are conditio
on the state of the worldat the time the decision is made.
So we are faced with a problem: to compute an action
outcome (to simulate the action), we need to know wh
the state of the world every time the action has to ma
decision.

In order to tackle this problem, we introduce the conce
of a critical point:

Definition:
A critical point is a time during the execution of
an action where a decision might be made, or
the time at which it might change its behavior. If
this decision can be made at any time during an
interval, it is thelatestsuch time.

For actions without internal decisions, such as the afor
mentionedmove or instantaneous actions such as pushing
button, the only critical point is the completion time. More
complicated actions have larger critical point sets.

The attack action depicted in Figure 1 makes adecision
during its execution: it will abandon the attack if the targe
is protected by an agent stronger than the attacker. In t
example, a white force is attacking a black flag and the
is a large black force nearby. The critical point is the tim
at which the white force is closer to the flag than the blac
force is now (Step 2). This is the latest point in time a
which Black could interfere with the attack action. If Black
has started moving to the flag by this time, White wi
abandon the attack. If Black has remained stationary
4
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Figure 1: An Example for a Critical Point while Ex-
ecuting an Attack Action

gone somewhere else, the attack will be successful and t
flag will be destroyed.

Note that critical points are only bounds, they are no
the exact times at which a decision will be made. In the
above example, the black force might move to protect it
flag right away, in which case White will abandon the attack
sooner than the critical time predicted. In this case the re
world will differ quantitatively, but not qualitatively, from
the outcome we arrived at through critical point simulation
In contrast, if we had simulated without critical points and
simply completed White’s attack action in the face of an
approaching black defender, there would have been a lar
qualitative difference between the simulated and the re
world: The simulation would have generated the outcom
that White attacked and was subsequently destroyed b
Black, whereas in reality White fled before it came to that
This kind of discrepancy arises exactly in those cases whe
in simulation we skip over times when important events
happen that should have been taken into consideration.

In order to use critical points to simulate an action
every action and plan must have two functions associate
with it. The first computes the next critical point for this
action. The second,(advance t), takes as an argument a
time parametert and changes the world state to reflect the
execution of this actiont time units into the future. These
functions are currently written by the designer of the action
Critical point estimations are local to the action; they are
based on what this action is likely to do based on thecurrent
stateof the world and predictions that can be made from
it. In the case of the attack action shown in Figure 1, th
decision about whether or not to abort depends on wheth
the white force can get closer to the black flag than an
black force. A simple approximation of the critical point
would be the time it will most likely take, given the terrain,
to get as close to the black flag as the closest black force
now. A more accurate approximation would take the curren
velocities of all black forces into account, since some migh
be moving towards the flag.

Figure 2 shows the basic algorithm for simulating a
group of actions. Simulation time has to be advanced t
65
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the minimum of all critical points. To understand why thi
is necessary, let us consider actionT , the action with the
minimum critical timet . The decision thatT must make
at time t depends on the state of the world at that tim
The state of the world is affected by all the other action
that are executing. If the world had not been advanc
by the minimum of all critical times,T might not make
the same decision in simulation as it would have if it ha
actually executed. The downside of having to take th
minimum is that forward simulation will take shorter and
shorter jumps as the number of simulated actions increas
This makes sense, though, since the more actions you ha
the more possible interactions there might be. (One w
to alleviate this problem is to prune the number of action
by eliminating those that will most likely have no effect on
the action being evaluated.) The upside is that no acti
has to concern itself with the critical point computation o
any other action.

1. Loop until all actions have completed:
1.1 Compute the minimum critical point

t of all actions being simulated.
1.2 Advance all actions by t time units;

update world state.

Figure 2: The Basic Action Simulation Algorithm using
Critical Points.

If a critical point is very hard to compute, it is acceptabl
for it to be underestimated. This will cause the simulate
world state to advance to a time sooner than the actual criti
point, and the action will have another chance to estima
it correctly. In the extreme case, an action can report t
smallest time increment possible. The evaluation proce
for this action will degenerate into tick-based simulation

3 USING CRITICAL POINTS FOR
STATE-BASED SEARCH

Critical points were motivated by the need to estimate ho
and when an action completes, but in effect they are defini
a set of interesting states that will occur during the executi
of this action. In this capacity, they can be exploited b
traditional AI search techniques.

We have been developing a continuous, dynamic, a
adversarial domain in which to test our ideas on critic
points. This domain is based on the game of “Captu
the Flag” (CtF). In CtF there are two teams; each has
number of movable units and flags to protect. Their numb
and starting locations are randomized. They operate on
map which has different types of terrain. Terrain influence
movement speed and forms barriers. A team wins when
captures all its opponent’s flags. A team can also go after
opponent’s units to reduce their strength and effectivene
46
.

d

s.
e,
y
s

n

al
e
e
s

g
n

d
l
e
a
r
a

s
it
ts
s.

This game is deceptively simple. The player must allocat
forces for attack and defense, and decide which of th
opponent’s units or flags he should go after. The playe
must react to plans that do not unfold as expected, an
possibly retreat or regroup. We model limited visibility and
inaccurate sensor data. This leads to additional strategi
involving feints, sneak attacks, and ambushes.

In order to demonstrate how critical points might be
used in conjunction with search, we created a reduced C
scenario depicted in Figure 3. There are two units on eithe
team. Black’s goal is to defend its three flags, White’s
is to destroy them. In order to keep things simple, Black
behaves reactively in this scenario, meaning that White nee
not consider alternative actions for Black. The purpose o
the search algorithm is to generate a schedule of actio
for White that will destroy the flags in the shortest possible
time.

Black-Flag-1

Black-Flag-2

Black-Flag-3

Black-1

Black-2

White-1 White-2

Figure 3: The Initial Configuration of the
Critical Point Search Scenario.

White’s operator set is basic: It can only attack enem
flags. Since there are three possible targets for White and tw
White blobs, this results in 32 possible action combinations
for White—a branching factor of 9. The attack action has
two critical points: The first is its estimated completion
time, and second one the time at which it will be closer to
the target than any enemy unit is now. The attack actio
aborts if its target is being protected by an enemy that
cannot defeat.

Figure 4 outlines the basic algorithm used. For sake o
simplicity, we use depth-first search, but in principle any
state-based search algorithm could be used. The functi
cp-searchhas two arguments: the first isworld-state, the
state of the world at the time thecp-search is called; the
second isschedule, which contains the best sequence o
actions for every agent in the world-state starting at th
current time until the game ends. The functioncp-search()
evaluates all combinations of actions that are applicable
6
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Define function cp-search(world state, schedule):
1. Let A be the set of all possible action com-

binations that can be executed in this world
state. Loop over all a ∈ A:
1.1. In simulation, loop until game end

conditions are met or some agent’s ac-
tion has completed:
1.1.1 Compute the minimum critical

time t of all actions being simulated.
1.1.2 Advance all actions by t time

units; generate a new-world-state.
1.2. If game is over, evaluate new-world-

state; return this value as the score for
a.

1.3. If an action has completed, re-
cursively call cp-search(new-world-state,
schedule); return the score of the re-
turned schedule as the score for a.

2. Add the action combination with highest
score to the schedule.

3. Return the schedule.

Main Body:
1. Call cp-search(initial-world-state, nil)
2. Execute the actions in the returned schedule

sequentially for every agent.

Figure 4: A Search Algorithm Based on Critical Points

the current world state and adds the best one to the sched
At the very heart ofcp-search()is the familiar loop which
advances the world ahead to the next critical time. Th
world state is advanced until an action completes (or t
game ends), at which pointcp-search()is recursively called
on the updated world state. Time is modeled explicitly—
time always advances to the next critical point. The sear
branches when more than one operator (action) can
executed.

In effect, the world state branches every time an age
completes (or aborts) its action. State boundaries are be
created dynamically depending on the execution of th
actions being simulated. When an agent goes idle, eve
new possible action is considered for it. Figure 5 illustrate
this process for a hypothetical tree with branching factor
At time 0, two actionsa1 anda2 are being simulated. They
have the corresponding completion timesc1 andc2 (when
may themselves be the result of several critical point jum
in the inner-most simulation loop). Whena1 completes, two
actions,a3 anda4 are considered to replace it. Actiona2
is still present in both search paths, and when it complet
it too is replaced by one of two possible alternative action
Since both branches of the initial tree are now simulatin
distinct sets of actions, their completion times no long
line up.
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(a1,a2)

(a2,a3)

(a2,a4)

c1

c2

a1 completesa2 completes

c3

c4

a3 completes

a4 completes
(a3,a5)

(a3,a6)

(a4,a7)

(a4,a8)

Figure 5: An Illustration of How Search Integrates
with Action Simulation

4 COMPARISON BETWEEN CLASSICAL
AND CRITICAL POINT SEARCHES

It is instructive to investigate how a classical depth-firs
search compares to the critical point search in the CtF sc
nario. In practice, this is not easy to do, since a standa
state-based search has trouble dealing with concurrent a
tions that take varying amounts of time to execute. The ne
best thing, however, is to compare a standard critical poin
search with a search involving only the minimal numbe
of critical points. For ease of reference, call the standar
searchs-cps and the reduced versionr-cps . r-cps
uses only the critical points that estimate an action’s com
pletion time,s-cps uses all critical points. In our simple
scenario, this means that in addition to completion critica
points, the critical point that predicts aborting the attack
action is used.

Figures 6 and 7 show the best schedule found by the tw
versions of the algorithm, respectively. Since Black-Flag-1
is being defended by a unit with greater strength (indicated b
the larger size) than White-1, White-1 cannot successfull
take this flag. r-cps does not take this into account
during the search process and consequently generates
schedule which is not executable (during execution, White
1 is defeated and Black-Flag-1 is not destroyed).s-cps
on the other hand, generates a schedule which takes sligh
longer, but ensures that White can win the engagements
gets involved in.

Table 1 summarizes how each algorithm performed o
this trial run. “Critical points considered” is the total number
of jumps that occurred within the inner-most simulation loop
(bullet 1.2 in Figure 4). Understandably,s-cps considers
a larger number.

r-cps is not taking an important piece of information
into account, namely that the attack action may abort. Th
only way to address this problem in traditional search i
67
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Figure 6: The Best Schedule Found in
s-cps , using the Additional Critical Point
for Aborting the Attack Action

White-1 is defeated

Figure 7: The Best Schedule Found in
r-cps , using Only Critical Points for Com-
pletion

to redefine the operator set, effectively splittingattack
into two operatorsmove-past-defense-line and
attack-with-greater-numbers . Increasing the op-
erator set will greatly increase the number of nodes th
have to be searched, something thatdoes nothappen when
a critical point is added to an action. The number of critica
points influences the efficiency of the simulation loop, no
the branching factor.

Table 1:s-cps vs. r-cps in the CtF Scenario
search method s-cps r-cps
critical points considered 111 88
est. completion time 110 104
actual completion time 120 –
46
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5 USING CRITICAL POINTS
FOR PLAN EVALUATION

Critical points have a wider applicability than just search
The full version of CtF has many agents and flags o
each side; any generative planning solution would hav
to face an enormous branching factor since many possib
action combinations can be executed at any given time.
cope with this problem, we rely on a partial hierarchica
planner (Georgeff and Lansky 1986), which retrieves plan
from a set of pre-compiled skeletal solutions, and use
heuristics to allocate resources in a reasonable way (
example, anattack plan will never attack a target with
a smaller force than the force defending it).

When several plans apply, partial hierarchical planne
typically select one according to heuristic criteria. Military
planners will actually play out a plan and determine how
the opponent might react to it. A wargame is a qualitativ
simulation. The CtF planner does the same: it simulat
potential plans at some abstract level, then applies a sta
evaluation function to select the best plan. The static eval
ation function incorporates such factors as relative streng
and number of captured and threatened flags of both team
to describe how desirable this future world state is.

Simulation is a costly operation, and in order to do i
efficiently, CtF must be able to jump ahead to times whe
interesting events take place in the world. Again we fac
the problem of having to impose “states” on a continuou
domain. Critical points are essential for plan evaluatio
in the CtF planner, since they are used to guide forwa
simulation. The basic idea behind forward simulation i
that instead of advancing the world tick by tick, which is
time-consuming, we jump right to the next critical point
Forward simulation proceeds as outlined in Figure 8.

This application of critical points is different from the
one in the previous sections in that no search need
conducted. One plan is given, and the goal is to determi
what the world state would look like if this plan were to
execute. What makes this interesting is that CtF is a

1. Add the plan P to be evaluated to all the
actions currently ongoing in the simulator.

2. In simulation, loop either until a fixed time
in the future or until too many errors have
accumulated in the simulation:
2.1 Compute the minimum critical time t

of all actions being simulated.
2.2 Advance all actions by t time units;

update world state.
3. Evaluate the resulting world state; return this

value as the score for the plan P .

Figure 8: The Plan Evaluation Algorithm.
8



Atkin and Cohen

l

’

e

r

a

t

l

t

n
ia-
e
be-
rch
ll

tate
ts,
. If

e
d

e
e-

de

e
at
te
ts,
e

g
ns

-
to
of
t in
s

ic
the
s
er

m,

-
nd
to
es
s

and
ffi-
of
ce
adversarial domain. In lieu of a detailed opponent mode
we simply assume the opponent would do what we wou
do in his situation. During forward simulation, the action
list also contains opponent actions. When CtF starts pla
evaluation, it simply puts the top-level goalwin-the-game
for the opponent into the action list. The opponent action
critical times are computed just like ours, and they ar
advanced in the same way. Whereas our side evaluates
plans and chooses the best one, the opponent chooses
worst one (for us). This is a form a minimax search, with
the two sides executing their plans in parallel.

This brings up another point: in our previous exampl
we only had to simulate fairly simple actions likemove
and attack , but now we have to generate critical points
for complex plans such aswin-the-game . As actions
get more complex, their critical point computations becom
more complex as well. This problem is mitigated, howeve
by the fact that actions and plans are organized hierarchica
in CtF. Just as actions lower in hierarchy can be used
building blocks to achieve some goal of a higher level action
so can critical points of more complex actions base the
computations on simpler ones. Consider as an examp
the actionfollow , which repeatedly schedulesmove to
chase a moving target. Let us assumefollow periodically
checks the position of the target and redirects the curren
executingmove if need be.follow will also schedule a
new move if the the current one aborts for some reason
follow ’s critical points are simply the union ofmove’s
critical points and the target check period. These are th
times at whichfollow has to make a decision about
changing course.

6 DISCUSSION AND RELATED WORK

To the best of our knowledge, the idea of using critical point
to make any continuous search space suitable for classical
methods has not been put forth in this general form befor
That is not to say that intellectual precedents don’t exis
however. Others have used simulation to evaluate (Lee a
Fishwick 1994) or test plans (Beetz and McDermott 1994
Hammond 1990, Lesh, Martin, and Allen 1998). Not al
planning approaches represent state in the same way, a
there is indeed an entire subfield of planning that seeks
reason about continuously changing processes (e.g. (De
and Wellman 1991, Penberthy and Weld 1994)).

Critical points are well known in Qualitative
Physics (Weld and deKleer 1989, Forbus 1984). Roboticis
in particular those dealing with motion planning (Canny
1988, Latombe 1991), have long had to face the proble
of continuous search spaces. Many approaches for qua
tizing these search spaces exist, here we will only touc
on the most common: Cell decomposition methods overla
the continuous space with a finite number of often regu
larly shaped cells. Conventional search algorithms are us
46
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to plan a path from a cell to any other. Skeletonizatio
methods, for example those used to generate Voronoi d
grams, collapse the infinite number of possible points in th
traversable space to a roadmap that defines safe paths
tween obstacles. The roadmap is a graph, and graph sea
methods can be used for path planning. Note that while a
these approaches are general, they impose an a priori s
decomposition on the search space, unlike critical poin
which generate state boundaries based on the action set
one were to do path planning with critical points, themove
action would report, given the size of the agent and th
direction it was going, where the next decision point woul
have to be.

One of the biggest open issues ishow, given an action,
one should go about defining its critical points. We hav
stated that this process involves estimating, through exp
rience or insight, at which times a decision has to be ma
within the action. Critical points are the times at which
an action might take a different course depending on th
state of the environment. We do want to emphasize th
this problem is indeed easier than partitioning the comple
search space into states. When estimating critical poin
one can look at one action in isolation, to partition th
state space one has to decide forall possible actions what
characteristics of the space are relevant.

Finding critical points can be compared to the problem
of learning planning operators. They are one more thin
that has to be specified in addition to pre- and postconditio
when designing operators. It might even be feasible tolearn
critical points. Recent work in nonlinear dynamics (Rosen
stein and Cohen 1998) has shown how it is possible
cluster conceptually related actions based time series
associated sensor readings. We have the hypothesis tha
such clusters, critical points are the points at which group
of time series diverge.

While critical points can be used to generate dynam
state boundaries, they do not by themselves reduce
potentially high branching factor of searches in continuou
domains. The reason we used a partial hierarchical plann
in the Capture the Flag domain, and not a search algorith
is precisely due to the high branching factor.
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