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ABSTRACT  
 
A cellular engineer typically estimates system performance 
via simulation. Most cellular operations software provides 
data from which one can infer the average, busy hour, 
subscriber location distribution, which becomes an input to 
the simulation. When the simulation does not include 
mobility, as is typical with Monte Carlo simulations, 
modeling this distribution  is a straight-forward task. 
However, when the simulation models mobility, it must do 
so in such a way that the subscriber location distribution is 
stable. We introduce a stochastic mobility model for the 
purpose of achieving and stabilizing a priori subscriber 
location distributions. 
 
1 INTRODUCTION 
 
A dynamic simulation of a cellular system requires a model 
of mobility. Simplistic mobility models choose a random 
velocity vector for a particle (mobile subscriber, 
automobile, etc.) and compute its destination based on 
physical laws of motion and the time period, or epoch 
between simulation steps. The primary disadvantage with 
this approach is that it is does not control the distribution of 
particle location. More sophisticated approaches model 
particle motion stochastically, such as (Rose and Yates 
1997), (Liu, Bahl, and Chlamtac 1998), (Massey and Whitt 
1993), and (Jabbari, Zhou, and Hillier 1998). 

In most of these approaches, the object is to assign a 
priori behavior to the particles in motion, derive the 
resulting location distribution, and estimate its effects on 
the systems under study. Our objective is somewhat the 
opposite. Cellular operators typically have information on 
the location distribution of their subscribers. A cellular 
planning tool which incorporates dynamic simulation of 
subscriber mobility must be able to incorporate this a 
priori  location distribution information.  
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The challenge in this effort is to find a stochastic 
process that achieves this distribution and satisfies other 
requirements of the simulation. In many respects, this is the 
reversal of the classic stochastic process problem: instead 
of beginning with the state transition probabilities and 
solving for the steady-state distribution, one begins with 
the steady-state distribution and solves for the state 
transition probabilities. As there is more leeway in this 
direction, there is an element of design involved. 

We limit ourselves to discrete time, finite state 
Markov processes, so the location distribution data is 
assumed to be a finite, probability mass function (p.m.f.) 
on a two dimensional grid representing the location space. 
For convenience, we further assume that all p.m.f.'s have 
all positive values. (This condition can easily be relaxed 
with advantageous results.) We first develop the ideas in 
one dimension and then extend them to two. Finally, we 
confine ourselves to the process exhibited by a single 
particle. The aggregate location distribution produced by 
multiple particles with identical processes is identical. 

We first develop our ideas in one dimension, where we 
define a class of Markov chains which captures both 
direction and mean speed of the particle. We then show 
how to extend such chains to two dimensions. Finally, we 
present results which demonstrate the advantages of 
simulating mobility with this class of Markov chain over 
using more simplistic mobility models.  

 
1.1 Birth/Death Models 
 
We assume that the discrete states  of the particle's chain X 
consists of the integers 0,1,...,n-1 for some positive integer 
n and has the steady state distribution πi, i = 0,...,n-1. We 
assume X is time homogeneous and define 

, 1Pri j k kp j i+=  = =  X X  
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for any k and any states i and j. If we assume that X is a 
birth/death process, then the state transition probabilities 
satisfy the detailed balance equations 
 
 , 1 1 1,i i i i i ip pπ π+ + +=    (1) 
 
for i = 0,...,n-2. See Figure 1 for an illustration of the state 
space. In this and other illustrations, we omit depiction of the 
same state transitions. Also, we break with tradition and 
depict the sates as adjoining �bins� instead of separated 
bubbles, as this more readily conveys the sense of the states 
as discrete locations. The states i = 0,...,n-1 are indicated in 
the lower left hand corner of each rectangle or bin. 

A shortcoming of birth/death models of mobility is that 
the inter-bin probabilities are constrained by the inequality 

 
, 1 , 1 1k k k kp p+ −+ ≤ , 

 
due to the fact that the sum of all transition probabilities 
from a fixed state to other states must be one. This means 
that one or the other probabilities must be less than one 
half. One criterion of a mobility model is that particles 
move far enough in one direction to cause hand-offs. If the 
inter-bin probability is limited, this is not likely to happen.  

Our solution, which the next section addresses, is to 
capture knowledge of the previous heading of the particle 
in the current state of the particle. We accomplish this by 
breaking the bins into substates, each of which indicates 
one of the two directions from which the particle entered 
the bin. This permits de-coupling of the left and right inter-
bin transition probabilities, so that we may assign them 
higher values. 

 
1.2 Bi-Directional Models 
 
A bi-directional model of mobility is a Markov chain X with 
state transition probabilities pi,j for i,j = 0,...,2n-1 such that 
pi,j = 0 if i is even and i≤j≤i+2 or if i is odd and i-2≤j≤i. 
Intuitively, the bi-directional model breaks up the state space 
of the previous section into �eastbound� and �westbound� 
lanes. In any state, the process makes transitions to either the 
next bin in the direction of the current lane, or to the 
opposite bound lane in the same bin (a �U-turn�, if you will), 
or remains in the same state. The state space and transitions 
are illustrated in Figure 2, where we include intra-bin 
transitions for only one of the bins. Each �bin� in Figure 1 
has been divided into two states in Figure 2. Bin 0 becomes 
states 0 and 1, bin 2 becomes states 2 and 3, etc. 

Just as the detailed balance equations (1) characterize 
a Birth/Death Markov chain, there is a version of the 
detailed balance equations that characterize a bi-directional 
Markov chain. These equations are presented in the next 
two propositions. 
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Figure 1:  Birth/Death Model of Mobility 
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Figure 2:  Bi-Directional Model of Mobility 
 

Proposition 1  

If π = 〈πi i = 0,...,2n-1〉 is a positive-definite, p.m.f. and p 
= 〈pi,ji,j= 0,...,2n-1〉 is  a matrix with unit row sums and 
such that  pi,j = 0 unless i is even and i≤j≤i+2 or i is odd 
and i-2≤j≤i, then p satisfies the Chapman-Kolmogorof 
(CK) equations if and only if 

 

 
( ) ( )

, 2 3 3, 1

, 1 1, 1

, 0, 2,..., 2 4

1 1 , 0, 2,..., 2 2
k k k k k k

k k k k k k

p p k n

p p k n

π π

π π
+ + + +

+ + +

= = −

− = − = −
     (2) 

 
proof: First, assume the CK equations. They imply 

that the flow into any state is equal to the flow out of that 
state. Thus, 

 
π0p0,1+π3p3,1 = π1p1,0 
π1p1,0 = π0p0,1+π0p0,2 

 
Thus, π0p0,2 = π3p3,1; i.e., the basis step of an inductive 
proof of the first equation of (2). Assume that πkpk,k+2 = 
πk+3pk+3,k+1 for some even k. If k≤2n-6, the CK equations 
imply that the inflow to state k+3 equals the outflow. 
Similarly for state k+2 . Thus, 
 

πk+2pk+2,k+3+πk+5pk+5,k+3 = πk+3pk+3,k+2+πk+3pk+3,k+1 
πkpk,k+2+πk+3pk+3,k+2 = πk+2pk+2,k+3+πk+2pk+2,k+4 
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From the inductive assumption, we conclude πk+2pk+2,k+4 = 
πk+5pk+5,k+3. This completes the induction step and 
establishes the identity πkpk,k+2 = πk+3pk+3,k+1 for k = 
0,2,...,2n-6. For k = 2n-4, the identity follows much as in 
the case for k = 0. This establishes the first equation of (2). 
The second identity follows from the first after applying 
the CK equation for state k+1. 

Conversely, assume (2). If we replace pk,k+2 by 
1-pk,k-pk,k+1 in the first equation of (2), then substitute for 
pk,k from the second equation, we get the CK equations for 
the odd states k+1, for k = 0,2,...,2n-4. The CK equation for 
state 2n-1 follows from the second equation of (2) upon 
substitution of p2n-2,2n-1 for 1-p2n-2,2n-2. The equations of (2) 
are entirely symmetric in even and odd indices, so we can 
adapt the preceding arguments to derive the CK equations 
for the even states k, for k = 0,2,...,2n-4. Therefore, (2) is 
equivalent to the CK equations. This completes the proof. 

Because of the detailed balance equations (2), the 
probabilities of transition between all even numbered states 
of a bi-directional chain determine the entire set of state 
transition probabilities. So, to design a bi-directional chain 
which has a given stationary p.m.f., one might choose any 
set of values for the even state transition probabilities and 
use the detailed balance equations (together with the fact 
that p must have unit row sums) to assign values to the odd 
state transition probabilities. However, one wouldn�t be 
assured that the values so assigned would lie in the unit 
interval, as is required for probabilities.  The next 
proposition presents the requirements on the even state 
transition probabilities which insure that all values so 
defined are probabilities. 

Proposition 2  

Let π=〈πi i = 0,...,2n-1〉 denote a positive valued, p.m.f. 
and p = 〈pi,ji,j = 0,...,2n-1〉 a matrix of real numbers with 
unit row sums such that  pi,j = 0 unless i is even and i≤j≤i+2 
or i is odd and i-2≤j≤i. Then π is the stationary distribution 
of a bi-directional chain with state transition probability 
matrix p if and only if p satisfies the detailed balance 
equations and 

 
[ ]

[ ]
, 2

,

0,1 , 0,2,..., 2 4

0,1 , 0,2,..., 2 2
k k

k k

p k n

p k n
+ ∈ = − 


∈ = − 

      (3) 

 1 2 3
, 2 , , , 0, 2,..., 2 4k k k

k k
k k k

p k nπ π π
π π π

+ + +
+ ≤ = −       (4) 

1 2
,, , 2 2,1 1 1

2, 4,..., 2 4

k k
k k k k k k

k k

p p p

k n

π π
π π

+ −
+ −− ≤ ≤ − −

= −

      (5) 

 1
0,0 0,2

0

1 1p pπ
π

− ≤ ≤ −            (6) 
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 2 1 2 4
2 2,2 2 2 4,2 2

2 2 2 2

1 1n n
n n n n

n n

p pπ π
π π

− −
− − − −

− −

− ≤ ≤ −        (7) 

 
proof: Assume p is the matrix of state transition 

probabilities of a bi-directional chain with stationary 
distribution π . Equations (3) follow from the fact the p is a 
matrix of probabilities and the detailed balance equations 
follow from Proposition 1.  

The third bound of (4) follows directly from the first 
detailed balance  equation. The second bound follows from 
solving for pk,k+2 in the CK equation for state k+2 and 
dropping negative terms. Using the first detailed balance  
equation again, we can replace πk+3pk+3,k+1 in the CK 
equation for state k+1 with πkpk,k+2. Solving for pk,k+2 and 
dropping negative terms yields the first bound. This 
establishes (4). 

The lower bound for pk,k in (5) follows by solving the 
second detailed balance  equation for pk,k and dropping the 
term containing pk+1,k+1. The first upper bound follows 
from the fact that pk,k and pk,k+2 are transition probabilities 
out of the same state. The second upper bound follows 
from solving for pk,k  in the CK equation for state k, and 
dropping the term containing pk+1,k. This establishes (5). 
Inequalities (6)  and (7) follow similarly. This establishes 
the left-right implication of Proposition 2. 

Now assume the detailed balance equations and (3)-(7). 
Given  Proposition 1 and the fact that p satisfies the 
detailed balance equations, we are done if we show that all 
of the elements of p lie in [0,1]. 

Property (3) tells us that all elements of p with even 
subscripts are probabilities. From (5) and (6) we infer that 
pk,k+pk,k+2 lies in [0,1] for k = 0,...,2n-4, so that pk,k+1 = 1-( 
pk,k+pk,k+2) lies in [0,1] for k = 0,...,2n-4, as well. Thus, all 
elements with even first subscripts are probabilities. 

From the lower bounds in (5) and (6), we derive the 
inequalities 

 
1

,1 , 0, , 2 2k
k k

k

p k nπ
π

+− ≤ = −K  

 
Multiplying through by πk and applying the detailed 
balance  equations implies 1-pk+1,k+1≤1. This implies that 
the pk+1,k+1≥0 for k = 0,...,2n-2. The second detailed 
balance  equation implies that 1-pk+1,k+1 is nonnegative, and 
thus pk+1,k+1≤1, for k = 0,...,2n-2. Hence the pk+1,k+1 are 
probabilities for k = 0,...,2n-2. By the first detailed balance  
equation, pk+3,k+1≥0 for k = 0,...,2n-2. Using the third 
bound in (4) together with the first detailed balance  
equation yields pk+3,k+1≤0 for k = 0,...,2n-2 as well. Hence, 
the pk+3,k+1 probabilities for k = 0,...,2n-2. Finally, applying 
both detailed balance  equations yields 

 
( ) ( )1 1, 1 1, 1 , 2 2,1 1k k k k k k k k k k kp p p pπ π π+ + + + − − −− − = − −  
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for k = 2,...,2n-2. But (5) implies 1-pk,k≥(πk-2/πk)pk-2,k, so 
1-pk+1,k+1-pk+1,k-1≥0. Thus, pk+1,k  = 1-pk+1,k+1-pk+1,k-1≥0. 
Moreover, since we have already shown pk+1,k+1≥0 and 
pk+3,k+1≥0, we conclude pk+1,k≤1 as well. So the pk+1,k are 
also probabilities. This completes the proof. 

Typically, location distribution data does not include 
directional information. Consequently, in a bi-directional 
model, there is no reason to suppose that a particle is more 
likely to occupy the Eastbound substate of a bin than it is 
to occupy the Westbound substate. We say that a p.m.f. 
(and any bi-directional chain with such a  p.m.f.) is 
symmetric if πk = πk+1 for k = 0,2,...,2n-2. This leads to the 
following corollary to Proposition 2, which we state 
without proof: 

Proposition 3  

Let π=〈πi i = 0,...,2n-1〉 denote a symmetric, positive-
definite, p.m.f. and p = 〈pi,ji,j = 0,...,2n-1〉 a matrix of real 
numbers with unit row sums such that  pi,j = 0 unless i is 
even and i≤j≤i+2 or i is odd and i-2≤j≤i. Then π is the 
stationary distribution of a bi-directional chain with state 
transition probability matrix p if and only if p satisfies the 
detailed balance equations and 
 

[ ]
[ ]

, 2

,

0,1 , 0,2,..., 2 4

0,1 , 0,2,..., 2 2
k k

k k

p k n

p k n
+ ∈ = −

∈ = −
 

2
, 2 , 0, 2,..., 2 4k

k k
k

p k nπ
π

+
+ ≤ = −       (8) 

2
,, , 2 2,1 1

2, 4,..., 2 4

k
k k k k k k

k

p p p

k n

π
π

−
+ −≤ − −

= −

       (9) 

0,0 0,21p p≤ −  

2 4
2 2,2 2 2 4,2 2

2 2

1 n
n n n n

n

p pπ
π

−
− − − −

−

≤ −  

 
1.3 The Canonical Bi-Directional Chain 
 
With the aid of Proposition 3, we are able to produce a 
family of concrete examples of a symmetric, bi-directional 
process with p.m.f. π. Given µ∈(0,1], let 

 

2
, 2

, 1 , 2

,

min ,1

1 0,2, , 2 4

0

k
k k

k

k k k k

k k

p

p p k n

p

π
µ

π
+

+

+ +

 
=  

 
= − = −


=


K    (10) 
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and let p2n-2,2n-1 = 1, p2n-2,2n-2 = 0. We then define pk,k and 
pk,k-2 using the detailed balance  equations and pk,k-1 = 1- 
pk,k-2, for k = 3,5,...,2n-1. Finally, we define p1,1 = 0 and p1,0 
= 1. With these definitions, p satisfies the conditions of 
Proposition 3, so it is the matrix of state transition 
probabilities of a symmetric, bi-directional chain. It turns 
out that 
 

2
, 2

, , 2

, 1

min ,1

1 3,5, , 2 1

0

k
k k

k

k k k k

k k

p

p p k n

p

π
µ

π
−

−

−

−

 
=  

 
= − = −


=


K  

 
The factor µ measures a kind of �persistence� in the chain: 
if µ = 1, an inter-bin transition is guaranteed if the 
probability of the target bin is greater than that of the 
source bin, otherwise it is the ratio of the target to source 
probabilities. For µ<1, transitions from less probable to 
more probable bins are not guaranteed, but occur with 
probability µ.. We call this chain the canonical chain with 
persistence µ. 
 
1.4 Modeling Velocity 
 
Moving particles have velocity. A particle moving 
according to a bi-directional chain X has a zero mean 
velocity vector, because the motion is random. We can, 
however, calculate the mean, absolute distance D(X) the 
particle moves in bins (not counting substates) per 
transition. We call this the mean transition displacement or 
just mean displacement. This quantity, together with the 
time period simulated by the epoch, yields the mean speed 
of the particle. For any bi-directional chain, this quantity is 
given by 

 

( )
2 4 2 1 2 4

, 2 , 2 , 2
0,2,... 3,5,... 0,2,...

D 2
n n n

k k k k k k k k k
k k k

p p pπ π π
− − −

+ − +
= = =

= + =∑ ∑ ∑X , 

 
the simplification due to an application of the detailed 
balance  equations.  

Given a bi-directional chain X with D(X) = ∆s and an 
epoch duration of ∆τ, we can simulate particle motion with 
mean speed equal to n∆s/∆τ, for any positive integer n, 
simply by �executing� n transitions of X per epoch. 
However, to simulate speeds with any finer resolution than 
this, we need to be able to modify ∆s. 

It is easy to see from (10), that the mean displacement 
of the canonical chain is proportional to its persistence, µ. 
However, smaller values of µ lead to greater values of 
pk,k+1. This means that the particle will change direction 
9
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more often, potentially leading to fewer handoffs in a 
cellular simulation. 

A better way to modify the mean displacement is to 
use a scaling factor: Let X be any bi-directional chain with 
state transition probability matrix p, and let λ∈(0,1]. 
Define p′ as follows 

 

( )
, ,

, ,

,

1 1 , 0,1,..., 2 1
i j i j

i i i i

p p i j

p p i n

λ

λ

′ = ≠

′ = − − = −
 

 
It is straightforward to see that the new matrix p′ satisfies 
the conditions of Proposition 2, so it is the matrix of state 
transition probabilities of a bi-directional chain X′′′′. 
Because the inter-bin transition probabilities are λ times 
those of X, D(X′′′′) = λD(X). Moreover, since p′k,k±1 = 
λpk,k±1, the tendency to change directions has even 
decreased. We call X′′′′ a scaled, canonical, bi-directional 
chain. 

So, to simulate the motion of a particle with mean 
speed v, we do the following: Choose a canonical, bi-
directional chain X with a desired persistence µ and let ∆s  
= D(X). Let 

 

,
/ /
v vn

s n s
λ

τ τ
 = = ∆ ∆ ∆ ∆ 

 

 
Then, if  X′′′′ is the chain obtained from X by applying the 
scaling factor λ, simulating n transitions of X′′′′ per epoch 
achieves mean speed v. 

 
2 TWO DIMENSIONAL MOBILITY MODELS 
 
Serious mobility modeling of cellular systems requires at 
least two dimensions. In this section, we extend the ideas 
of the previous section to two-dimensions by pasting 
together mobility models built on one dimensional cross 
sections of a two dimensional state space. 
 
2.1 Extension of One Dimensional Models 
 
Let S and T be finite state spaces and let π be a p.m.f. on 
S×T. For each x in S, let V(x) = {x}×T, which we call the 
vertical cross section through S×T at x. Similarly, for y in 
T, L(y) =  S×{y} is the lateral cross section at y. We 
assume that π is non-zero on any lateral or vertical cross 
section. For each x in S and y in T, we define p.m.f.'s on T 
and S: 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
, ,

,
, ,V x L y

t T s S

x y x y
y x

x t s y
π π

π π
π π

∈ ∈

= =
∑ ∑

   (11) 
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(In this section, we use functional notation for the 
arguments of p.m.f�s and transition probabilities instead of 
subscript notation.) 

Next, suppose that for each cross section C, there is a 
transition probability matrix pC with πC as its stationary 
distribution. Let α and β be numbers in (0,1) such that α+β 
= 1. We define a transition probability matrix p on S×T as 
follows: For 〈x,y〉 and 〈x′,y′〉 in S×T, let  

 

1Pr , ,k k

x x
p x y x y

y y +

′   ′ ′= = =   ′ 
X X  

 
for any k. Then, we define 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

, , , ,

, , , ,

, ,

L y

V x

L y V x

x x
p p x x x S y T x x

y y

x x
p p y y x S y T y y

y y

x x
p p x x p y y

y y

α

β

α β

′   ′ ′= ∈ ∈ ≠  
  

  ′ ′= ∈ ∈ ≠  ′  
  = +    

(12) 

 
with all other transition probabilities assigned zero values. 
Then, we show 

Proposition 4  

The matrix p is a transition probability matrix with 
stationary distribution π. 

 
proof: We first show that p has unit row sums. For z = 

〈x,y〉 in S×T, 
 

( )

{ } { }\ \

,
z S T

x S x y T y

p z z

x x x x x x
p p p

y y y y y y

′∈ ×

′ ′∈ ∈

′ =

′     
+ +     ′     

∑

∑ ∑
 

 
By substituting the definitions (12), we obtain the expression 

 

( ) ( ) ( ) ( ), ,L y V x
x S y T

p x x p y yα β
′ ′∈ ∈

′ ′+∑ ∑  

 
which equals one because pL(y) and pV(x) have unit row sums 
and α+β = 1. 

Next, we show that π is the stationary distribution for 
p. For z = 〈x,y〉,  z′ = 〈x′,y′〉 in S×T, 

 

( ) ( ) ( )

( )
{ }

( )
{ }\ \

, ,

, ,

z S T

x S x y T y

x x
z p z z x y p

y y

x x x x
x y p x y p

y y y y

π π

π π

∈ ×

′ ′∈ ∈

′ ′ ′ ′ ′= + ′ ′ 
′ ′ ′   ′ ′+   ′ ′ ′   

∑

∑ ∑
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Again, substituting the definitions (12), and rearranging 
terms yields 
 

( ) ( ) ( ) ( ) ( ) ( ), , , ,L y V x
x S y T

x y p x x x y p y yα π β π′ ′
∈ ∈

′ ′ ′ ′+∑ ∑  

 
Substituting (11), and using the fact that πL(y′) and πV(x′) are 
the stationary distributions for pL(y′) and pV(x′), we arrive at 

 

( ) ( ) ( ) ( ) ( ) ( ), ,L y V x
x S y T

x x y y x yαπ π βπ π′ ′
∈ ∈

′ ′ ′ ′+∑ ∑  

 
Applying (11) once more yields 

 
( ) ( ) ( ), , ,x y x y x yαπ βπ π′ ′ ′ ′ ′ ′+ =  

 
which completes the proof. 

Typically, one would choose α,β = ½. Otherwise, the 
pattern of motion would have an elliptical bias. However, 
as will be shown later, there is a specific application for 
unequal assignment. 

 
2.2 The Quad-Directional Chain 
 
We use Proposition 4 to construct a mobility model for a 
two dimensional grid. Suppose we are given an m×n bin 
grid with p.m.f. π 0 = 〈π0(i,j)  i = 0,...,m-1, j = 0,...,n-1〉. 
Let S = {0,...,2m-1} and T = {0,...,2n-1} be the coordinate 
spaces of a new state space S×T, and let 

 
( ) ( )0, / 2 , / 2x y x yπ π=         

 
for 〈x,y〉 in S×T. In the new state space, each bin now has 
four substates 〈x,y〉, 〈x+1,y〉, 〈x,y+1〉, and 〈x+1,y+1〉 for 
some pair of even numbers x in S and y in T. Let α and β 
be chosen as in Proposition 4. Note that for each x = 
0,2,...,2m-2, πV(x) and πV(x+1) are identical. Define pV(x) and 
pV(x+1) as the transition probability matrices for a bi-
directional chain with p.m.f. πV(x). Define pL(y) similarly for 
y = 0,2,...,2n-2. Then, the Markov chain with transition 
probability matrix p, as defined for Proposition 4, is called 
a quad-directional chain. If all the cross sectional chains 
are scaled, canonical, bi-directional chains with the same 
persistence and scale factor, the quad-directional chain is 
said to be a scaled, canonical, quad-directional chain. 

Figure 3 illustrates the state space and allowed 
transitions for a quad-directional chain. The diagram shows 
one complete bin and parts of others, bounded by thick 
lines. The substates in each bin are bounded from one 
another by thin lines. In the illustration, x and y are both 
even, so inter-bin transitions are allowed in positive 
directions. Intra-bin transitions are allowed to adjacent 
substates, 〈x+1,y〉, 〈x,y+1〉, and 〈x+1,y+1〉.   
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Figure 3:  Quad-Directional Model of Mobility 

 
2.3 Modeling Velocity 
 
We compute the mean transition displacement D(Z) of a 
two dimensional chain Z just as for a one dimensional 
chain: as the mean number of bins moved in a single 
transition. We then simulate the velocity of a particle 
exactly as in section 1.4. 

In the two dimensional case, however, we proceed 
more formally. Let DL denote the random variable that 
assumes the value 1 if Z makes an inter-bin transition in 
the lateral direction and 0 if not. We define DV similarly, D 
= DL+ DV, and D(Z) = E(D), where E is the expectation 
operator.  

For a quad-directional chain with transition probability 
matrix p, 

( )

( ) ( )
2 1 2 4 2 3

0 0,2,... 1,3,...

2 2
, ,

L

n m m

y x x

x x x x
x y p x y p

y y y y
π π

− − −

= = =

=

 + +     +    
     

∑ ∑ ∑

E D

 
We can then substitute the definitions (11) and (12) and 
apply the detailed balance equations, arriving at  

 

( ) ( ) ( ) ( ) ( ) ( )
2 1 2 1 2 4

0 0 0,2,...
2 , , 2

n m m

L L y L y
y x x

x y x p x xα π π
− − −

= = =

 
= + 

 
∑ ∑ ∑E D  

 
Similarly, 
 

( ) ( ) ( ) ( ) ( ) ( )
2 1 2 1 2 4

0 0 0,2,...
2 , , 2

m n n

V V x V x
x y y

x y y p y yβ π π
− − −

= = =

 
= + 

 
∑ ∑ ∑E D  

 
2.4 Interpretation of Unequal αααα and ββββ     
 
Unequal values for α and β are useful in those cases for 
which the m×n grid consists of oblong, rather than square, 
bins. This occurs when location distribution data is 
collected by latitude and longitude. Suppose the local, 
average bin dimensions are ∆x along latitudes and ∆y along 
1
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longitudes. Then, the mean transition physical 
displacement of Z is  

 
 ( ) ( ) ( )�D L Vx y= ∆ + ∆Z E D E D        (13) 

 
The correct choice for α and β should be independent of π 
and p. If we choose π to be uniform, and the cross sectional 
chains to be canonical with unit persistence, 

 

( ) ( )1 1,L V
m n

m n
α β

− −
= =E D E D  

 
For large m and n, we may assume E(DL) = α and E(DV) = 
β. Moreover we expect that, in this model, the mean physical 
transition displacements in both directions are equal. Thus, 
by (13), α∆x = β∆y. Since α+β = 1, we conclude 

 

,y x
x y x y

α β
∆ ∆

= =
∆ + ∆ ∆ + ∆

 

 
3 SIMULATION RESULTS 
 
The following example illustrates the advantages of using a 
quad-directional chain to model mobility. Particles arrive at a 
100×100 grid of bins at a rate of 120 per epoch from a Poisson 
process. They take up locations in the grid according to a 
symmetric, bivariate, Gaussian distribution with mean at the 
grid center, and with standard deviation of the marginal 
distribution equal to 0.2. Particles move about the grid with 
exponentially distributed speeds with mean = 5 bins/epoch, 
and depart after an exponentially distributed time with mean 
equal to 3 ⅓ epochs. Final particle locations are collected 
from each of 100 independent replications of a 100 epoch 
simulation. In the plots, the histogram represents the fraction 
of particles falling in each of 50 equal-width annuli concentric 
with the center of the grid. The solid line represents the results 
that would be expected from a perfect Gaussian distribution. 

Figure 4 is a histogram of particle location using a 
simplistic motion model as discussed in the introduction. 
At every epoch, each particle is moved an exponentially 
distributed number (mean = 5) of bin widths in a uniformly 
distributed direction. (If necessary, this step is reversed and 
repeated until the new particle position lies within the 
system boundaries.) Note that the distribution is 
significantly distorted from the true Gaussian, allowing 
more particles to occupy positions far from the center. 
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Figure 4:  Simplistic Motion 

 

Figure 5 is a histogram of particle location using quad-
directional chains. Each chain makes a Poisson number of 
transitions per epoch, where the mean of the distribution is 
equal to the mean particle speed. Note that the histogram 
closely matches the ideal distribution. 

 

rows ξ 
 

Figure 5:  Quad-Directional Motion 
 

4 CONCLUSION 
 
The finite state Markov chain is an effective tool when 
mobility modeling must exhibit an a priori location 
distribution. More simplistic models can lead to distortion 
in the location distribution. Such distortion can have 
serious effects in modeling cellular systems. Examples 
include exclusion zones and roadways. Exclusion zones are 
areas in which the operator intends no coverage, such as 
over non-navigable terrain. A capacity simulation which 
allowed such locations to be occupied would report 
pessimistic results. In contrast, roadways are narrow bands 
of concentrated traffic where coverage is often highly 
focused. Allowing traffic to �leak� out of such areas could 
lead to optimistic capacity estimates on the roadway with 
pessimistic estimates just beyond.  

The basic element of the Markov chain toolkit is the 
one dimensional, bi-directional chain. A specific example 
of such a chain is the scaled, canonical chain. The scaled, 
canonical chain is specified by its persistence, which is a 
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measure of how likely the particle continues in its current 
direction, and its scale factor, which relates to the speed of 
the particle. By modifying the scale factor and the number 
of transitions per epoch, any particle speed may be 
simulated. One dimensional chains may then be �pasted� 
together to construct two dimensional chains. When the 
one dimensional chains are bi-directional, the two 
dimensional chain is called a quad-directional chain. 
Particle speed may be simulated in an entirely analogous 
manner as for one dimensional models. 

The current work assumes that each particle has a 
fixed, mean speed. In many applications it would be useful 
to assign mean speeds as a function of location. In 
principle, this could be done with quad-directional chains. 
One might first extend the current work to non-rectangular 
simulation spaces. Then, one could partition a rectangular 
simulation space into a small number of areas over which 
the mean particle speed is fixed and construct quad-
directional chains over each area. Particles would not be 
able to move from one area to another, but there is 
probably a simple modification that would allow this. 
Ultimately, one would like to assign a speed or even a 
velocity distribution to each bin, allowing a �continuous� 
change in speed/velocity from bin to bin. 
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