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ABSTRACT

Parallel discrete event simulation (PDES) techniques have
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In this paper we address this problem by parallelizing
an existing, widely used network simulator, callesl(Mc-
Canne and Floyd 1997nsis considered to be de facto

not yet made a substantial impact on the network simulation standard simulator for internetworking protocol research.
community because of the need to recast the simulation A large number of legacy simulation models exists using
models using a new set of tools. To address this problem, this simulator. The networking community is not inclined

we present a case study in transparently parallelizing a to rewrite them in another platform. Thus, a transparent

widely used network simulator, callets The use of this

parallel execution ohsusing established PDES techniques

parallel ns does not require the modeler to learn any new will fill an important gap in simulation research. A parallel

tools or complex PDES techniques. The paper describes
our approach and design choices to build the parafieind
presents preliminary performance results, which are very
encouraging.

1 INTRODUCTION

The simulation models for many current generation com-
puter and telecommunication networks are large and com-

version ofnsis likely to see wide use even if the speedup
is less than optimal as such speedup will be obtained with-
out any programming effort on the part of the simulation
modeler.

The rest of this paper is organized as follows. Inthe next
section, we introduce basic concepts of parallel simulation.
In Section 3, we briefly discuss some existing work on
parallel execution of network simulators. In Section 4, we
describe the implementation of our parallel versiomaf

plex. As use of networks is proliferating, common examples We present the performance benchmarking results in Section

being the Internet and mobile/wireless networks, the scale

of models to be studied also increases and more details

are incorporated in the models. Also, in many cases a
complete protocol stack needs to be simulated to under-
stand the performance impact of the protocols at various
layers. This makes network simulators unbearably slow.
Parallel discrete event simulation (PDES) (Fujimoto 1990)
techngiues can provide a solution by breaking the large
simulation model into submodels and executing them in
parallel. However, the synchronization problem in PDES,
however well-studied, is a hard problem to solve for a non-
expert. Several tools (Bagrodia et al. 1998; Perumalla et al.

5 and conclusions in Section 6.

2 PARALLEL SIMULATION CONCEPTS

In the description that follows, we assume a general fa-
miliarity on the part of the reader about PDES (Fujimoto
1990).

A sequential discrete event simulation stores the events
to be executed in timestamp order. The timestamp of an
event is the simulated time at which it is to be executed.
The main event loop of the simulator is quite simple:

1998) have been developed recently targeting the network while (there are events to execute)

simulation community. However, they require learning a
new set of tools instead of using the more traditional se-
guential simulators the networking community is familiar
with. Recasting legacy simulation code in the new PDES
tools is also a big burden. Thus, these PDES tools have
not seen widespread use in the networking community in
spite of their potential for speedup.
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Retrieve the next event (with
earliest timestamp) from the
event set;

Execute the event, possibly
scheduling other events to occur
in future;
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Parallel discrete event simulations use more than one The following pseudocode describes the null message
processor to run a simulation, utilizing either a multipro- protocol for deadlock avoidance as presented in Fujimoto
cessor machine or a network of workstations. The event set (2000):
is distributed across the processors. If each processor in a
parallel simulation simply used the sequential event loop, while (simulation is not over)

it is possible that events could be executed out of order, wait until each FIFO contains at
since the “next event” seen by each processor is different, least one event message;
and only one of them is theeal next event in the global remove smallest time stamped event
sense. The distribution of the event set makes necessary a M from its FIFO;
synchronization mechanism that guarantees the events will clock := time stamp of M;
be executed in an appropriate order. process M,;

send null message to each neighboring
2.1 Synchronization Mechanisms process with time stamp

= clock plus lookahead;

There are two main types of synchronization mechanisms:
conservative and optimistic. Conservative mechanisms, Optimistic synchronization prototols, such as Time
such as the null message protocol (Chandy and Misra 1979; Warp (Jefferson 1985), aren’t concerned with safety of
Bryant 1977), preserve proper event execution order by al- event execution, with the advantage that processors never
lowing an event to be executed only when it is safe to do block, but with the possibility that events are executed out of
so. Safety means the processor knows it will not receive order. Such out-of-order execution is corrected by rollback
an event from another processor with a timestamp smaller when it occurs. The rollback mechanism requires periodic
than that of the event in question. A processor with no safe state-saving of the simulator. Time Warp is not generally
events must block until an event becomes safe to process. suitable for parallelizing existing simulators as state-saving
Conditions may arise in a naive implementation of a paral- of unknown, arbitrary and possibly dynamically allocated
lel discrete event simulation such that all processors block, data structures is complex. State saving overheads thus can
resulting in deadlock. be high to erode performance potentials.

Each pair of communicating processors is connected
by a directed link from sender to receiver over which mes- 3 RELATED WORK
sages can be sent. The terms “message” and “event” are
used synonymously, as an event is scheduled on a remoteln the past, a couple of university research projects developed
processor by sending a message to that processor. In ordedarge scale parallel network simulators. In UCLAL#&ased
for the null messages protocol to work, messages must be parallel simulation language, calldrsec (Bagrodiaetal.
sent over the link in non-decreasing timestamp order. It is 1998) has been developed that supports sequential and mul-
assumed that messages arrive in the order sent and that ndiple parallel simulation protocols (conservative, optimistic
messages are lost in transit, so that messages are receive@dnd adaptive). A library of network simulators (particularly
in non-decreasing timestamp order. Messages are stored inwireless networks) have been developed in@eMoSim
a first-in, first-out (FIFO) queue until they can be processed (Global Mobile Information Systems Simulation) (Bagro-
by the receiver. Each link haslimk clock that holds dia, Zeng and Gerla 1998) project that us&mssec . In
the timestamp value of the last message sent over that link. Georgia Tech, the Telecommunications Description Lan-
The link clock increases monotonically and provides a lower guage TeD) (Perumalla et al. 1998) has been developed.
bound on the timestamp of any future message sent over TeD is an object-oriented language for parallel simulation
that link. of telecommunications networks. Simulators uslgp run

A conservative protocol, being based on blocking, is on top of the Georgia Tech Time War@{W (Das et al.
prone to deadlocks. Null messages are used to avoid dead-1994) for parallel execution. BotBloMoSim/Parsec
locks. These messages do not correspond to real events in theand TeD/GTWsystems require the user simulation modeler
system being simulated, but provide an updated lower bound to learn new languages or language extensions to describe
on the timestamp of the next message usitap&ahead their network models. Thus either of these efforts has not
value, which is the smallest amount of simulation time that been widely used outside the research community that de-
must elapse between an event occurrence in one processowneloped them, except in cases where users just wanted to run
and its effect on another processor. The value of lookahead or modify already developed modelsTieD or GloMoSim
depends on the particular model being simulated and is rather than building their own. In contrast to these efforts,
usually derived from the model descriptions. our work attempts to parallelize a very widely used network

simulator transparently to the simulation modeler.
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In an effort similar to our own, a distributed version
of ns has been developed in Georgia Tech to run on a
network of workstations (Riley et al. 1999). The main
difference in implementation is that they used the Geor-
gia TechRTI-Kit library (Fujimoto and Hoare 1998)
for synchronization, whereas we used a variation of the
null message protocol for deadlock avoidance as described
before.RTI-Kit is a set of libraries supporting implemen-
tation of the Run-Time Infrastructure component of the U.S.
Department of Defense’s High-Level Architecture (HLA)
(Dahmann et al. 1997) for distributed simulation systems.
As for performance, much of the improvement came from
parallelization of the setup of the simulation, not in the
actual execution. Each processor has less work to do for
the setup since each is only simulating a part of the entire
network. Our results, on the other hand, involve only actual
simulation execution since we ignore the setup times in our
analysis.
4 IMPLEMENTATION OF PARALLEL NS
ns, which stands for network simulator, is widely used in
the network simulation community. It is an object-oriented
discrete event simulator used for network research. It is
written in C++, andOTcl is used as a command interface
and for describing the network models. The user can define
network nodes, physical connections (links) between nodes,
and logical connections between agents for traffic in the
network. Parallelizingns allows a federation of separate
ns processes to execute a simulation in parallel. In this
section, we describe the steps undertaken in parallelization.

4.1 Parallelizing the ns Main Event Loop

The main event loop in sequentiak consists simply of
retrieving the next event from the event set and executing
it. This is repeated as long as the simulation is not finished.
We augmented this loop to implement the null message
protocol for deadlock avoidance discussed previously.

Each iteration of the parallel version of tms main
loop consists of: (i) removing the next event from the event
set; (ii) sending necessary null messages to neighbors; (iii)
receiving a message on each incoming link whose link
clock is less than the timestamp of the next event, either
scheduling it on the event set or saving it as the new next
event depending on its timestamp; (iv) setting the clock; and
(v) processing the next event. Following is the pseudocode
of our parallelns main event loop.

while (simulation is not over)
/ldeque
remove smallest timestamped event M
from event set;
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/lsend null messages
for each neighboring process |j
(which receives messages from
this process)
nullmsg_time := lower bound on
timestamp of all future messages
sent to j;
if nullmsg_time > last_nullmsg_time
from i to j
send null message to j with
timestamp = nullmsg_time;
last_nullmsg_time from i to j :
nullmsg_time;

/lget smallest timestamped message
for each incoming link i (from a
neighboring sender)
if timestamp o f M > link clock of i
/I link clock is the most recent
/I timestamped message passing
/I through a link
wait for next message, N, to
arrive on the link;

set link clock of i to timestamp
of N;

/Il swap events if new minimum is
/I received

if timestamp of M <= timestamp
of N schedule event N on
event set;
else
reschedule event M on event
set;
/l(since an earlier event, N,
/I was received)
M N;
clock := time stamp of M;
process M;

In anns-based simulator all traffic connections may not
become active at the beginning of the simulation (time 0).
They may start at different times. This presents a problem
as a series of null messages need to be transmitted to bring
the link clock to the start time of the corresponding traffic
connection. This problem is explained below with the help
of an example (see Figure 1).

Initially, all link clock values are 0.0, indicating that no

messages have yet been sent between processes. Suppose,

node A is to start sending messages to node B at time 1.0,
and node B should start sending to A at 2.0. Assume there is
no other traffic in the network. Processor O has a local event
with timestamp equal to 1.0, corresponding to the start of
node A's communication with node B. Likewise, processor

1 has an event with timestamp equal to 2.0. Since each link
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Processor 0 Processor 1 the final destination of the packets may be on procegsor
: or further downstream. In any case, procesdaeps track
Elvgnt Set: Ezvgﬁt Set: of each logical connection spanning the processor poundary
'D 3 D between processorisand j, for each downstream neighbor
| J, so that it can compute the minimum timestamp of the next
' Link clock =0 packet. Assuming static routing, processaran compute
- when it will send a packet out on its next hop to processor
Node A | Node B j as soon as it receives the packet, whether it receives
the packet from an agent residing on the same processor,
- or from an upstream processor, simply by summing the
Link clock = 0 transmission and delay times for each link in the path the

packet will travel inside processaey along with the final
| transmission time and delay of tligo-; hop.
Figure 1: A Simulation at Startup

4.2 Communication Across Processors

clock has the value 0.0, neither processor can proceed to
process its first event, since neither knows it will not receive Eachnsnode has an obiect called address classifiethat
a message between 0.0 and the timestamp of its first event|poks at each incoming packet to determine if it is destined to
(1.0 for processor 0 and 2.0 for processor 1), so the system the node or if it should be forwarded downstream to another
is deadlocked unless we start with sending null messages. node. When a classifier receives a packet, it checks to see

The question is what should be a good value of the if the node that owns the classifier resides on the current
timestamp of the initial null message. It could be jUSt time processor. If so, execution proceeds as normal, with the
0 plus the value of the lookahead. Lookahead in parallel classifier delivering the packet downstream to the next node
nsis the fastest amount of time a message can take passingor to a port classifier, depending on the destination of the
from one processor to the next, and is a function of packet packet. If, however, the node does not reside on the current
sizes, link bandwidths, and link delays. Specifically, the processor, the classifier knows the packet has just traversed
lookahead from proceSSbrOj is the minimum transmission a Cross-processor link. It acts as a proxy by packaging the
time plus link delay over all links frond to j. Notice that packet inside an MPI (Message Passing Interface) message
the lookahead value may be small (e.g., typically tens of and sending it, via a call tdPl_Send (a communication
milliseconds or |E‘SS) Compared to possible communication primitive in MP|), to the Corresponding classifier on the
starttimes (for example, communication may start afterafew destination processor. Execution then proceeds as usual.
hours of simulated time). This would mean a large number We needed to make some extensions to nkénput
of null messages are required to bump up the simulation syntax to facilitate parallel execution. We tried to make
clock to the communication start time. the changes as transparent as possible so that someone

We tried to cut down on the number of null message who is already familiar withns could learn to use our
transmissions as much as possible in order to make parallel parallel version with minimal effort. The syntax changes
execution efficient. The first null message value sent from are related to partitioning and mappmg of the network for

processor 0 to processor 1 in Figure 1 is equal to the starting parallel simulation, which must be specified manually by
time of communication plus lookahead, in order to avoid the user.

unnecessary null message exchanges. With the same goal,
other optimizations, such as avoiding sending of duplicate 4.3 Limitations
null messages, are also used. Duplicate null messages may

be generated when an iteration of the main |00p generates \we Currenﬂy support para||e| execution ok programs
a null message with a timestamp the same as that in a consisting of point-to-point links with static routing and UDP
previous iteration. traffic. We hope to extend the functionality to include support
The timestamp of a null message is equal to the lower for TCP connections, dynamic routing, and shared medium
bound on the timestamp of any future message to be sentnetworks. Another major drawback is that the whole network
from the sender to the receiving processor. In order to stjll resides on each processor, even though each processor
compute this lower bound on messages from processor only simulates the activities of its own part of the network.
to processorj, processori must compute the minimum  Thjs was done initially to facilitate message passing between
timestamp of the next packet that will be sent over all processors by having Correspondio@ssiﬁer obiects be
logical connections that flow from processaio processor  identified with the same number (they are assigned identifiers
j. The source of the packets may reside on processoit as they are created hys). Since each processor has the
may be on a different processor further upstream. Likewise, definition for the whole network and the network objects are
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created in the same order, each object has the same identifier A Sun multiprocessor with four UltraSPARC-II pro-

across all processors. We will be able to save memory, cessors and 1.5 GB of main memory was used for the
thereby allowing us to simulate even larger networks, once experimental study. The MPICH implementation (Gropp
we are able to specify partitions of the network to the et al. 1996) of the Message Passing Interface (MPI) was

corresponding processors. used for communication between processors. Because of a
general-purpose MPI-based implementation, the panadlel
5 PERFORMANCE ANALYSIS can be run on any platform supporting MPI. In particular it

can execute on a network of workstations without any mod-
Here we describe the benchmark model used for our ex- ification by simply linking with platform-specific libraries.

periments and an analysis of the performance results. However, here we present results only for a multiprocessor
because of a much lower message passing overhead. As an
5.1 Benchmark Model example, sending an MPI message between processors on

the Sun multiprocessor takes around 2 microseconds, where
It is important to use fairly large, realistic networks as the same message takes around 40 microseconds when used
a benchmark for our case study. Since it is somewhat on a network of workstations connected by an ATM switch.
tedious to manually generate large networksnig we
chose to use th@eorgia Tech Internetwork Topology Models 5.2 Experimental Results
(gt-itm ) topology generator to generate our benchmark
network (Zegura 1996). One type of netwogk-itm The speedup results shown in Table 1 come from dividing
generates is called a transit-stub network, which consists of the execution time of the unmodified, sequential version
a collection of inter-connected transit domains. Each node of ns by the execution time of our parallel version of
in a transit domain is connected to a sub-network called a ns simulating the transit-stub network model as described

stub domain, consisting of some number of nodes. a previous subsection. Setup time is ignored; the times
The output ofjt-itm  is in Stanford GraphBase (SGB) presented in the table are from actual event execution.
format (Knuth 1994). We used a tool callegb2ns avail- Most of the simulations were run to an endtime of 900

able withns which translates graphs from SGB format to seconds, generating between 15 and 70 million events, but
aTcl file that is readable bys We further modified this some of the smaller simulations (with 0 or 2 local connec-
program to generate separdtel files for each processor  tions) were run up to ten times longer to be sure that the
for the parallel executions, and the corresponding file for the simulations stabilized. As expected, speedup increases as
sequential execution needed as a baseline for speedup comthe number of local connections increases, since the proces-
putations. Our modification also generates a user-specified sors are more heavily loaded, thus finding more work to do
number of local and cross-processor connections for the within the lookahead interval and between message com-
traffic. munications. The fraction of time spent blocking, waiting
For the performance results that follow, a transit-stub for messages to arrive on incoming queues, decreases as the
network is used with eight transit domains, four nodes per local load increases. We found that this fraction decreases
transit domain, and five nodes per stub domain. This makes from above 60% for O local connections to about 20% for
a total of 192 nodes as shown in Figure 2. 8 local connections. Speedup is also generally higher for
It is natural to partition a transit-stub network by the larger lookahead for the same reason: a processor finds
transit domains. We ran experiments using four proces- more safe events to process in a larger time interval than a
sors, each simulating two transit domains of our benchmark smaller one, all else being equal.
model. Local traffic, traffic in which packets stay entirely
within the sub-network simulated by a single processor, is 6 CONCLUSIONS
obtained by defining sources and sinks within each stub
domain. Cross-processor traffic flows from a source stub We presented a case study in parallelizing an existing, widely
node in one transit domain to a destination stub node in used network simulatons using well-known PDES tech-
another transit domain modeled by a different processor, and niques. A conservative synchronization technique is adapted
may travel through any number of intermediate processors. to suit thensplatform. MPI is used for inter-processor mes-
Some effort was made to balance the load evenly across sage communication. Existing network models can be run
processors by balancing the number of hops taken in each in parallel with minor modifications to the input script. This
logical connection. Each local connection consists of four is in contrast with many existing PDES systems, where the
hops. Each cross-processor connection contains three localusers have to reprogram their model on an entirely new
hops on the source processor, one cross-processor hop tgplatform.
the neighboring destination processor, and three local hops Experimental results demonstrate a speedup of up to
on the destination processor to the final destination node. 2.83 on 4 processors. As expected, the speedup is depen-
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O
O
Processor 0 Processor 1
Processor 2 Processor 3

Figure 2: Transit-stub Network with 8 Transit Domains and 192 Nodes

Table 1: Execution Times and Speedups for Various Lookahead Values and
Numbers of Local Connections on a 4-processor Sun UltraSparc

Lookahead| No. of local | Sequential run Parallel run| Speedup

(ms) connections | time (sec.) time (sec.)
per processo

3.75 0 246 (2.5¢) 268 (2.5¢<) | 0.918
2 507 (2.5¢) 379 (2.5¢) | 1.34
4 305 159 1.92
6 410 196 2.09
8 529 236 2.24

7.50 0 243 (5x) 287 (5x) 0.847
2 760 (5x) 475 (5x) 1.60
4 258 114 2.26
6 364 154 2.36
8 463 188 2.46

17.86 0 203 (10x) 237 (10x) | 0.857
2 1199 (10«) 546 (10x) | 2.20
4 234 84.7 2.76
6 331 120 2.76
8 438 155 2.83

dent on the relative numbers of local and cross-processor as thens setup computation would then be parallelized,
connections, and the value of the lookahead. We find the since each processor works only on its partition.
speedup numbers to be reasonable considering the fact the
parallelization effort on the part of the user is minimal. ACKNOWLEDGMENTS
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