
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

COMPUTER ASSISTANCE FOR MODEL DEFINITION

Henk de Swaan Arons
Eelco van Asperen

Faculty of Economics

Department of Computer Science
Erasmus University Rotterdam

P.O. Box 1738, H9-28
3000 DR Rotterdam, The Netherlands

ABSTRACT

Modeling requires considerable knowledge of the various
stages of the simulation process. The modeler needs to
know a great deal of the system to be modeled (domain
specific knowledge), the ins and outs of the modeling
process itself (the degree of detail of the model) and how to
implement the model in a simulation language. Each of
these stages would benefit from some kind of knowledge-
able support. In this article a decision-making process is
described that supports the modeler to build a model step
by step. As a vehicle the Arena simulation environment has
been used. The support is based on information provided
by the modeler and is essentially data-driven. It suggests
which modules could be used best, which parameters need
to be determined and helps to formulate route information.
This research aims for an implementation of this support
using a knowledge-based system.

1 INTRODUCTION

Modeling is one of the most important parts of the
simulation process. Not only in discrete-event systems but
also in continuous-time systems (System Dynamics). This
problem was one of the main research aims of the research
project (Toolkit 1997) that investigated how modeling
could be improved. It is obvious that in some respect this
support is preferably knowledge-based.

One approach to knowledge-based support has been
discussed in (De Swaan Arons 1983) and (De Swaan Arons
1999). In the first paper a mathematical model is selected
based on user input. The approach in the second paper
essentially attempted to reuse existing simulation
implementation models. Over time many implementation
models have been developed using some simulation
language. These models can be stored in a database with
the intention to reuse them in a later stage. When a new
model has to be designed a modeler could try to retrieve an
39
existing model from the database similar to the one to be
developed. To facilitate this selection process, the models
stored in the database need to be parameterized in such
way that a query on this database can be formulated and
will hopefully result in a non-empty dynaset. Since the
modeler in principle has no knowledge or does not want to
have knowledge of the parameters used to describe the
models in the database an expert system could be used to
transform the design specifications into the right query,
taking all kinds of design considerations into account. This
approach is essentially goal-driven: given a number of
simulation models the knowledge-based system attempts to
gather the information from the user (or from other
sources) on the basis of which one or more models could
be selected. Currently, this approach is further investigated
and experiments are being carried out.

Unfortunately, this approach has a complication. The
chance that a database would contain exactly the same
model the user is after is negligible. One minor difference
makes two �equal� models different from each other. For
example, if two models are equal in all respects apart from
the distribution function in one single Arrive module,
humans would probably see these models as very similar
although they are � strictly speaking - different. Therefore,
the modeler would be very pleased when a support system
would recognize the similarity between the wanted model
on the one hand and some models (if there are any) in the
database on the other hand.

In this paper, a different approach is discussed that
may be more feasible in certain cases. In this approach the
knowledge-based system essentially supports the modeler
in the decision-making process. The modeler may have
extensive domain knowledge and a clear view of the
system to be modeled. He may have little experience with
simulation tools and would certainly appreciate expert
advice. The approach discussed in this paper could provide
such help and eventually lead to automatic model
9

de Swaan Arons and van Asperen

generation. To test this approach we have selected the
Arena simulation tool.

Thus far only, some minor efforts have been made to
automate this support. By its Model Jump-Start Wizard the
simulation package Arena, version 3.01 (see also Kelton,
W.D., R.P. Sadowski, and D.A. Sadowski 1998) provides a
toy system in building small simulation models. Based on
the data provided by the modeler through a questionnaire
Arena builds up a simple simulation model that is ready to
run. In many respects this approach lacks essential aspects.
For example, the Wizard supports only models containing
a number of identical servers that are placed in line.

In the following section, we analyze how an Arena
model can be designed and what factors may influence the
various decisions that have to be made. These decisions
concern, among others, the number of Arrive, Server,
Inspect and Depart modules that have to be used, and the
possible use of other modules such as the Sequences
module. Furthermore, in each of these modules the values
of many parameters have to be determined. This analysis
could be formalized in that it could help the modeler to
design and build the simulation model he is after. A
schematic outline of this approach is discussed in section 3.
A few examples illustrating how this approach works are
given in section 4. There are various ways to formalize
such a process. Because of the reasoning aspects of the
suggested approach a knowledge-based approach seems to
be most appropriate and therefore some relevant techniques
are discussed in section 5. The approach discussed in this
paper is only a first step on a long road toward real
computer-aided modeling of simulation systems. In
section 6 some remarks are made about how to proceed on
this road.

2 CONCEPTS

In this section, we discuss the various concepts on which the
approach is based. To fully understand the implications it is
necessary to introduce the concept entity and to give a brief
introduction of some basic terminology used in Arena.

2.1 Entities

An entity in a discrete-event system could be a product
going from one machine to another, a person entering a
bank and going from one desk to another, a document in a
administration going from one desk to another or a
telephone call forwarded from one person to another. Such
an entity could be seen as an instance of an entity type. So,
an entity type represents a separate class of entity
instances. Person and Product are two such entity types. An
entity type can have two or more entity subtypes. For
example, the entity type Person may have the entity
subtypes Male, Female and Child.
40
There needs to be a reason to distinguish between
several subtypes. The plain fact that the entity subtype
Person could have subtypes Male, Female and Child is not
enough. If all persons follow the same route through a
system, travel from one location to the other in the same
time and have the same processing times at various
locations, they behave as completely identical entities. In
such a case there is no need to distinguish between them
and define subtypes for them. However, if males, females
and children follow different routes, have different
processing times or have different route times then there is
a need to define a subtype for each of them.

2.2 Arena in Brief

Many good simulation languages are available. However,
since Arena (version 3.01) is available at our Faculty, for
the sake of convenience this simulation language has been
taken as the modeling vehicle in this article.

It would have been too ambitious to attempt to cover
the modeling process of any simulation model no matter its
size or complexity. We restrict ourselves to those
simulation models that can be constructed using the most
generic modules provided by Arena. Often used modules
are: Arrive and Depart, Server, Inspect, Sequences,
Variables, Statistics and Simulate. These are powerful
modules providing a lot of built-in functionality.

A modeler could create impressive models with these
modules. The Arrive module is used to model the location
in the system where entities enter the system. All kind of
information can be defined in this module such as the inter-
arrival time and the batch size of the entities entering the
system, etc. The actual processing occurs at Server or
Inspect modules (an Inspect module behaves like a Server
module but in addition to this it has a built-in inspect
function that make the various entities proceed along
different routes). Detailed information such as processing
times can be specified in these modules. The Depart
modules are those locations in the system where the
entities leave the system. The Sequences module contains
route information and information of the processing times
at the Server or Inspect modules for the various entities.
The Statistics and Variables modules contain additional
information concerning some specific variables and
statistics. Finally, the Simulate module controls the overall
simulation process.

2.3 Modules

In the previous section, we have enumerated some
important modules at the most generic level of Arena. It is
clear that a model will contain several of these modules. It
is not determined how many of each have to be used, nor
is it known in advance which parameters need to be
0

de Swaan Arons and van Asperen

specified and along which routes entities proceed through
the system.

When starting from scratch, the modeler has to make
decisions based on previous investigations. For example,
what entities (e.g., products, persons, documents) have to
be distinguished in the simulation model, how many
distinct Arrive and Depart modules have to be chosen, how
many Server and Inspect modules have to be used, and so
on. These questions primarily concern the static
information of the model. However, equally important is
the information of the routes the various entities have to
follow when they move through the system. Furthermore,
many parameters contained by the various modules have to
be determined. Examples are the distribution functions of
the inter-arrival times at the Arrive modules, the various
processing times at the Servers, the route times and so on.
In the following sections we discuss most of these aspects
in more detail.

2.3.1 Arrive Modules

Based on the discussion in section 2.1, it can be stated that
each entity type requires a separate Arrive module. There-
fore, the number of Arrive modules is equal to the number
of entity types. When subtypes are defined, in a sense we
have distinct entity subtypes sharing the same Arrive
module. We can distinguish several possible scenarios.
 Scenario 1: The model has only one entity type having
no entity subtypes. This scenario is the most simple one,
see Figure 1. All entities of this single entity type follow
the same route, starting from the same Arrive module
along several server modules and leaving the system
through a Depart module. This route can be specified either
in the Leave Data sections of both the Arrive and Server
modules or in the Sequences module. In the first case in the
Leave Data section, the Route / StNm option has to be
selected, the station name of the next-coming station
(either a Server or Depart module) has to be specified and
the Route Time. When the route is specified in the
Sequences module, the Leave Data sections will have the
options Route / Seq specified instead.

A S1 S4 D
E1E1 E1

Figure 1: Only One Entity Type Having No Subtypes

 Scenario 2: The model has only one entity type having
two or more entity subtypes. The instances of the subtypes
E11 and E12 follow different routes or follow the same route
but have different processing times at shared servers, see
Figure 2. Because of this there is a need to distinguish
between the entity subtypes. For the server S1 it is
necessary to know which of the entity subtype is being
served. First of all the entity subtypes E11 and E12 may have
40
different processing times. Furthermore, both subtypes
proceed along different routes. This information can be
specified by using the Sequences module. In Arrive
module A1 the Assign / Assignment Type / Other =
Sequence, Value = discr(p, Seq11, 1 � p, Seq12) has to be
defined. Furthermore, in the Sequences module the
sequences Seq11 and Seq12 have to be specified:

 Seq11: S1, S2, S4, D
 Seq12: S1, S3, S4, D,

together with the corresponding processing times. In the
Arrive and the subsequent Server modules in the Leave
Data section the corresponding route time have to be
specified. For the Arrive and the Server modules the option
Route / Seq has to be specified.

A S1 S4 D

S2

S3

E 11
E

11

E
12 E 12

E11, E12 E11, E12

A S1 S4 D
E11, E12

E11, E12 E11, E12

Figure 2: Since Some Instances of Entity Type E1 Follow
Different Routes (a.) or Have Different Processing Times
at Shared Servers (b.) There is a Need to Specify to
Subtypes E11 and E12

 Scenario 3: The model has two or more entity types,
none of these having entity subtypes and all instances of all
entity types follow the same route. Generally, instances of
two different entity types E1 and E2 have different
processing times at shared servers. This scenario is
presented in Figure 3.

A2 S1 S4 D
E1, E2, E3

A1

A3

E1, E2, E3

E 3

E2

E
1

Figure 3: Instances of E1, E2 and E3 Generally Have
Different Processing Times at Servers They Share

Although the instances of all entity types will follow the
same route, their processing times at the various servers
will generally vary. So, the processing times of instances of
entity type Ei at server Sj have to be defined at Arrive
1

de Swaan Arons and van Asperen

module Ai. This can be done by specifying a common
attribute p at each Arrive module: at Arrive module Ai this
attribute p will be given a distribution function dij for the
processing time of entities Ei at Server Sj. The route
information can be described using the same procedure as
described in scenario 1. However, when the Sequences
module is used the processing times can also be specified
there instead of in the Server Data sections of the
subsequent servers.
 Scenario 4: The model has two or more entity types,
none of these having entity subtypes, but instances of one
entity type may follow a route that differs from instances of
other entity types. This scenario is depicted in Figure 4.
The instances of entity type E1 emerging at Arrive module
A1 are routed to server S1, while the instances of the entity
type E2 are routed directly to server S2. Notice that
instances of E1 and E2 share server S2 and may have
different processing times at this server. The figure clearly
indicates that they proceed along different routes. Also
later on in the model the instances of the entity types
follow different routes: E1 instances proceed to S3 and
finally to D1, and E2 instances proceed directly to D1.

A2 S2

S3A1 S1

D

E1

E
1 E 1

E
1

E2 E2

Figure 4: Instances of Entity Types E1 and E2 Follow Diff-
erent Routes Sharing One or More Servers (in this case S2)

 Scenario 5: The model has two or more entity types,
one or more of these having two or more entity subtypes.
Finally, we discuss the scenario that one or more of the
entity types have two or more subtypes which is depicted
in Figure 5. Entity type E1 has two subtypes E11 and E12, E2
has no subtypes. Instances of E11 and E12 follow different
routes. Instances of subtype E11 occur with a probability of
p and, consequently, instances of subtype E12 occur with a
probability of 1 � p.

Again, for this model there is a need to specify the
sequences Seq11 and Seq12. The Sequences module has to
define the sequences Seq11 and Seq12:

 Seq11: S1, S2, D
 Seq12: S1, S3, S4, D

Of course, also Seq2, the sequence of E2 instances has to be
specified:

 Seq2: S1, S3, S5, D

 For all Arrive and Server modules the options Route /
Seq have to be specified.
40
A2

S2

S3

A1

S1 DS4

S5

E 2

E
11 , E

12

E
2

E 2

E
11E 11

E12
E12E

12 , E
2

Figure 5: Instances of Entity Subtypes E11 and E12 and
Instances of Entity Type E2 Follow Different Routes
Sharing One or More Servers

2.3.2 Server Modules

The number of servers and the parameters contained in
them need to be determined. This is a less complicated
procedure than determining the number of Arrive modules.
In fact, all instances of either entity types or subtypes in a
system have to be processed. When we restrict ourselves to
the most generic level modules at the Common template
panel only Server or Inspect modules can do the job.
Inspect modules can be considered to be a special type of
Server. For each of these servers the Station name,
Resource, Capacity Type, Capacity, Process Time and
Leave Data (route information) have to be provided. In
most cases, however, the processing time and the route
information is specified in the Sequences module.

2.3.3 Inspect Modules

Inspect modules are very similar to Server modules. Both
perform an operation on instances of entity (sub)types.
Generally an operation at a Server results in a modified
entity. For example, in a manufacturing environment a
product may undergo operations such as cleaning or
milling, in an office a document could be inspected and
signed, and so on. Inspect modules can carry out the same
type of operation but can also inspect an entity resulting in
pass or fail. For this reason it is very important to
distinguish between Server and Inspect modules. This
difference also has consequences for the definition of the
sequences used. The pass or fail routes hold for all
instances that have been processed at the Inspect module
and can�t be influenced by information in a Sequences
module, see also section 3.2.

2.3.4 Depart Modules

The number of Depart modules can also be determined. In-
stances of either entity types or subtypes leave the system
through one or more Depart modules. In most cases the
modeler can specify how the instances leave the system. For
each Depart module some parameters have to be specified
such as the Station name, possibly some count information,
tally variables and the type of statistics to be generated.
2

de Swaan Arons and van Asperen
2.3.5 Sequences Module

The result of the decision process in connection with the
number of Arrive modules (see also section 2.1) could
make it necessary to use a Sequences module and thus to
define the various sequences. The model depicted in
Figure 5 gives rise to the definition of the three sequences
Seq11, Seq12 and Seq2. So, in a previous stage the decision
needs to be made with respect to whether or not a
Sequences module has to be used and which sequences it
has to specify. For each of the sequences the routes of the
instances involved have to be specified as well as their
processing times at the various servers.

2.3.6 Simulate Module

In order to run a simulation model in Arena one should use
the Simulate module. In this module operational
information has to be filled in, such as the simulation
length, the warm up period, the number of replicates,
whether or not the system or the statistics have to be
initialized between the replications and so on. For the time
being we restrict ourselves to some basic simulation runs.

3 THE DESIGN PROCESS

In this section we work out the decision process discussed
in the previous section. As stated before we restrict
ourselves to the modules of the Common template panel:
Arrive, Server, Inspect, Depart, Simulate, Sequences.

First of all, in section 3.1, we provide a list of the
parameters that essentially describe the models we consider
given the restrictions mentioned earlier. Next, in
section 3.2, we present a schematic overview that reflects
large parts of the decision process discussed in section 2
and will eventually lead to the determination of the
parameters of 3.1.

3.1 The Parameters Involved

In the modules discussed thus far many parameters can be
specified. Some of these concern options that are not
relevant to the research presented in this article, for
example parameters concerning animation or transporters.

In the following an overview is given of the
parameters that may have to be determined in the modules
Arrive, Server, Inspect, Depart, Simulate and Sequences.
4

Arrive
Enter data Station name
Arrive data Batch size

Time between
Mark time attribute
Assign type (either Attribute or Other)

Leave data Route / StNm Station name
Route time

Server
Enter data Station name
Server data Resource

Capacity type (also includes schedule)
Capacity
Resource statistics (y/n)
Process time

Leave data Route / StNm
Station name
Route time

Inspect
Enter data Station name
Server data Resource

Capacity type (also includes schedule)
Capacity
Resource statistics (y/n)
Process time
Failure probability

Leave data Pass inspection leave data Route / StNm
Station name
Route time

Fail inspection leave data
Route / StNm
Station name
Route time

Depart
Enter data Station name
Count Type of counter

Counter
Increment

Tally Tally
Type of statistics
Attribute

Simulate
Project Title

Analyst
Data

Replicate Number of replications
Beginning time
Length of replications
Terminating condition (leave empty)
Initialize system
Initialize statistics
Warm up period

Sequences Name

Modules visited
Processing time for each entity module
combination
03

de Swaan Arons and van Asperen

Server
Modules:
Si, i=1..NS

Entities
Ei, i=1..NT

Arrive
Modules

Ai, i=1..NT

Depart
Modules:
Di, i=1..ND

1 sequence
for this type

1 sequence
per

subtype

no yes

Sequences
Seqi,

i=1..NZ

Some Si
may be
Inspect
Modules

Extra
Sequences

1.
Determine
Number of

Servers

2.
Determine
Number of

Entity Types

4.
Determine
Number of

Departs

5.
Fill in details of
A,S,D modules

6.
Fill in details of

Sequences
modules

3.
For each Entity
Type: Does this

type have
subtypes?

Figure 6: Design Schema
3.2 Design Details

The design process consists of six steps, illustrated in Figure
6 (steps are represented by rectangles; results are represented
by circles). The first step is to determine the number of
activities to be modeled using the Arena Server and Inspect
modules (noted as Si). Having identified the number of
locations, the user is then asked to name each one.
 Step 2 aims to identify the number of entity types
along the lines of section 2.3.1. Again, once the number of
entity types has been established, the user is requested to
name them. Each entity type Ei has a corresponding Arrival
module Ai, which has to be named (a meaningful default
such as �Arrival <name of entity type>� could be
provided).

The third step is to determine whether an entity type
has subtypes. If an entity type has subtypes, then these
subtypes may follow different routes through the system or
the subtypes may have different processing times at the
servers visited. To model the routes of the entities through
the system, we have decided to use the Arena Sequences
module. The Sequences module specifies the modules
visited by the entity associated with it and provides the
option to set attribute values (such as the processing time)
at each module.

The number of locations at which entities leave the
model is the subject of step 4; the user is asked whether
there is a need to distinguish between the entity (sub)types
as they leave the system (for example, based on the
physical location or whether specific statistical information
is to be determined). Again, the user is asked to name the
exit location, which are implemented using the Depart
module.

Steps 1 through 4 have determined the initial number
of modules in the model; step 5 then fills in the details of
the modules, such as inter-arrival time for entities in the
40
Arrival modules. For all Server modules, the user is
queried whether the operation performed by the Server
may fail; if so, then this Server module will be modeled
using an Arena Inspect module. Using an Inspect module
has consequences for the Sequences module. In Arena, if
the route of an entity is described using a Sequences
module, then the sequence will describe the route for the
successful entities (i.e., the entities that pass the
inspection). The routing information for the entities that
fail the inspection must then be modeled using a direct
connection from the Inspect module to the next module and
a sequence that describes the route from that module
onwards. This is illustrated in Figure 7: the first sequence
Seq1 = S1, I1, S2, D1 describes the route for the entities that
passed the test in I1; the second sequence Seq2 = S3, D2 is
used for the entities that failed the test in I1. All entities that
pass through an Inspect module have the same distribution
function for the inspection process; the route out of the
Inspect module is determined solely by the outcome of this
distribution function and does not depend on the entity
(sub)type.

fail
S1 I1

S2

S3

D1

D2

pass

Figure 7: Inspect Module

 The last step, step 6, is to determine the routes the
entity types and subtypes follow on their way through the
model. The starting point for each sequence is known to be
the Arrival module for the (sub)type associated with that
sequence (except for the extra sequences that may have
been added in step 5); the end point is a Depart module.
The user is now asked to provide the route for each entity
4

de Swaan Arons and van Asperen

(sub)type and to provide additional details such as the
processing time when a Server or Inspect module is visited.

3.3 Corresponding Arena Actions

The results of the design process must now be translated
into an Arena model. These are the parameters that have to
be set for the Arena modules used. In the following the
information that needs to be specified by the modeler is
printed in italic.

Arrival:

Enter Data:
Station: a station name

Arrival Data:
Time Between: a distribution function
Assign/Other/Sequence:

No SubTypes: name of the sequence
SubTypes: name of number of subtypes

Leave Data:
Route, Seq, Route Time: number of minutes

Server:

Enter Data:
Station: a station name

Server Data:
Process Time:

same for all entities: a distribution function
different: attribute name Process Time

Leave Data:
Route, Seq, Route Time: number of minutes

Inspect:
 Enter Data:

Station: a station name
Server Data:

Process Time:
same for all entities: a distribution function
different: attribute name Process Time

Failure Probability: a probability p
Pass Inspection Leave Data:

Route, Seq, Route Time: number in minutes
Fail Inspection Leave Data:

Route, StNm
Station: name of next station
Route Time: number of minutes

Depart:

Enter Data:
Station: a station name

Count:
Individual Counter, Counter: name of the counter
Increment: 1

Sequences:

For each sequence:
Add: Sequence_Name
Steps:

the modules visited on the route, starting after Arrival
At each step:

Steps, Add: Station: a station name
if processing time not the same for all entities that visit
this station:

Assignments, Add: Assignment Time: Attribute
Attribute: Process Time
Value: a distribution function
40
To create a visually pleasing result, Routes from the
Animate panel could be added to connect the stations that
are visited.

4 SOME EXAMPLES

The following examples are taken from (Course Arena
version 3.0, 1997) and (Kelton, W.D., R.P. Sadowski, and
D.A. Sadowski 1998).

In this section we will look at a possible
implementation of this part of the modeling process.

4.1 The First Example

In the first example, see Figure 8, typical metal parts (T)
are painted in three stages: preparation, paint, and dry.
Some of the parts are special (S), don�t get a preparation,
are painted immediately and are given a second coating
before they are dried. This example fits scenario 2.

Warehouse
Typical

Paint

Warehouse
Special

S

TT

T, S

T

S

S

Prep

DryArrival

Figure 8: The Paint Model

Enter the number of locations at which an activity takes place: 3
Name location 1: Prep
Name location 2: Paint
Name location 3: Dry

How many different kinds of types will be processed: 1
Name the entities of type 1: Metal Part

Name the point at which Metal Part enters the model: Arrival
Batch size of Metal Part: 1

Does Metal Part have subtypes? Yes
How many subtypes are there of Metal Part: 2
Name subtype 1 of Metal Part: Typical
Fraction of occurrence: 0.9
Name subtype 2 of Metal Part: Special

Is there a need to distinguish between the (sub)types as they leave
the system (e.g., physically or statistically)? Yes
Enter the number of locations at which (sub)types leave system: 2
Please specify exit location 1: Warehouse Typical
Please specify exit location 2: Warehouse Special

Specify the inter-arrival time of Metal Part at Arrival:
Exponential(6)

Is the processing time at Prep identical for all types?
Yes, Triangular(4,5,6)
Is the processing time at Paint identical for all types? No
Is the processing time at Dry identical for all types? Yes, 5

5

de Swaan Arons and van Asperen

Can the activity of Prep fail? No
Can the activity of Paint fail? No
Can the activity of Dry fail? No

Specify the route for Metal Part, Typical from Arrival Typical:
Prep
Paint
The processing time at Paint for Typical: Normal(10,2)
Dry
Warehouse Typical

Specify the route for Metal Part, Special from Arrival Special:
Paint
The processing time at Paint for Special: Triangular(7,9,11)
Paint
The processing time at Paint for Special: Triangular(3,4,5)
Dry
Warehouse Special

4.2 The Second Example

The second system we want to model is example 5.1 from
Simulation with Arena (see Figure 9), in which two
different electronic units are preprocessed and then sealed;
the sealer machine may fail. Units that have been sealed
successfully are shipped. Failed units are reworked in an
attempt to fix the problem; some are reworked successfully
and then shipped, the others are scrapped.

Arrival
Part A

Prep
A

Arrival
Part B

Prep
B

Scrapped

Salvaged
and Shipped

Shipped

Sealer

Rework

pass

fail

fail

pass

Figure 9: The Sealer Model

Enter the number of locations at which an activity takes place: 4
Name location 1: Part A Prep
Name location 2: Part B Prep
Name location 3: Sealer
Name location 4: Rework

How many different kinds of entities will be processed: 2
Name the entities of type 1: Part A
Name the entities of type 2: Part B

Name the point at which Part A enters the model: Arrival Part A
Batch size of Part A: 1

Name the point at which Part B enters the model: Arrival Part B
Batch size of Part B: 4

Does Part A have sub-types? No
Does Part B have sub-types? No

Is there a need to distinguish between the (sub)types as they leave
the system (e.g., physically or statistically)? Yes
Please specify the exit locations:
Shipped
Salvaged and shipped
Scrapped
40
Specify the inter-arrival time of Part A at Arrival Part A:
Exponential(5)
Specify the inter arrival time of Part B at Arrival Part B:
Exponential(30)

Is the processing time at Part A Prep identical for all types?
Yes, Triangular(1, 4, 8)
Is the processing time at Part B Prep identical for all types?
Yes, Triangular(3, 5, 10)
Is the processing time at Sealer identical for all types?
No
Is the processing time at Rework identical for all types?
Yes, Exponential(15)

Can the activity of Part A Prep fail? No
Can the activity of Part B Prep fail? No
Can the activity of Sealer fail? Yes
Can the activity of Rework fail? Yes

Specify the route for Part A from Arrival Part A:
Part A Prep
Sealer
The processing time at Sealer for Part A: Triangular(1, 3, 4)
What is the probability of failure for Sealer: 0.09
Continue with the route for entities that pass inspection at Sealer:
Shipped
Specify the route for entities that failed inspection at Sealer:
Rework
What is the probability of failure for Rework: 0.20
Continue with the route for entities that pass inspection at Rework:
Salvaged and Shipped
Specify the route for entities that failed inspection at Rework:
Scrapped

Specify the route for Part B from Arrival Part B:
Part B Prep
Sealer
The processing time at Sealer for Part B: Normal(2.4, 0.5)
Thank you, the routes after Sealer have already been determined.

5 IMPLEMENTATION ASPECTS

The approach described in section 3 can be formalized and
programmed. Input of such a program is the information
provided by the modeler (as indicated in sections 2 and 4).
Output could be provided at several levels. It could be a list
of suggestions with respect to the number of modules used,
the values for the various parameters, etcetera. The
modeler could use these to manually build the model in
Arena. A more sophisticated program could do the Arena
programming.

Most programming languages would do the job.
However, it seems more appropriate to use a knowledge-
based tool. Even in these simple cases some reasoning is
required and the best type of processing that can deal with
this is known as knowledge-based processing. The need for
this will increase when more types of modules or modules
taken from less generic template panels are involved. In the
discussion thus far we have not yet considered modules such
as Statistics (with a rather complex structure) and Variables.
We have restricted ourselves to the modules provided at the
Common template panel, the most generic level in Arena.
Each of these modules provide more functionality at the
6

de Swaan Arons and van Asperen

price of less flexibility. Modules from more specialized
template panels such as the Transfer (e.g., containing the
heavily used modules Transporter and Conveyor), the
Blocks and the Elements template panel level are more
specialized and allow the modeler to customize the model to
his needs, see also (Pegden, et al. 1995). This will make the
model much more complex than we have discussed thus far
and therefore the reasoning process that should support the
modeler will also have an increased complexity.

We have indicated that a knowledge-based approach
would assumable be more appropriate to support the
modeler and briefly discuss the various methods.
Essentially there are two ways of knowledge-based
reasoning: goal-driven and data-driven. Also a combination
of these methods is possible and sometimes necessary.

The goal-driven approach is characterized by the
presence of a set of hypotheses (goals), one or more of
which represent the solution of the problem. In the context
of this paper relevant hypotheses are a (large) number of
simulation models which need to be known in advance.
This approach is discussed in (De Swaan Arons 1999). In
brief: a knowledge-based system selects one of the
hypotheses (a simulation model) and attempts to gather the
necessary information (either from the user, a database or
some other data source) based on which the hypothesis can
be either adopted or rejected. In order to achieve such a
result the knowledge-based system follows a reasoning
process based on a number of business rules and a number
of facts that are already known to the system in advance or
will be retrieved from some data source (for example, a
database) during processing.

In contrast to this there is the data-driven approach.
This is particularly appropriate in those cases in which the
number of solutions are essentially infinite. This is the case
in modeling when no models exist that could match with
the model the modeler is after. A knowledge-based system
could help the modeler to create a simulation model from
scratch. Again, the knowledge-based system will help to
create the right model based on a large list of answers to
questions asked. The result is achieved by a reasoning
process based on a number of business rules.

Generally, the goal-driven approach is characterized
by a relatively small number of mostly coherent questions.
The reasoning process takes care of this. It also prevents
the user to be requested about information that is not
relevant to the problem at hand.

In contrast to this, the data-driven approach generally
requires a lot of information from the user and this
information could be superfluous.

Naturally, when no simulation models exist from
which the right one must be selected (so the set of hypo-
theses is empty), the goal-driven approach is useless and
the data-driven approach is the only one that can be used.
40
6 CONCLUSIONS

The present article describes an approach that supports the
modeler to build an implementation model in Arena based
on a conceptual discrete-event model. In fact, it can be
considered as a first step towards the automatic
implemention of a conceptual model in Arena. At first
sight it seems to be only a matter of implementation but it
is not. Any simulation language has its own characteristics
that may affect the contents of the conceptual model. In
this respect, the support described affects both the
conceptual and the implementation model.

The present research has been restricted to those
models that could be built by using only the Arena
modules at the most generic level of aggregation, i.e.,
modules that have a high degree of built-in functionality.
These modules are found in Arena�s Common template
panel. Even with these modules some impressive models
can be built. The approach described in this article offers a
framework to automatically build this type of models.

Most simulation models can only be built by using
modules at a less generic level of aggregation. At the cost
of less built-in functionality, they offer the modeler more
flexibility.

Based on the results described in this article a
continuation of this research could be expected to be
useful. This will be done along two tracks. First the
approach described in this article will be automated.
Furthermore, the research described in this article will be
extended to models that can only be built by using modules
at a less generic level of aggregation.

7 LITERATURE AND REFERENCES

Course Arena version 3.0, 1997.
De Swaan Arons, H. 1983. Expert systems in the

simulation domain. Transactions IMACS: Math-
ematics and Computers in Simulation 25-1: 10-16.

De Swaan Arons, H. 1999. Knowledge-Based Modeling of
Discrete-Event Simulation Systems, In Proceedings of
the 1999 Winter Simulation Conference, ed., John
Charnes, Douglas Morrice, Dan Brunner, and James
Swain.

Developing Applications with the Aion Development
System 1996. Student Guide, version 2.0 (course
material related to AionDS version 7.0), Platinum
Technology.

Kelton, W.D., R.P. Sadowski, and D.A. Sadowski. 1998.
Simulation with Arena. Boston: McGraw-Hill.

Pegden, C.D, R.E. Shannon, and R.P. Sadowski. 1995.
Introduction to Simulation Using SIMAN. New York:
McGraw-Hill Inc.

Toolkit 1997. Logistic problems and simulation models.
TNO Inro, Internal report 97/NL/112, (in Dutch).

Taylor ED 1998. User manual. Utrecht: F&H Simulation BV.
7

de Swaan Arons and van Asperen

AUTHOR BIOGRAPHIES

HENK DE SWAAN ARONS graduated in Applied
Mathematics at Delft University of Technology in 1972.
From that time till 1982 he was appointed lecturer at the
Faculty of Mathematics and Computer Science of this
university with teaching and research in the field of parallel
computation, modeling and simulation. Since 1982 he
concentrated on research and teaching in the field of expert
systems. He was the project leader of several research
projects under which two Esprit projects on knowledge-
based scheduling in manufacturing. In 1991 he got his
Ph.D. degree in Computer Science at Delft University of
Technology. The thesis was mainly concerned with the
design, applicability and applications of expert system
tools, in particular the Delfi3 system. Since 1992 he is an
associate professor at the Department of Computer Science
of the Faculty of Economics at Erasmus University
Rotterdam. At present, his research focuses on simulation
and expert systems, with the emphasis on economical
applications. His email address is <deswaanarons
@few.eur.nl>.

EELCO VAN ASPEREN graduated in Business
Computer Science at Erasmus University Rotterdam in
1993. From 1991 to 2000 he was a member of the IT
support group at the Erasmus University Rotterdam, for the
department of Computer Science and from 1995 for the
Faculty of Economics, focusing on the design and
implementation of large scale computer facilities. Since
January 2000 he is an assistant professor at the Department
of Computer Science of the Faculty of Economics at
Erasmus University Rotterdam. At present, his research
focuses on simulation. His email address is:
<vanasperen@few.eur.nl>.

408

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

