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ABSTRACT  
 
Modeling requires considerable knowledge of the various 
stages of the simulation process. The modeler needs to 
know a great deal of the system to be modeled (domain 
specific knowledge), the ins and outs of the modeling 
process itself (the degree of detail of the model) and how to 
implement the model in a simulation language. Each of 
these stages would benefit from some kind of knowledge-
able support. In this article a decision-making process is 
described that supports the modeler to build a model step 
by step. As a vehicle the Arena simulation environment has 
been used. The support is based on information provided 
by the modeler and is essentially data-driven. It suggests 
which modules could be used best, which parameters need 
to be determined and helps to formulate route information. 
This research aims for an implementation of this support 
using a knowledge-based system. 
 
1 INTRODUCTION 
 
Modeling is one of the most important parts of the 
simulation process. Not only in discrete-event systems but 
also in continuous-time systems (System Dynamics). This 
problem was one of the main research aims of the research 
project (Toolkit 1997) that investigated how modeling 
could be improved. It is obvious that in some respect this 
support is preferably knowledge-based. 

One approach to knowledge-based support has been 
discussed in (De Swaan Arons 1983) and (De Swaan Arons 
1999). In the first paper a mathematical model is selected 
based on user input. The approach in the second paper 
essentially attempted to reuse existing simulation 
implementation models. Over time many implementation 
models have been developed using some simulation 
language. These models can be stored in a database with 
the intention to reuse them in a later stage. When a new 
model has to be designed a modeler could try to retrieve an 
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existing model from the database similar to the one to be 
developed. To facilitate this selection process, the models 
stored in the database need to be parameterized in such 
way that a query on this database can be formulated and 
will hopefully result in a non-empty dynaset. Since the 
modeler in principle has no knowledge or does not want to 
have knowledge of the parameters used to describe the 
models in the database an expert system could be used to 
transform the design specifications into the right query, 
taking all kinds of design considerations into account. This 
approach is essentially goal-driven: given a number of 
simulation models the knowledge-based system attempts to 
gather the information from the user (or from other 
sources) on the basis of which one or more models could 
be selected. Currently, this approach is further investigated 
and experiments are being carried out.  

Unfortunately, this approach has a complication. The 
chance that a database would contain exactly the same 
model the user is after is negligible. One minor difference 
makes two �equal� models different from each other. For 
example, if two models are equal in all respects apart from 
the distribution function in one single Arrive module, 
humans would probably see these models as very similar 
although they are � strictly speaking - different. Therefore, 
the modeler would be very pleased when a support system 
would recognize the similarity between the wanted model 
on the one hand and some models (if there are any) in the 
database on the other hand. 

In this paper, a different approach is discussed that 
may be more feasible in certain cases. In this approach the 
knowledge-based system essentially supports the modeler 
in the decision-making process. The modeler may have 
extensive domain knowledge and a clear view of the 
system to be modeled.  He may have little experience with 
simulation tools and would certainly appreciate expert 
advice. The approach discussed in this paper could provide 
such help and eventually lead to automatic model 
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generation. To test this approach we have selected the 
Arena simulation tool. 

Thus far only, some minor efforts have been made to 
automate this support. By its Model Jump-Start Wizard the 
simulation package Arena, version 3.01 (see also Kelton, 
W.D., R.P. Sadowski, and D.A. Sadowski 1998) provides a 
toy system in building small simulation models. Based on 
the data provided by the modeler through a questionnaire 
Arena builds up a simple simulation model that is ready to 
run. In many respects this approach lacks essential aspects. 
For example, the Wizard supports only models containing 
a number of identical servers that are placed in line. 

In the following section, we analyze how an Arena 
model can be designed and what factors may influence the 
various decisions that have to be made. These decisions 
concern, among others, the number of Arrive, Server, 
Inspect and Depart modules that have to be used, and the 
possible use of other modules such as the Sequences 
module. Furthermore, in each of these modules the values 
of many parameters have to be determined. This analysis 
could be formalized in that it could help the modeler to 
design and build the simulation model he is after. A 
schematic outline of this approach is discussed in section 3. 
A few examples illustrating how this approach works are 
given in section 4. There are various ways to formalize 
such a process. Because of the reasoning aspects of the 
suggested approach a knowledge-based approach seems to 
be most appropriate and therefore some relevant techniques 
are discussed in section 5. The approach discussed in this 
paper is only a first step on a long road toward real 
computer-aided modeling of simulation systems. In 
section 6 some remarks are made about how to proceed on 
this road. 

 
2 CONCEPTS 
 
In this section, we discuss the various concepts on which the 
approach is based. To fully understand the implications it is 
necessary to introduce the concept entity and to give a brief 
introduction of some basic terminology used in Arena.  
 
2.1 Entities 
 
An entity in a discrete-event system could be a product 
going from one machine to another, a person entering a 
bank and going from one desk to another, a document in a 
administration going from one desk to another or a 
telephone call forwarded from one person to another. Such 
an entity could be seen as an instance of an entity type. So, 
an entity type represents a separate class of entity 
instances. Person and Product are two such entity types. An 
entity type can have two or more entity subtypes. For 
example, the entity type Person may have the entity 
subtypes Male, Female and Child.  
40
There needs to be a reason to distinguish between 
several subtypes. The plain fact that the entity subtype 
Person could have subtypes Male, Female and Child is not 
enough. If all persons follow the same route through a 
system, travel from one location to the other in the same 
time and have the same processing times at various 
locations, they behave as completely identical entities. In 
such a case there is no need to distinguish between them 
and define subtypes for them. However, if males, females 
and children follow different routes, have different 
processing times or have different route times then there is 
a need to define a subtype for each of them. 

 
2.2 Arena in Brief 
 
Many good simulation languages are available. However, 
since Arena (version 3.01) is available at our Faculty, for 
the sake of convenience this simulation language has been 
taken as the modeling vehicle in this article. 

It would have been too ambitious to attempt to cover 
the modeling process of any simulation model no matter its 
size or complexity. We restrict ourselves to those 
simulation models that can be constructed using the most 
generic modules provided by Arena. Often used modules 
are: Arrive and Depart, Server, Inspect, Sequences, 
Variables, Statistics and Simulate. These are powerful 
modules providing a lot of built-in functionality.  

A modeler could create impressive models with these 
modules. The Arrive module is used to model the location 
in the system where entities enter the system. All kind of 
information can be defined in this module such as the inter-
arrival time and the batch size of the entities entering the 
system, etc. The actual processing occurs at Server or 
Inspect modules (an Inspect module behaves like a Server 
module but in addition to this it has a built-in inspect 
function that make the various entities proceed along 
different routes). Detailed information such as processing 
times can be specified in these modules. The Depart 
modules are those locations in the system where the 
entities leave the system. The Sequences module contains 
route information and information of the processing times 
at the Server or Inspect modules for the various entities. 
The Statistics and Variables modules contain additional 
information concerning some specific variables and 
statistics. Finally, the Simulate module controls the overall 
simulation process. 

 
2.3 Modules 
 
In the previous section, we have enumerated some 
important modules at the most generic level of Arena. It is 
clear that a model will contain several of these modules. It 
is not  determined how many of each have to be used, nor 
is it known in advance which parameters need to be 
0
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specified and along which routes entities proceed through 
the system. 

When starting from scratch, the modeler has to make 
decisions based on previous investigations. For example, 
what entities (e.g., products, persons, documents) have to 
be distinguished in the simulation model, how many 
distinct Arrive and Depart modules have to be chosen, how 
many Server and Inspect modules have to be used, and so 
on. These questions primarily concern the static 
information of the model. However, equally important is 
the information of the routes the various entities have to 
follow when they move through the system. Furthermore, 
many parameters contained by the various modules have to 
be determined. Examples are the distribution functions of 
the inter-arrival times at the Arrive modules, the various 
processing times at the Servers, the route times and so on. 
In the following sections we discuss most of these aspects 
in more detail. 

 
2.3.1 Arrive Modules 
 
Based on the discussion in section 2.1, it can be stated that 
each entity type requires a separate Arrive module. There-
fore, the number of Arrive modules is equal to the number 
of entity types. When subtypes are defined, in a sense we 
have distinct entity subtypes sharing the same Arrive 
module. We can distinguish several possible scenarios. 
 Scenario 1: The model has only one entity type having 
no entity subtypes.  This scenario is the most simple one, 
see Figure 1. All entities of this single entity type follow 
the same route, starting from the same Arrive module 
along several server modules and leaving the system 
through a Depart module. This route can be specified either 
in the Leave Data sections of both the Arrive and Server 
modules or in the Sequences module. In the first case in the 
Leave Data section, the Route / StNm option has to be 
selected, the station name of the next-coming station 
(either a Server or Depart module) has to be specified and 
the Route Time. When the route is specified in the 
Sequences module, the Leave Data sections will have the 
options Route / Seq specified instead. 
 

A S1 S4 D
E1E1 E1

 
 

Figure 1:  Only One Entity Type Having No Subtypes 
 
 Scenario 2: The model has only one entity type having 
two or more entity subtypes.  The instances of the subtypes 
E11 and E12 follow different routes or follow the same route 
but have different processing times at shared servers, see 
Figure 2. Because of this there is a need to distinguish 
between the entity subtypes. For the server S1 it is 
necessary to know which of the entity subtype is being 
served. First of all the entity subtypes E11 and E12 may have 
40
different processing times. Furthermore, both subtypes 
proceed along different routes. This information can be 
specified by using the Sequences module. In Arrive 
module A1 the Assign / Assignment Type / Other = 
Sequence, Value = discr(p, Seq11, 1 � p, Seq12) has to be 
defined. Furthermore, in the Sequences module the 
sequences Seq11 and Seq12 have to be specified: 
 
    Seq11: S1, S2, S4, D 
    Seq12: S1, S3, S4, D,  
 
together with the corresponding processing times. In the 
Arrive and the subsequent Server modules in the Leave 
Data section the corresponding route time have to be 
specified. For the Arrive and the Server modules the option 
Route / Seq has to be specified. 
 

A S1 S4 D

S2

S3

E 11
E

11

E
12 E 12

E11, E12 E11, E12

 
 

A S1 S4 D
E11, E12

E11, E12 E11, E12

 
 

Figure 2:  Since Some Instances of Entity Type E1 Follow 
Different Routes (a.) or Have Different Processing Times 
at Shared Servers (b.) There is a Need to Specify to 
Subtypes E11 and E12 
 
 Scenario 3: The model has two or more entity types, 
none of these having entity subtypes and all instances of all 
entity types follow the same route. Generally, instances of 
two different entity types E1 and E2 have different 
processing times at shared servers.  This scenario is 
presented in Figure 3.  
 

A2 S1 S4 D
E1, E2, E3

A1

A3

E1, E2, E3

E 3

E2

E
1

 
 

Figure 3:  Instances of E1, E2 and E3 Generally Have 
Different Processing Times at Servers They Share 
 
Although the instances of all entity types will follow the 
same route, their processing times at the various servers 
will generally vary. So, the processing times of instances of 
entity type Ei at server Sj have to be defined at Arrive 
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module Ai. This can be done by specifying a common 
attribute p at each Arrive module: at Arrive module Ai this 
attribute p will be given a distribution function dij for the 
processing time of entities Ei at Server Sj. The route 
information can be described using the same procedure as 
described in scenario 1. However, when the Sequences 
module is used the processing times can also be specified 
there instead of in the Server Data sections of the 
subsequent servers. 
 Scenario 4: The model has two or more entity types, 
none of these having entity subtypes, but instances of one 
entity type may follow a route that differs from instances of 
other entity types.  This scenario is depicted in Figure 4. 
The instances of entity type E1 emerging at Arrive module 
A1 are routed to server S1, while the instances of the entity 
type E2 are routed directly to server S2. Notice that 
instances of E1 and E2 share server S2 and may have 
different processing times at this server. The figure clearly 
indicates that they proceed along different routes. Also 
later on in the model the instances of the entity types 
follow different routes: E1 instances proceed to S3 and 
finally to D1, and E2 instances proceed directly to D1. 
 

A2 S2

S3A1 S1

D

E1

E
1 E 1

E
1

E2 E2

 
 

Figure 4:  Instances of Entity Types E1 and E2 Follow Diff-
erent Routes Sharing One or More Servers (in this case S2) 
 
 Scenario 5: The model has two or more entity types, 
one or more of these having two or more entity subtypes.  
Finally, we discuss the scenario that one or more of the 
entity types have two or more subtypes which is depicted 
in Figure 5. Entity type E1 has two subtypes E11 and E12, E2 
has no subtypes. Instances of E11 and E12 follow different 
routes. Instances of subtype E11 occur with a probability of 
p and, consequently, instances of subtype E12 occur with a 
probability of 1 � p. 

Again, for this model there is a need to specify the 
sequences Seq11 and Seq12. The Sequences module has to 
define the sequences Seq11 and Seq12: 
 
    Seq11: S1, S2, D 
    Seq12: S1, S3, S4, D 
 
Of course, also Seq2, the sequence of E2 instances has to be 
specified: 
 
    Seq2: S1, S3, S5, D 
 
 For all Arrive and Server modules the options Route / 
Seq have to be specified. 
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Figure 5:  Instances of Entity Subtypes E11 and E12 and 
Instances of Entity Type E2 Follow Different Routes 
Sharing One or More Servers 
 
2.3.2 Server Modules 
 
The number of servers and the parameters contained in 
them need to be determined. This is a less complicated 
procedure than determining the number of Arrive modules. 
In fact, all instances of either entity types or subtypes in a 
system have to be processed. When we restrict ourselves to 
the most generic level modules at the Common template 
panel only Server or Inspect modules can do the job. 
Inspect modules can be considered to be a special type of 
Server. For each of these servers the Station name, 
Resource, Capacity Type, Capacity, Process Time and 
Leave Data (route information) have to be provided. In 
most cases, however, the processing time and the route 
information is specified in the Sequences module. 
 
2.3.3 Inspect Modules 
 
Inspect modules are very similar to Server modules. Both 
perform an operation on instances of entity (sub)types. 
Generally an operation at a Server results in a modified 
entity. For example, in a manufacturing environment a 
product may undergo operations such as cleaning or 
milling, in an office a document could be inspected and 
signed, and so on. Inspect modules can carry out the same 
type of operation but can also inspect an entity resulting in 
pass or fail. For this reason it is very important to 
distinguish between Server and Inspect modules. This 
difference also has consequences for the definition of the 
sequences used. The pass or fail routes hold for all 
instances that have been processed at the Inspect module 
and can�t be influenced by information in a Sequences 
module, see also section 3.2.  
 
2.3.4 Depart Modules 
 
The number of Depart modules can also be determined. In-
stances of either entity types or subtypes leave the system 
through one or more Depart modules. In most cases the 
modeler can specify how the instances leave the system. For 
each Depart module some parameters have to be specified 
such as the Station name, possibly some count information, 
tally variables and the type of statistics to be generated. 
2
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2.3.5 Sequences Module 
 
The result of the decision process in connection with the 
number of Arrive modules (see also section 2.1) could 
make it necessary to use a Sequences module and thus to 
define the various sequences. The model depicted in 
Figure 5 gives rise to the definition of the three sequences 
Seq11, Seq12 and Seq2. So, in a previous stage the decision 
needs to be made with respect to whether or not a 
Sequences module has to be used and which sequences it 
has to specify. For each of the sequences the routes of the 
instances involved have to be specified as well as their 
processing times at the various servers. 
 
2.3.6 Simulate Module 
 
In order to run a simulation model in Arena one should use 
the Simulate module. In this module operational 
information has to be filled in, such as the simulation 
length, the warm up period, the number of replicates, 
whether or not the system or the statistics have to be 
initialized between the replications and so on. For the time 
being we restrict ourselves to some basic simulation runs. 
 
3 THE DESIGN PROCESS 
 
In this section we work out the decision process discussed 
in the previous section. As stated before we restrict 
ourselves to the modules of the Common template panel: 
Arrive, Server, Inspect, Depart, Simulate, Sequences. 

First of all, in section 3.1, we provide a list of the 
parameters that essentially describe the models we consider 
given the restrictions mentioned earlier. Next, in 
section 3.2, we present a schematic overview that reflects 
large parts of the decision process discussed in section 2 
and will eventually lead to the determination of the 
parameters of 3.1. 

 
3.1 The Parameters Involved 
 
In the modules discussed thus far many parameters can be 
specified. Some of these concern options that are not 
relevant to the research presented in this article, for 
example parameters concerning animation or transporters.  

In the following an overview is given of the 
parameters that may have to be determined in the modules 
Arrive, Server, Inspect, Depart, Simulate and Sequences. 
4

 
 

Arrive  
Enter data Station name 
Arrive data  Batch size 

Time between 
Mark time attribute 
Assign type (either Attribute or Other) 

Leave data Route / StNm Station name 
Route time 

  
Server  
Enter data Station name 
Server data Resource 

Capacity type (also includes schedule) 
Capacity 
Resource statistics (y/n) 
Process time 

Leave data Route / StNm 
Station name 
Route time 

  
Inspect   
Enter data Station name 
Server data Resource 

Capacity type (also includes schedule) 
Capacity 
Resource statistics (y/n) 
Process time 
Failure probability 

Leave data Pass inspection leave data Route / StNm 
Station name 
Route time 
 
Fail inspection leave data 
Route / StNm 
Station name 
Route time 

  
Depart  
Enter data Station name 
Count Type of counter 

Counter 
Increment 

Tally Tally 
Type of statistics 
Attribute 

  
Simulate  
Project Title 

Analyst 
Data 

Replicate Number of replications 
Beginning time 
Length of replications 
Terminating condition (leave empty) 
Initialize system 
Initialize statistics 
Warm up period 

  
Sequences Name 

Modules visited 
Processing time for each entity module 
combination 
03
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Server
Modules:
Si, i=1..NS

Entities
Ei, i=1..NT

Arrive
Modules

Ai, i=1..NT

Depart
Modules:
Di, i=1..ND

1 sequence
for this type

1 sequence
per

subtype

no yes

Sequences
Seqi,

i=1..NZ

Some Si
may be
Inspect
Modules

Extra
Sequences

1.
Determine
Number of

Servers

2.
Determine
Number of

Entity Types

4.
Determine
Number of

Departs

5.
Fill in details of
A,S,D modules

6.
Fill in details of

Sequences
modules

3.
For each Entity
Type: Does this

type have
subtypes?

 
 

Figure 6:  Design Schema 
3.2 Design Details 
 
The design process consists of six steps, illustrated in Figure 
6 (steps are represented by rectangles; results are represented 
by circles). The first step is to determine the number of 
activities to be modeled using the Arena Server and Inspect 
modules (noted as Si). Having identified the number of 
locations, the user is then asked to name each one.  
 Step 2 aims to identify the number of entity types 
along the lines of section 2.3.1. Again, once the number of 
entity types has been established, the user is requested to 
name them. Each entity type Ei has a corresponding Arrival 
module Ai, which has to be named (a meaningful default 
such as �Arrival <name of entity type>� could be 
provided).  

The third step is to determine whether an entity type 
has subtypes. If an entity type has subtypes, then these 
subtypes may follow different routes through the system or 
the subtypes may have different processing times at the 
servers visited. To model the routes of the entities through 
the system, we have decided to use the Arena Sequences 
module. The Sequences module specifies the modules 
visited by the entity associated with it and provides the 
option to set attribute values (such as the processing time) 
at each module.  

The number of locations at which entities leave the 
model is the subject of step 4; the user is asked whether 
there is a need to distinguish between the entity (sub)types 
as they leave the system (for example, based on the 
physical location or whether specific statistical information 
is to be determined). Again, the user is asked to name the 
exit location, which are implemented using the Depart 
module. 

Steps 1 through 4 have determined the initial number 
of modules in the model; step 5 then fills in the details of 
the modules, such as inter-arrival time for entities in the 
40
Arrival modules. For all Server modules, the user is 
queried whether the operation performed by the Server 
may fail; if so, then this Server module will be modeled 
using an Arena Inspect module. Using an Inspect module 
has consequences for the Sequences module. In Arena, if 
the route of an entity is described using a Sequences 
module, then the sequence will describe the route for the 
successful entities (i.e., the entities that pass the 
inspection). The routing information for the entities that 
fail the inspection must then be modeled using a direct 
connection from the Inspect module to the next module and 
a sequence that describes the route from that module 
onwards. This is illustrated in Figure 7: the first sequence 
Seq1 = S1, I1, S2, D1 describes the route for the entities that 
passed the test in I1; the second sequence Seq2 = S3, D2 is 
used for the entities that failed the test in I1. All entities that 
pass through an Inspect module have the same distribution 
function for the inspection process; the route out of the 
Inspect module is determined solely by the outcome of this 
distribution function and does not depend on the entity 
(sub)type. 
 

fail
S1 I1

S2

S3

D1

D2

pass

 
 

Figure 7:  Inspect Module 
 
 The last step, step 6, is to determine the routes the 
entity types and subtypes follow on their way through the 
model. The starting point for each sequence is known to be 
the Arrival module for the (sub)type associated with that 
sequence (except for the extra sequences that may have 
been added in step 5); the end point is a Depart module. 
The user is now asked to provide the route for each entity 
4
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(sub)type and to provide additional details such as the 
processing time when a Server or Inspect module is visited. 
 
3.3 Corresponding Arena Actions 
 
The results of the design process must now be translated 
into an Arena model. These are the parameters that have to 
be set for the Arena modules used. In the following the 
information that needs to be specified by the modeler is 
printed in italic. 
 
Arrival:  

Enter Data:  
Station: a station name 

Arrival Data: 
Time Between: a distribution function 
Assign/Other/Sequence:  

No SubTypes: name of the sequence 
SubTypes: name of number of subtypes 

Leave Data:  
Route, Seq, Route Time: number of minutes 

 
Server: 

Enter Data:  
Station: a station name 

Server Data:  
Process Time: 

same for all entities: a distribution function 
different: attribute name Process Time 

Leave Data:  
Route, Seq, Route Time: number of minutes 

 
Inspect: 
 Enter Data: 

Station: a station name 
Server Data: 

Process Time: 
same for all entities: a distribution function 
different: attribute name Process Time 

Failure Probability: a probability p 
Pass Inspection Leave Data: 

Route, Seq, Route Time: number in minutes 
Fail Inspection Leave Data: 

Route, StNm 
Station: name of next station 
Route Time: number of minutes 

 
Depart: 

Enter Data: 
Station: a station name 

Count: 
Individual Counter, Counter: name of the counter 
Increment: 1 

 
Sequences: 

For each sequence: 
Add: Sequence_Name 
Steps: 

the modules visited on the route, starting after Arrival 
At each step: 

Steps, Add: Station: a station name 
if processing time not the same for all entities that visit 
this station: 

Assignments, Add: Assignment Time: Attribute 
Attribute: Process Time 
Value: a distribution function 
40
To create a visually pleasing result, Routes from the 
Animate panel could be added to connect  the stations that 
are visited.  
 
4 SOME EXAMPLES 
 
The following examples are taken from (Course Arena 
version 3.0, 1997) and (Kelton, W.D., R.P. Sadowski, and 
D.A. Sadowski 1998). 

In this section we will look at a possible 
implementation of this part of the modeling process.  

 
4.1 The First Example 
 
In the first example, see Figure 8, typical metal parts (T) 
are painted in three stages: preparation, paint, and dry. 
Some of the parts are special (S), don�t get a preparation, 
are painted immediately and are given a second coating 
before they are dried. This example fits scenario 2. 
 

Warehouse
Typical

Paint

Warehouse
Special

S

TT

T, S

T

S

S

Prep

DryArrival

 
 

Figure 8:  The Paint Model 
 
Enter the number of locations at which an activity takes place: 3 
Name location 1: Prep 
Name location 2: Paint 
Name location 3: Dry 
 
How many different kinds of types will be processed: 1 
Name the entities of type 1: Metal Part 
 
Name the point at which Metal Part enters the model: Arrival 
Batch size of Metal Part: 1 
 
Does Metal Part have subtypes? Yes 
How many subtypes are there of Metal Part: 2 
Name subtype 1 of Metal Part: Typical 
Fraction of occurrence: 0.9 
Name subtype 2 of Metal Part: Special 
 
Is there a need to distinguish between the (sub)types as they leave 
the system (e.g., physically or statistically)? Yes 
Enter the number of locations at which (sub)types leave system: 2 
Please specify exit location 1: Warehouse Typical 
Please specify exit location 2: Warehouse Special 
 
Specify the inter-arrival time of Metal Part at Arrival: 
Exponential(6) 
 
Is the processing time at Prep identical for all types? 
Yes, Triangular(4,5,6) 
Is the processing time at Paint identical for all types? No 
Is the processing time at Dry identical for all types? Yes, 5 
 

5
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Can the activity of Prep fail? No 
Can the activity of Paint fail? No 
Can the activity of Dry fail? No 
 
Specify the route for Metal Part, Typical from Arrival Typical: 
Prep 
Paint 
The processing time at Paint for Typical: Normal(10,2) 
Dry 
Warehouse Typical 
 
Specify the route for Metal Part, Special from Arrival Special: 
Paint 
The processing time at Paint for Special: Triangular(7,9,11) 
Paint 
The processing time at Paint for Special: Triangular(3,4,5) 
Dry 
Warehouse Special 
 
4.2 The Second Example 
 
The second system we want to model is example 5.1 from 
Simulation with Arena (see Figure 9), in which two 
different electronic units are preprocessed and then sealed; 
the sealer machine may fail. Units that have been sealed 
successfully are shipped. Failed units are reworked in an 
attempt to fix the problem; some are reworked successfully 
and then shipped, the others are scrapped. 

 
Arrival
Part A

Prep
A

Arrival
Part B

Prep
B

Scrapped

Salvaged
and Shipped

Shipped

Sealer

Rework

pass

fail

fail

pass

 
Figure 9:  The Sealer Model 

 
Enter the number of locations at which an activity takes place: 4 
Name location 1: Part A Prep 
Name location 2: Part B Prep 
Name location 3: Sealer 
Name location 4: Rework 
 
How many different kinds of entities will be processed: 2 
Name the entities of type 1: Part A 
Name the entities of type 2: Part B 
 
Name the point at which Part A enters the model: Arrival Part A 
Batch size of Part A: 1 
 
Name the point at which Part B enters the model: Arrival Part B 
Batch size of Part B: 4 
 
Does Part A have sub-types? No 
Does Part B have sub-types? No 
 
Is there a need to distinguish between the (sub)types as they leave 
the system (e.g., physically or statistically)? Yes 
Please specify the exit locations: 
Shipped 
Salvaged and shipped 
Scrapped 
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Specify the inter-arrival time of Part A at Arrival Part A:  
Exponential(5) 
Specify the inter arrival time of Part B at Arrival Part B:  
Exponential(30) 
 
Is the processing time at Part A Prep identical for all types? 
Yes, Triangular(1, 4, 8) 
Is the processing time at Part B Prep identical for all types? 
Yes, Triangular(3, 5, 10) 
Is the processing time at Sealer identical for all types? 
No 
Is the processing time at Rework identical for all types? 
Yes, Exponential(15) 
 
Can the activity of Part A Prep fail? No 
Can the activity of Part B Prep fail? No 
Can the activity of Sealer fail? Yes 
Can the activity of Rework fail? Yes 
 
Specify the route for Part A from Arrival Part A: 
Part A Prep 
Sealer 
The processing time at Sealer for Part A: Triangular(1, 3, 4) 
What is the probability of failure for Sealer: 0.09 
Continue with the route for entities that pass inspection at Sealer: 
Shipped 
Specify the route for entities that failed inspection at Sealer: 
Rework 
What is the probability of failure for Rework: 0.20 
Continue with the route for entities that pass inspection at Rework: 
Salvaged and Shipped 
Specify the route for entities that failed inspection at Rework: 
Scrapped 
 
Specify the route for Part B from Arrival Part B: 
Part B Prep 
Sealer 
The processing time at Sealer for Part B: Normal(2.4, 0.5) 
Thank you, the routes after Sealer have already been determined. 
 
5 IMPLEMENTATION ASPECTS 
 
The approach described in section 3 can be formalized and 
programmed. Input of such a program is the information 
provided by the modeler (as indicated in sections 2 and 4). 
Output could be provided at several levels. It could be a list 
of suggestions with respect to the number of modules used, 
the values for the various parameters, etcetera. The 
modeler could use these to manually build the model in 
Arena. A more sophisticated program could do the Arena 
programming. 

Most programming languages would do the job. 
However, it seems more appropriate to use a knowledge-
based tool. Even in these simple cases some reasoning is 
required and the best type of processing that can deal with 
this is known as knowledge-based processing. The need for 
this will increase when more types of modules or modules 
taken from less generic template panels are involved. In the 
discussion thus far we have not yet considered modules such 
as Statistics (with a rather complex structure) and Variables. 
We have restricted ourselves to the modules provided at the 
Common template panel, the most generic level in Arena. 
Each of these modules provide more functionality at the 
6
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price of less flexibility. Modules from more specialized 
template panels such as the Transfer (e.g., containing the 
heavily used modules Transporter and Conveyor), the 
Blocks and the Elements template panel level are more 
specialized and allow the modeler to customize the model to 
his needs, see also (Pegden, et al. 1995). This will make the 
model much more complex than we have discussed thus far 
and therefore the reasoning process that should support the 
modeler will also have an increased complexity. 

We have indicated that a knowledge-based approach 
would assumable be more appropriate to support the 
modeler and briefly discuss the various methods. 
Essentially there are two ways of knowledge-based 
reasoning: goal-driven and data-driven. Also a combination 
of these methods is possible and sometimes necessary. 

The goal-driven approach is characterized by the 
presence of a set of hypotheses (goals), one or more of 
which represent the solution of the problem. In the context 
of this paper relevant hypotheses are a (large) number of 
simulation models which need to be known in advance. 
This approach is discussed in (De Swaan Arons 1999). In 
brief: a knowledge-based system selects one of the 
hypotheses (a simulation model) and attempts to gather the 
necessary information (either from the user, a database or 
some other data source) based on which the hypothesis can 
be either adopted or rejected. In order to achieve such a 
result the knowledge-based system follows a reasoning 
process based on a number of business rules and a number 
of facts that are already known to the system in advance or 
will be retrieved from some data source (for example, a 
database) during processing. 

In contrast to this there is the data-driven approach. 
This is particularly appropriate in those cases in which the 
number of solutions are essentially infinite. This is the case 
in modeling when no models exist that could match with 
the model the modeler is after. A knowledge-based system 
could help the modeler to create a simulation model from 
scratch. Again, the knowledge-based system will help to 
create the right model based on a large list of answers to 
questions asked. The result is achieved by a reasoning 
process based on a number of business rules. 

Generally, the goal-driven approach is characterized 
by a relatively small number of mostly coherent questions. 
The reasoning process takes care of this. It also prevents  
the user to be requested about information that is not 
relevant to the problem at hand. 

In contrast to this, the data-driven approach generally 
requires a lot of information from the user and this 
information could be superfluous. 

Naturally, when no simulation models exist from 
which the right one must be selected (so the set of hypo-
theses is empty), the goal-driven approach is useless and 
the data-driven approach is the only one that can be used. 
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6 CONCLUSIONS 
 
The present article describes an approach that supports the 
modeler to build an implementation model in Arena based 
on a conceptual discrete-event model. In fact, it can be 
considered as a first step towards the automatic 
implemention of a conceptual model in Arena. At first 
sight it seems to be only a matter of implementation but it 
is not. Any simulation language has its own characteristics 
that may affect the contents of the conceptual model. In 
this respect, the support described affects both the 
conceptual and the implementation model. 

The present research has been restricted to those 
models that could be built by using only the Arena 
modules at the most generic level of aggregation, i.e., 
modules that have a high degree of built-in functionality. 
These modules are found in Arena�s Common template 
panel. Even with these modules some impressive models 
can be built. The approach described in this article offers a 
framework to automatically build this type of models. 

Most simulation models can only be built by using 
modules at a less generic level of aggregation. At the cost 
of less built-in functionality, they offer the modeler more 
flexibility. 

Based on the results described in this article a 
continuation of this research could be expected to be 
useful. This will be done along two tracks. First the 
approach described in this article will be automated. 
Furthermore, the research described in this article will be 
extended to models that can only be built by using modules 
at a less generic level of aggregation. 
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