
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

TOWARD A STANDARD PROCESS:
THE USE OF UML FOR DESIGNING SIMULATION MODELS

Hendrik Richter
Lothar März

Fraunhofer Institut für Produktionstechnik und Automatisierung
Nobelstrasse 12, D–70569 Stuttgart, GERMANY

lly
he
-

m
An
rts

n
la
oo
e
fu
ith
ts

ar

a
ro

99
op
of
ph
e
h
-
ion
n
b

er
he

s.
d

ify

-
ed
es
d
e

n

al-
as
d

al.
gi-

-
n
re
ABSTRACT

Designing complex simulation models is a task essentia
associated with software engineering. In this paper, t
Unified Modeling Language (UML) is used to specify sim
ulation models. It is shown that, similar to the “Unified
Process” in software engineering, such a methodology for
a sound base for developing complex simulation models.
example is provided to illustrate how this approach suppo
the design process.

1 INTRODUCTION

Discrete–event simulation is frequently used to evaluate a
optimize production processes. Sometimes, such simu
tions can be performed by standard programs using a t
box paradigm. If, on the other hand, a more complex sc
nario is to be described such tool boxes are not power
enough and one has to rely on simulation programs w
open architecture. So, most complex simulation projec
need to be considered essentially as a task of softw
engineering.

Recently, a new approach to software engineering h
been developed and established, the so–called “Unified P
cess” (Royce 1998, Booch, Rumbaugh and Jacobson, 19
Its main features are an iterative and incremental devel
ment process instead of a waterfall life cycle, promotion
a component–based architecture, and the use of a gra
cal modelling language, the Unified Modelling Languag
(UML). In the following, we attempt to adopt this approac
to specify simulation models. By using the UML, all es
sential features of structure and dynamics of the simulat
model to be built can be described. Thus, before impleme
tation starts, requirements on the simulation model can
easily formulated. In addition, users as well as develop
obtain a specification and a documentation parallel to t
process of building the simulation model.

The remainder of the paper is organized as follow
Section 2 gives a brief overview about object–oriented mo
elling and documentation using UML and its use to spec
394
s

d
-
l

-
l

e

s
-
).
-

i-

-
e
s

-

Planning and
Analysis

Design

ImplementationAssessments

User Developer

Code

Specification

Figure 1: Software Development Process

simulation models. In Section 3, an evolutionary algo
rithm is considered. This example shows how the propos
methodology can be applied to specify all essential featur
of implementing such an algorithm in an object–oriente
simulation system. Finally, in Section 4 conclusions ar
drawn.

2 OBJECT–ORIENTED MODELLING AND
DOCUMENTATION WITH UML

As mentioned above, designing and building a simulatio
model is often associated with software engineering.

Software development proceeds from planning and an
ysis through design, implementation, and assessment. It h
been shown that it is useful to proceed in an iterative an
incremental process as shown in Figure 1 (Gemma et
1995, Royce 1998). Such an approach to software en
neering is particularly supported by the Unified Modeling
Language (UML), (Fowler and Scott, 1998, Booch, Rum
baugh and Jacobson, 1999). Meanwhile, the UML is a
industrial standard for object-oriented analysis and softwa

Richter and März

ct
d
t
e
d

s
s
d
s

bl

-
e
n
n

o
-
in

-
-
n
L
th
e
s
r

e

d

e

d

cs

n

r

n

y
e

nal
e

s

e

-

ts

l,
-
re

c-
a

g
e.
ses
to

he
ss
g.,

ac-
led
er
en
n

on
b.
ir
to
r

-
nd
he
the
e

development. It is a mainly graphical model of the obje
under study for which a software solution is to be develope

Through UML we obtain, for the whole developmen
process, a description of requirements and performance f
tures of the simulation model regarding its structure an
dynamics. To that end, different types of UML diagram
can be employed. Thus, interactions to user (through u
cases), structure (through class diagrams) as well as
namics (through interaction diagrams and state diagram
of a simulation model can be described in a comprehensi
way.

In addition, by UML diagrams we obtain detailed re
quirements on a simulation model. So, the user as w
as the developer have a common language for commu
cation. The UML can serve not only as a bridge betwee
user and developer, but also between specification and c
(see Figure 1). This is particularly helpful in large simula
tion projects, where the success depends highly on find
common grounds for all participants.

Describing simulation models, as with software in gen
eral, requires to allow different views. Crucial for un
derstanding is interaction with users, static structure, a
dynamic behaviour. It has been shown that such an UM
based documentation is more sound than comment on
code alone. By using the modeling language UML, th
documentation is built parallel to the development proces
Moreover, such a documentation of the principles unde
lying the simulation model allows the building of reusabl
components.

It can be seen that the proposed methodology has
number of advantages. These are in particular:

1. Establishing a general standard for modelling an
documentation of simulation models.

2. Independence from the used simulation softwar
i.e., the way the model is encoded.

3. Definition of a methodology for developing sim-
ulation models through the use of object-oriente
modelling and documentation.

4. Visualization of concepts, structures and dynami
of a simulation model through UML.

5. Identification of reusable components in simulatio
models.

6. Building a framework for project management fo
simulation studies.

In the next section, the given approach to building simulatio
models is illustrated by an example.

3 ILLUSTRATVE EXAMPLE:
AN EVOLUTIONARY ALGORITHM

In this section, we illustrate the proposed methodology b
an example: an evolutionary algorithm used to optimiz
39
.

a-

e
y-
)
e

ll
i-

de

g

d
-
e

.
-

a

,

parameters of a production process specified by an exter
simulation model. The algorithm has the following structur
(Goldberg, 1989, Michalewicz, 1999):

Algorithm:

(i) Calculate the objective function using parameter
obtained from the external simulation model.

(ii) Select individuals for which the value of the objectiv
function is above average.

(iii) Create a new individual from individuals chosen
in (ii).

(iv) Perform random alterations in the individuals cre-
ated in (iii).

(v) Loop to (i) unless a maximal value of the objec
tive function or another termination criterion is
reached.

The given algorithmic structure will now be realized in
a simulation system. Thereby, the following requiremen
are to be considered:

– Standard coupling to the external simulation mode
that is, simulation model and optimizer commu
nicate by input and output parameters and a
otherwise completely separated (encapsulated).

– Specific optimizer components, e.g. fitness fun
tion, recombination algorithm are changeable in
simple way.

– General documentation of the model.

Documentation of the algorithm is done in the modelin
language UML using the software package Rational Ros
In general, there are two types of classes: manager clas
and function classes. The job of manager classes is
coordinate and call function classes. They schedule t
steps of the algorithm and determine which function cla
is called. Function classes perform different tasks, e.
calculating the fitness or doing recombination.

In Figure 2, manager classes are depicted in an inter
tion diagram. It shows how the manager classes are cal
in their temporal order. The EA manager calls the manag
responsible for a particular step according to the step giv
in the algorithm above. This manager now calls the functio
classes required to perform the task. The called functi
class informs the manager about having completed its jo

As soon as all function classes have performed the
task, the manager calls back the EA manager in order
give him the information to go on by calling the manage
class for the next step.

This hierarchical structure can be pursued. After do
ing the steps selection, recombination and mutation, a
passing the termination criterion, the EA manager calls t
simulation manager to calculate the parameters used for
fitness function. This simulation manager carries out th
5

Richter and März
 : EAManager : Simulation
Manager

: Selection
Manager

: Recombination
Manager

 : Mutation
Manager

 : Termination
Manager

StartSimulation()

Manager()

StartLoop()

Manager()

StartLoop()

Manager()

StartLoop()

Manager(

Check

Manager()

Figure 2: Interaction Diagram for the Implementation of an Evolutionary Algorithm
e
m
h

e
th
s
le
I

w

a
s
:
c
e
e
s
r
d

e
del

r
h

L

e
c

n

.
d

simulation of the production system under study and th
next iteration starts.

Another way to describe dynamics of a simulation mod
is a state diagram as shown in Figure 3. A state diagra
is used to show dynamics within one class, e.g. in whic
order operations of a class are called.

In contrast to the dynamic behaviour shown in th
interaction and state diagram, a class diagram shows
static structure and the relationships between classes,
Figures 4 and 5. Such a diagram visualizes, for examp
reading and writing access on attribute and operations.
addition, the general structure of the architecture of th
simulation model to be designed is depicted. Figure 4 sho
the coarse structure of the manager classes introduced
the interaction diagram with their operations.

For each manager class we have a more detailed cl
diagram, see Figure 5. Here, the subclasses of the
lection manager are shown. It works the following way
the selection manager selects two individuals from Sele
tionPopulation (using GetPairOfIndividuals), calculates th
fitness for each individual and chooses the one with high
fitness for the whole population. The underlying dynamic
can be assigned by an interaction diagram not shown he
In this way, we obtain a description for static structure an
dynamic behaviour as precise as required. In the course
building a simulation model, basic architecture should b
designed in structure and dynamics at first. Then, the mo
39
e

l

e
ee
,
n
e
s
in

ss
e-

-

r

e.

of

can be built in detail, following an iterative process. Fi-
nally, it should be mentioned that for each class, attribute o
operation, a separate documentation can be inserted whic
can be as detailed as comments on the code.

4 CONCLUSION

In this paper, we have discussed the issue of using the UM
to design and build simulation models. UML diagrams can
be used to assign different aspects of interest, e.g., th
interaction with users, the static structure and the dynami
behaviour. In this way, we obtain a graphical description of
the simulation model which can be used as a specificatio
and a documentation.

REFERENCES

Booch, G., Rumbaugh, J., Jacobson, I. 1999.The uni-
fied modeling language user guide.Addision Wesley,
Reading, MA.

Fowler, M., Scott, K. 1998.UML distilled. AddisionWesley,
Reading, MA.

Gemma, E., Helm, R., Johnson, R., Vlissides, J. 1995
Design patterns: Elements of reuseable object–oriente
software. Addision Wesley, Reading, MA.
6

Richter and März
StartSelection

StartRecombination

StartMutation

Manager

StartSimulation

CheckTermination

Figure 3: State Diagram of the Class EAManager

TerminationManager

CheckTermination()

RecombinationManager

StartLoop()

SimulationManager

StartSimulation()

MutationManager

StartLoop()

SelectionManager

StartLoop()

EAManager

StartSelection()
StartRecombination()
StartMutation()
StartSimulation()
CheckTermination()
Manager()

Figure 4: Class Diagram for the Implementation of an Evolutionary Algorithm
-
-
y.
ule
he
in

ex
is

-
-
y.
ule
e.

la-
s

Goldberg, D.E. 1989.Genetic Algorithms in search, op-
timization, and machine learning. Addision-Wesley,
Reading, MA.

Michalewicz, Z. 1999.Genetic algorithm + data structure
= evolution programs. 3rd ed. Springer-Verlag, Berlin.

Royce, W. 1998.Software project management: A unified
framework. Addision Wesley, Reading, MA.

AUTHOR BIOGRAPHIES

HENDRIK RICHTER is researcher at the Fraunhofer Insti
tut für Produktionstechnik und Automatisierung (Manufac
turing Engineering and Automation) in Stuttgart, German
He holds a masters degree from Technische Hochsch
Leipzig, Germany and a Ph.D. degree from Technisc
Universität Dresden, Germany. He is currently engaged
research in the area control and optimization of compl
system and simulation and its software engineering. H
email address is<hir@ipa.fhg.de> .
39
LOTHAR MÄRZ is project manager at the Fraunhofer Insti
tut für Produktionstechnik und Automatisierung (Manufac
turing Engineering and Automation) in Stuttgart, German
He holds a masters degree from Technische Hochsch
Darmstadt, Germany and Ecole Centrale de Lyon, Franc
His primary research interests are discrete event simu
tion, modelling and optimization. His email address i
<lom@ipa.fhg.de> .
7

Richter and März
P_Start_i

SelectionPopulation

TempIndividual 1

TempIndividual n

EAManager

GetFitnessOfIndividuals GetPairOfIndividuals

DestroyTempIndividuals

P_Selection_i

SelectionManager

SelectionFunction

Figure 5: Class Diagram of the Class SelectionManager
398

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

