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ABSTRACT 
 
Analytical models for the dynamics of some discrete event 
systems are introduced where the system trajectories are 
solutions to linear and mixed-integer programs.  
 
1 BACKGROUND 
 
The dynamics of continuous systems are often modeled by 
a set of differential equations that express the relationships 
between rates of changes in the values of system state 
variables. Given an initial state and boundary conditions, 
these equations completely specify a model of the system�s 
dynamic behavior. When this system of differential 
equations is particularly simple or has some special 
properties, it can be solved analytically to find the system�s 
path of motion (trajectory). However, many interesting 
models are too complex to solve analytically and must be 
simulated by numerically integrating the set of differential 
equations. If the system is modeled using random 
processes, then the simulations can be used to generate 
sample paths for statistical analysis. 

In a somewhat analogous manner, the relationships 
between changes in the values of state variables (events) in 
a discrete event system can be modeled with an event 
graph. The vertices of the graph represent state changes 
and the edges of the graph represent the dynamic and 
logical relationships between these changes. An event 
graph, along with initial conditions, completely specifies 
the discrete event system dynamics. As is the case for 
continuous systems, the dynamics of most discrete event 
system models are complex and must be simulated. In this 
paper, we look at some discrete event models where the 
system of difference equations embedded in their event 
graphs can be solved analytically for the system trajectory. 
 Queueing systems are an important class of discrete 
event dynamic systems. The event graph models for some 
queueing systems have state trajectories that are the 
solutions to mathematical optimization programs. We will 
denote the class of simulation event graph models for 
which these mathematical programs are mixed integer 
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programs as S. The subset, L⊂S, contains those event 
graphs whose state trajectory can be found as the solution 
to a linear program. If is possible to develop different event 
graph models that represent different levels of detail or 
different sets of state variables for a particular discrete 
event system. Some of these have related but distinct 
mathematical programs that specify their trajectories.  
 Beyond a purely academic interest, the are several 
potential reasons why we might want to express the 
dynamics of a discrete event system as a mathematical 
program. The mathematical programming model for the 
system dynamics provides constraints that must be 
enforced in an associated optimization problem for 
resource scheduling. Instead of generating scheduling 
constraints in the usual ad-hoc manner, these constraints 
might be obtained more or less methodically from the 
system�s dynamic model. Another reason why we might be 
interested in an analytical model for a system�s dynamics is 
to allow us to �run� a simulation model in S by solving the 
associated optimization problem. Alternatively, the 
simulation model can be executed in the usual manner to 
provide an optimal solution to the optimization problem. 
This solution might then be useful as the starting place for 
performing a sensitivity analysis of the system�s 
performance to parametric and structural changes. The 
mathematical programs could also be used to model 
subsystems in a hierarchical simulation.  
 After reviewing event graph models, a class of models 
called resource-driven simulations is defined. These 
simulation models are in S and have some other advantages 
and disadvantages over conventional job-driven (process) 
simulation models. Examples obtaining analytical solutions 
for the trajectories of these models are presented. Finally, 
some possible applications are proposed for further 
investigation. 
 
2 EVENT GRAPHS 
 
A common way of modeling many queueing systems is 
with a state transition diagram (Ross, 1993). The vertices 
in this graph represent values of each system state variable. 



Schruben 
 

Even a simple M/M/1 queue requires a state transition 
diagram with an infinite number of vertices.  
 A more compact graph representation for the 
dynamics of a queueing system (or any other discrete event 
system) is to represent only the changes in system state by 
the vertices. Each vertex in this graph represents one or 
more difference equations that specify the state changes 
associated with a system event. Such a graph is called an 
event graph (Schruben and Schruben 2000). The vertices of 
an event graph represent the state changes that result when 
a particular event occurs. These vertices are connected by 
directed edges that represent the relationships between the 
events. Labels on these directed edges specify the 
conditions and time delays between the occurrences of 
events. An edge in an event graph is shown in Figure 1. 
 

tA   ~

(i)
B

 
 

Figure 1: Element of an Event Graph 
 
 The edge in Figure 1 is interpreted as follows: 
whenever event A occurs, if condition (i) is then true, event 
B will be scheduled to occur after a delay of t. 
 The state changes associated with each event appear as 
vertex labels in braces. Parameter values can be passed as 
arguments for event vertices allowing very large systems to 
be modeled with small graphs. Treating these parameters 
as subscripts, the graph then describes an element in an 
array of event graphs working together to model a large 
system.     For example: networks of queues can be 
modeled by specifying an event graph for only a generic 
node in the network; vertex parameter values distinguish 
each node. Any of the objects in an event graph can 
themselves be event graphs. For example: the delay time, t, 
for an edge in a factory-level model can be computed as 
the solution to a more detailed event graph model of the 
particular tool or process involved.  
 In this paper we will use a simple event graph model 
for illustration. Figure 2 is a batch processing system with 
R identical parallel resources. 
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Figure 2: Batch Processing with R Parallel Resources; Q = 
Queue Length, B = Batch Size, S = Idle Resources, ts = 
Service Times, ta= Interarrival Times 
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 Initially, the queue is assumed empty with all the 
resources idle. Thus the initial value of the line length, Q, 
is set to zero and the initial value for the number of idle 
resources, S, is set equal to R. The only event initially 
scheduled is the first Arrive event, at time zero. Of course, 
there are several equivalent event graphs for this system. In 
fact, special cases of this system can be modeled with only 
a single �Finish� event vertex. 
 We will use Figure 2 to illustrate how to �read� an 
event graph. Event graphs are read by substituting for A, B, 
(i), and t in the edge definitions and paraphrasing. An 
accurate and concise description of the system dynamics 
can be given with only one sentence for each edge in the 
graph. The four edges of the event graph in Figure 2 are 
read as the following four sentences. 
 

Jobs arrive every ta time units. Jobs that arrive to 
find an idle resource and who complete a full 
batch will immediately start service. A resource 
will finish processing a batch of jobs ts time units 
after it starts. When a resource finishs a batch, if a 
full batch of jobs is waiting, the resource can 
immediately start on the next batch. 

 
3  ESOURCE-DRIVEN SIMULATIONS 
 
The discrete event system trajectories generated by most 
conventional simulation languages use a numerical 
algorithm and modeling worldview that is sometimes 
referred to as �job-driven� or �process interaction�. The 
jobs are the active system entities that �seize� available 
system resources when they need them. This approach 
typically requires that every step in the processing of every 
job in the system be explicitly represented. Records of all 
jobs in the system are created and maintained. The jobs 
move through their processing steps (often represented by 
a block flow diagram) seizing available system resources 
whenever they are needed. Job-driven models are 
convenient when predicting system performance and fast 
simulation execution speed are not as important as detailed 
system animation - there often is a direct mapping from 
simulation code to animation.  
 An advantage of using a job-driven event graph model 
over a resource-driven model is that the detailed 
experiences of individual jobs can be easily tracked. This is 
important, say, in modeling low-volume, high-mix 
manufacturing systems. A major disadvantage of job-
driven simulations is that whenever the simulation 
becomes highly congested, the simulation�s memory 
footprint becomes larger, and its execution slows or stops 
completely. It is easy to represent job-driven (process 
interaction) simulations with an event graph; however, we 
will look at the system from a resource viewpoint. 
 In the model considered in this paper, the individual 
transient entities (jobs) in the system are passive, they are 
�moved� or �processed� by the system�s resources. We 
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will refer to such simulation models as �resource-driven� 
simulations. Rather than maintaining a record of every job 
in the system, only integers that count the numbers of jobs 
of particular types at different stages of processing or in 
different states are necessary. The system�s state is 
described by the availability of resources (also integers) 
and these job counts. Thus, all the state variables in a 
resource-driven simulation are non-negative integers. The 
state changes for each event are difference equations that 
increase or decrease one or more state variables by integer 
amounts. We will also need a property on the edges of each 
vertex to derive analytical models for an event graph - all 
edge conditions are in the form of linear constraints on the 
state variables. 
 The events in a resource-driven simulation simply 
increment or decrement job counts and numbers of 
available resources. Very large and highly-congested 
queueing networks (with any number of jobs of any 
number of types at any countable discrete stages of 
processing) can be modeled this way with a relatively 
small, finite set of integers. Simulations with only a few 
simple events can model a wide variety of systems with 
different queue disciplines and job priorities, re-entrant 
flow, alternative or multiple resource requirements, batch 
processing, random job loss due to balking or reneging, 
and resource failures and repair. Of course, it is always 
possible to create and maintain records for some individual 
jobs for data collection or during critical stages of 
processing without resorting to tracking all of the jobs.  
 In addition to their simplicity, resource-driven 
simulations have a number of advantages over 
conventional job-driven process flow models that describe 
the paths of individual jobs. Resource-driven simulations 
of highly congested systems have been created that execute 
orders of magnitude faster than corresponding job-driven 
process flow simulations. Furthermore, the memory and 
speed advantages of a resource-driven simulation do not 
significantly degrade as the system becomes more and 
more congested; a situation where job-driven simulations 
often grind to a virtual standstill.  
 Another way of looking at these two classes of models 
is to think of job-driven models as �push� systems that 
seize resources whenever they are available and view 
resource-driven models as �pull� systems where resources 
seize waiting jobs when they become idle. The problem of 
simulation logic deadlock (unrelated to deadlock in a 
physical system) in large job-driven simulations, is 
virtually eliminated in resource-driven models.  
 
4  ANALYTICAL MODELS 
 
For some resource-driven queueing simulations, we can 
develop an analytical model directly from the event graph. 
Networks of such queues can also be modeled. 
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4.1   Analytical Model for a G/G/1 Queue Trajectory 
 
We will start by specifying the trajectory (say, queue sizes 
and in special cases, job delay times) of N jobs processed 
in a G/G/1 queue as the solution to a linear program. The 
event graph for a G/G/1 queue is Figure 2 with a batch size 
of B=1 and the number of idle resources, S, initially equal 
to 1. Possible applications are discussed near the end of the 
paper. For the time being, we will simply view solving the 
linear program as an alternative to �running� a G/G/1 
simulation. 
 For this system, a linear program that specifies the 
dynamic system trajectory is almost obvious. The non-
negative decision variables in our linear program will be 
the event times. Here  
 

Ai = the time of the ith Arrival event,  
Si = the time of the ith Start event, and  
Fi = the time of the ith Finish event. 

 
The objective will be to execute each event as soon as 
possible subject to the constraints imposed by the event 
graph, 
 

Min Z = Σ(Ai+Si+FI). 
 

Other objective functions will work for this model. In fact, 
we do not need to include the job arrival times in our 
objective function since they are not scheduled by 
conditional edges. Also, if we knew that the N jobs 
occurred in the same busy period, then the simple objective 
of minimizing the length of the busy period, FN, might be 
used. Note that we do not specify that the ith job to arrive is 
also the ith job to start service - the queue discipline is, so 
far, implicit. 
 The edges of the event graph provide constraints on 
when events can be executed. For a given input process of 
arrival times and service times (tA(i), tS(i): i = 1,2,�n). 
Simple linear constraints are enforced by each edge in the 
event graph (G/G/1 ∈ L) 
 

    Ai+1 - Ai =  tA(i)   (Arrival-Arrival edge) 
    Fi    -  Si =  ts(i)   (Start-Finish edge) 
    Ai ≤ Si                  (Arrival-Start edge) 
    Fi  ≤ Si+1                (Finish-Start edge) 
                Ai, Si, and Fi≥0 
 

The first two constraints merely state that time is non-
negative. The third constraint states that the server cannot 
start its ith job until at least i jobs have arrived. The final 
constraint states that the single server cannot process more 
than one job at a time. (We have not imposed any con-
dition that jobs must be processed in any particular order.)  
 The analytic solution to this model is the dynamic 
system trajectory. If for example the queue discipline is a 
3
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FIFO queue, The sequence of customer waiting times is, 
Wi=Si- AI; these are surplus variables in our third 
constraint. These waiting times can be computed either 
after the model is solved or by adding it as a constraint.  
 Preliminary experiments using CPLEX  and MINOS 
to solve this linear program indicate that it can take more 
time to generate the input data than it does to solve the 
optimization program for the system trajectory. 
Furthermore, the linear program may �run� this model 
faster than conventional simulation methodology. 
 
4.2  Parallel Resources and Batch Processing 
 
We next will illustrate the approach with the simulation of 
multiple parallel resources and batch processing in Figure 2. 
 To test the truth of edge conditions, an event counting 
point process is used. The number of times that event E has 
occurred by time t is given by the right-continuous event 
counting function.  
 

CE(t) =
0

lim
→ε

max{i; Ei ≤ t+ε}. 

 
We will use the well-known relationship between an event 
and its counting point process, 
 

Ei ≤ t ⇔ CE(t) ≥ i, 
 
This relationship simply enforces the forward progression 
of time: if the ith occurrence of event E is at or before time t 
then it must have occurred at least i times by time t.  
 The number of jobs in line at time t, Q(t),  is equal to 
the number of Arrival events (incrementing Q by 1) that 
have occurred minus B times the number of Start events 
(each decrementing Q by B) that have occurred, or,  
 

Q(t) = CA(t) - B * CS(t). 
 
At any time in the simulation, Q(t) must be greater than 
zero. Constraints on Start event times need to be 
considered since this is the only event scheduled by 
conditional edges in this event graph. Consider the instant, 
Si, at which the ith batch service starts, so that CS(Si) = i. 
 Then, 
 
  0 ≤ Q(Si) = CA(Si) - B * CS(Si)  
 ⇒ CA(Si) ≥ B * CS(Si) 
 ⇒ CA(Si) ≥ B*i 
 ⇒ AB*i ≤ Si  
 
This constraint, AB*i ≤ SI,  simply says that, since jobs are 
processed B at a time, then B times as many jobs must 
have arrived as have started service. 

Consider again the instant, Si, when the ith service 
starts. For service to start, there must be at least one idle 
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resource. The number of idle resources at any time is equal 
to the initial number of idle resources, R, less the number 
of Start events (decrementing resources) plus the number 
of Finish events (incrementing resources). Therefore, at the 
time of the ith Start event, Si, there must be a non-negative 
number of idle resources,  
 

R + CF(Si) - CS(Si) ≥ 0 
 ⇒ CF(Si) ≥ CS(Si) - R 
 ⇒ CF(Si) ≥ i - R 
 ⇒ Fi-R ≤  Si  
 

This constraint, Fi-R ≤ Si simply says that, since there 
are only R resources, the number of Start events cannot 
exceed the number of Finish events by more than R. This 
constraint is enforced in the simulation by the edge from 
the Finish event to the Start event in Figure 2.   

In general, the number of occurrences of events that 
decrement the availability of a limited resource can never 
exceed the number of events that increment that resource 
by more than the number of such resources. Sets of events 
in the resource-driven simulation that relate to limited 
resources will have such constraints even if they do not 
share an edge in the event graph. 

To summarize: The event graph in Figure 2 translates 
into the following linear program 
 
  (Events occur as soon as feasible) 
   Min: Σ (Ai + Si +Fi ) 
 
The two unconditional timed edges provide the constraints 
 
     Ai+1 = Ai + tA(i)  and  

Fk = Sj + tS(j)  (plus assignment constraints)  

  
The assignment constraints referred to here are to insure 
that only one service time is used for each job. 

The two conditional zero-delay edges provide the 
constraints 
 
     Si  ≥  ABi   and  Si ≥ Fi-R . 
 
The subscripts on the last constraints reflect the bounds on 
number of resources, R, in our system and the Batch size. 
The queue length process, Q(t) = CA(t) - BCS(t) can easily 
be computed from the trajectory regardless of the queue 
discipline.  
 
5   POTENTIAL APPLICATIONS 
 
A few applications of this methodology come to mind. 
4
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5.1  Formulating Scheduling Problems 
 
The linear program for the multiple resource simulation 
becomes more interesting when the order in which J jobs 
are to be processed is to be determined. Translating the 
event graph into what now becomes a mixed integer 
scheduling program (IP) gives a formulation of the 
classical parallel server non-preemptive job scheduling 
problem which is in the class of NP hard problems. 
Nevertheless, solving this IP for small numbers of jobs 
gives us insights into possible efficient heuristics. To add 
generality, the order in which jobs arrive can also become a 
policy decision (say, to derive an order- release rule). 
 For the parallel resource event graph , if the objective 
function is changed to Min(FN) added to binary decision 
variables for assigning the ith job processing time to the jth 
Start event then we have a formulation of the parallel 
resource scheduling problem. The solutions to several 
small random instances of the above scheduling problem 
consistently identified the Longest Processing Time Rule, 
known to be efficient for this problem (Pinedo 1995).  
 
5.2   Sensitivity Analysis 
 
The average waiting time for a busy period of N customers 
in our FIFO G/G/1 queue is given by W=Σ(Si-Ai)/N. 
Viewing W as a surplus variable, we might be able to 
smooth its shadow cost and use this along with the shadow 
costs for the timed edge constraints to estimate the 
sensitivity of W to changes in service time or arrival time 
parameters. Analytical values for the derivatives of event 
delay times to their parameters might be used in a chain 
rule gradient estimator as done in Infinite Perturbation 
Analysis. 
 However, It might be more straightforward and 
practical to do the following:  
 

1.   Run the simulation in the usual manner;  
2.   Use the event times from the simulated sample 

path as an initial solution for the optimization 
program; and  

3.   Compute the sensitivity of the system�s 
performance to finite differences in a parameter 
starting from this solution using the well-
developed methods of mathematical 
programming. 

 
6 CONCLUSIONS  
 
In 1999 W. H. Fleming (Fleming 1988) stated in that 
��there are no models of discrete event systems that are 
mathematically as concise or computationally as feasible as 
are differential equations for continuous variable dynamic 
systems.� It is hoped that this paper moves event graphs a 
step closer to putting discrete event dynamic system 
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modeling on the same footing as that of continuous 
systems as first conjectured by Yucesan (1989). 
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