
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

MATHEMATICAL PROGRAMMING MODELS OF DISCRETE EVENT SYSTEM DYNAMICS

Lee W. Schruben

Industrial Engineering and Operations Research
4117 Etcheverry Hall

University of California
Berkeley, CA 94720-1777, U.S.A.

ABSTRACT

Analytical models for the dynamics of some discrete event
systems are introduced where the system trajectories are
solutions to linear and mixed-integer programs.

1 BACKGROUND

The dynamics of continuous systems are often modeled by
a set of differential equations that express the relationships
between rates of changes in the values of system state
variables. Given an initial state and boundary conditions,
these equations completely specify a model of the system�s
dynamic behavior. When this system of differential
equations is particularly simple or has some special
properties, it can be solved analytically to find the system�s
path of motion (trajectory). However, many interesting
models are too complex to solve analytically and must be
simulated by numerically integrating the set of differential
equations. If the system is modeled using random
processes, then the simulations can be used to generate
sample paths for statistical analysis.

In a somewhat analogous manner, the relationships
between changes in the values of state variables (events) in
a discrete event system can be modeled with an event
graph. The vertices of the graph represent state changes
and the edges of the graph represent the dynamic and
logical relationships between these changes. An event
graph, along with initial conditions, completely specifies
the discrete event system dynamics. As is the case for
continuous systems, the dynamics of most discrete event
system models are complex and must be simulated. In this
paper, we look at some discrete event models where the
system of difference equations embedded in their event
graphs can be solved analytically for the system trajectory.
 Queueing systems are an important class of discrete
event dynamic systems. The event graph models for some
queueing systems have state trajectories that are the
solutions to mathematical optimization programs. We will
denote the class of simulation event graph models for
which these mathematical programs are mixed integer
381
programs as S. The subset, L⊂S, contains those event
graphs whose state trajectory can be found as the solution
to a linear program. If is possible to develop different event
graph models that represent different levels of detail or
different sets of state variables for a particular discrete
event system. Some of these have related but distinct
mathematical programs that specify their trajectories.
 Beyond a purely academic interest, the are several
potential reasons why we might want to express the
dynamics of a discrete event system as a mathematical
program. The mathematical programming model for the
system dynamics provides constraints that must be
enforced in an associated optimization problem for
resource scheduling. Instead of generating scheduling
constraints in the usual ad-hoc manner, these constraints
might be obtained more or less methodically from the
system�s dynamic model. Another reason why we might be
interested in an analytical model for a system�s dynamics is
to allow us to �run� a simulation model in S by solving the
associated optimization problem. Alternatively, the
simulation model can be executed in the usual manner to
provide an optimal solution to the optimization problem.
This solution might then be useful as the starting place for
performing a sensitivity analysis of the system�s
performance to parametric and structural changes. The
mathematical programs could also be used to model
subsystems in a hierarchical simulation.
 After reviewing event graph models, a class of models
called resource-driven simulations is defined. These
simulation models are in S and have some other advantages
and disadvantages over conventional job-driven (process)
simulation models. Examples obtaining analytical solutions
for the trajectories of these models are presented. Finally,
some possible applications are proposed for further
investigation.

2 EVENT GRAPHS

A common way of modeling many queueing systems is
with a state transition diagram (Ross, 1993). The vertices
in this graph represent values of each system state variable.

Schruben

Even a simple M/M/1 queue requires a state transition
diagram with an infinite number of vertices.
 A more compact graph representation for the
dynamics of a queueing system (or any other discrete event
system) is to represent only the changes in system state by
the vertices. Each vertex in this graph represents one or
more difference equations that specify the state changes
associated with a system event. Such a graph is called an
event graph (Schruben and Schruben 2000). The vertices of
an event graph represent the state changes that result when
a particular event occurs. These vertices are connected by
directed edges that represent the relationships between the
events. Labels on these directed edges specify the
conditions and time delays between the occurrences of
events. An edge in an event graph is shown in Figure 1.

tA ~

(i)
B

Figure 1: Element of an Event Graph

 The edge in Figure 1 is interpreted as follows:
whenever event A occurs, if condition (i) is then true, event
B will be scheduled to occur after a delay of t.
 The state changes associated with each event appear as
vertex labels in braces. Parameter values can be passed as
arguments for event vertices allowing very large systems to
be modeled with small graphs. Treating these parameters
as subscripts, the graph then describes an element in an
array of event graphs working together to model a large
system. For example: networks of queues can be
modeled by specifying an event graph for only a generic
node in the network; vertex parameter values distinguish
each node. Any of the objects in an event graph can
themselves be event graphs. For example: the delay time, t,
for an edge in a factory-level model can be computed as
the solution to a more detailed event graph model of the
particular tool or process involved.
 In this paper we will use a simple event graph model
for illustration. Figure 2 is a batch processing system with
R identical parallel resources.

ta
ts

 ~

 ~

{Q=Q+1} {Q=Q-B),
 S=S-1}

{S=S+1}

Arrive Start Finish

(S>0)and(Q≥B)

(Q≥B)

Figure 2: Batch Processing with R Parallel Resources; Q =
Queue Length, B = Batch Size, S = Idle Resources, ts =
Service Times, ta= Interarrival Times
382
 Initially, the queue is assumed empty with all the
resources idle. Thus the initial value of the line length, Q,
is set to zero and the initial value for the number of idle
resources, S, is set equal to R. The only event initially
scheduled is the first Arrive event, at time zero. Of course,
there are several equivalent event graphs for this system. In
fact, special cases of this system can be modeled with only
a single �Finish� event vertex.
 We will use Figure 2 to illustrate how to �read� an
event graph. Event graphs are read by substituting for A, B,
(i), and t in the edge definitions and paraphrasing. An
accurate and concise description of the system dynamics
can be given with only one sentence for each edge in the
graph. The four edges of the event graph in Figure 2 are
read as the following four sentences.

Jobs arrive every ta time units. Jobs that arrive to
find an idle resource and who complete a full
batch will immediately start service. A resource
will finish processing a batch of jobs ts time units
after it starts. When a resource finishs a batch, if a
full batch of jobs is waiting, the resource can
immediately start on the next batch.

3 ESOURCE-DRIVEN SIMULATIONS

The discrete event system trajectories generated by most
conventional simulation languages use a numerical
algorithm and modeling worldview that is sometimes
referred to as �job-driven� or �process interaction�. The
jobs are the active system entities that �seize� available
system resources when they need them. This approach
typically requires that every step in the processing of every
job in the system be explicitly represented. Records of all
jobs in the system are created and maintained. The jobs
move through their processing steps (often represented by
a block flow diagram) seizing available system resources
whenever they are needed. Job-driven models are
convenient when predicting system performance and fast
simulation execution speed are not as important as detailed
system animation - there often is a direct mapping from
simulation code to animation.
 An advantage of using a job-driven event graph model
over a resource-driven model is that the detailed
experiences of individual jobs can be easily tracked. This is
important, say, in modeling low-volume, high-mix
manufacturing systems. A major disadvantage of job-
driven simulations is that whenever the simulation
becomes highly congested, the simulation�s memory
footprint becomes larger, and its execution slows or stops
completely. It is easy to represent job-driven (process
interaction) simulations with an event graph; however, we
will look at the system from a resource viewpoint.
 In the model considered in this paper, the individual
transient entities (jobs) in the system are passive, they are
�moved� or �processed� by the system�s resources. We

Schruben

will refer to such simulation models as �resource-driven�
simulations. Rather than maintaining a record of every job
in the system, only integers that count the numbers of jobs
of particular types at different stages of processing or in
different states are necessary. The system�s state is
described by the availability of resources (also integers)
and these job counts. Thus, all the state variables in a
resource-driven simulation are non-negative integers. The
state changes for each event are difference equations that
increase or decrease one or more state variables by integer
amounts. We will also need a property on the edges of each
vertex to derive analytical models for an event graph - all
edge conditions are in the form of linear constraints on the
state variables.
 The events in a resource-driven simulation simply
increment or decrement job counts and numbers of
available resources. Very large and highly-congested
queueing networks (with any number of jobs of any
number of types at any countable discrete stages of
processing) can be modeled this way with a relatively
small, finite set of integers. Simulations with only a few
simple events can model a wide variety of systems with
different queue disciplines and job priorities, re-entrant
flow, alternative or multiple resource requirements, batch
processing, random job loss due to balking or reneging,
and resource failures and repair. Of course, it is always
possible to create and maintain records for some individual
jobs for data collection or during critical stages of
processing without resorting to tracking all of the jobs.
 In addition to their simplicity, resource-driven
simulations have a number of advantages over
conventional job-driven process flow models that describe
the paths of individual jobs. Resource-driven simulations
of highly congested systems have been created that execute
orders of magnitude faster than corresponding job-driven
process flow simulations. Furthermore, the memory and
speed advantages of a resource-driven simulation do not
significantly degrade as the system becomes more and
more congested; a situation where job-driven simulations
often grind to a virtual standstill.
 Another way of looking at these two classes of models
is to think of job-driven models as �push� systems that
seize resources whenever they are available and view
resource-driven models as �pull� systems where resources
seize waiting jobs when they become idle. The problem of
simulation logic deadlock (unrelated to deadlock in a
physical system) in large job-driven simulations, is
virtually eliminated in resource-driven models.

4 ANALYTICAL MODELS

For some resource-driven queueing simulations, we can
develop an analytical model directly from the event graph.
Networks of such queues can also be modeled.

38
4.1 Analytical Model for a G/G/1 Queue Trajectory

We will start by specifying the trajectory (say, queue sizes
and in special cases, job delay times) of N jobs processed
in a G/G/1 queue as the solution to a linear program. The
event graph for a G/G/1 queue is Figure 2 with a batch size
of B=1 and the number of idle resources, S, initially equal
to 1. Possible applications are discussed near the end of the
paper. For the time being, we will simply view solving the
linear program as an alternative to �running� a G/G/1
simulation.
 For this system, a linear program that specifies the
dynamic system trajectory is almost obvious. The non-
negative decision variables in our linear program will be
the event times. Here

Ai = the time of the ith Arrival event,
Si = the time of the ith Start event, and
Fi = the time of the ith Finish event.

The objective will be to execute each event as soon as
possible subject to the constraints imposed by the event
graph,

Min Z = Σ(Ai+Si+FI).

Other objective functions will work for this model. In fact,
we do not need to include the job arrival times in our
objective function since they are not scheduled by
conditional edges. Also, if we knew that the N jobs
occurred in the same busy period, then the simple objective
of minimizing the length of the busy period, FN, might be
used. Note that we do not specify that the ith job to arrive is
also the ith job to start service - the queue discipline is, so
far, implicit.
 The edges of the event graph provide constraints on
when events can be executed. For a given input process of
arrival times and service times (tA(i), tS(i): i = 1,2,�n).
Simple linear constraints are enforced by each edge in the
event graph (G/G/1 ∈ L)

 Ai+1 - Ai = tA(i) (Arrival-Arrival edge)
 Fi - Si = ts(i) (Start-Finish edge)
 Ai ≤ Si (Arrival-Start edge)
 Fi ≤ Si+1 (Finish-Start edge)
 Ai, Si, and Fi≥0

The first two constraints merely state that time is non-
negative. The third constraint states that the server cannot
start its ith job until at least i jobs have arrived. The final
constraint states that the single server cannot process more
than one job at a time. (We have not imposed any con-
dition that jobs must be processed in any particular order.)
 The analytic solution to this model is the dynamic
system trajectory. If for example the queue discipline is a
3

Schruben

FIFO queue, The sequence of customer waiting times is,
Wi=Si- AI; these are surplus variables in our third
constraint. These waiting times can be computed either
after the model is solved or by adding it as a constraint.
 Preliminary experiments using CPLEX and MINOS
to solve this linear program indicate that it can take more
time to generate the input data than it does to solve the
optimization program for the system trajectory.
Furthermore, the linear program may �run� this model
faster than conventional simulation methodology.

4.2 Parallel Resources and Batch Processing

We next will illustrate the approach with the simulation of
multiple parallel resources and batch processing in Figure 2.
 To test the truth of edge conditions, an event counting
point process is used. The number of times that event E has
occurred by time t is given by the right-continuous event
counting function.

CE(t) =
0

lim
→ε

max{i; Ei ≤ t+ε}.

We will use the well-known relationship between an event
and its counting point process,

Ei ≤ t ⇔ CE(t) ≥ i,

This relationship simply enforces the forward progression
of time: if the ith occurrence of event E is at or before time t
then it must have occurred at least i times by time t.
 The number of jobs in line at time t, Q(t), is equal to
the number of Arrival events (incrementing Q by 1) that
have occurred minus B times the number of Start events
(each decrementing Q by B) that have occurred, or,

Q(t) = CA(t) - B * CS(t).

At any time in the simulation, Q(t) must be greater than
zero. Constraints on Start event times need to be
considered since this is the only event scheduled by
conditional edges in this event graph. Consider the instant,
Si, at which the ith batch service starts, so that CS(Si) = i.
 Then,

 0 ≤ Q(Si) = CA(Si) - B * CS(Si)
 ⇒ CA(Si) ≥ B * CS(Si)
 ⇒ CA(Si) ≥ B*i
 ⇒ AB*i ≤ Si

This constraint, AB*i ≤ SI, simply says that, since jobs are
processed B at a time, then B times as many jobs must
have arrived as have started service.

Consider again the instant, Si, when the ith service
starts. For service to start, there must be at least one idle
38
resource. The number of idle resources at any time is equal
to the initial number of idle resources, R, less the number
of Start events (decrementing resources) plus the number
of Finish events (incrementing resources). Therefore, at the
time of the ith Start event, Si, there must be a non-negative
number of idle resources,

R + CF(Si) - CS(Si) ≥ 0
 ⇒ CF(Si) ≥ CS(Si) - R
 ⇒ CF(Si) ≥ i - R
 ⇒ Fi-R ≤ Si

This constraint, Fi-R ≤ Si simply says that, since there
are only R resources, the number of Start events cannot
exceed the number of Finish events by more than R. This
constraint is enforced in the simulation by the edge from
the Finish event to the Start event in Figure 2.

In general, the number of occurrences of events that
decrement the availability of a limited resource can never
exceed the number of events that increment that resource
by more than the number of such resources. Sets of events
in the resource-driven simulation that relate to limited
resources will have such constraints even if they do not
share an edge in the event graph.

To summarize: The event graph in Figure 2 translates
into the following linear program

 (Events occur as soon as feasible)
 Min: Σ (Ai + Si +Fi)

The two unconditional timed edges provide the constraints

 Ai+1 = Ai + tA(i) and

Fk = Sj + tS(j) (plus assignment constraints)

The assignment constraints referred to here are to insure
that only one service time is used for each job.

The two conditional zero-delay edges provide the
constraints

 Si ≥ ABi and Si ≥ Fi-R .

The subscripts on the last constraints reflect the bounds on
number of resources, R, in our system and the Batch size.
The queue length process, Q(t) = CA(t) - BCS(t) can easily
be computed from the trajectory regardless of the queue
discipline.

5 POTENTIAL APPLICATIONS

A few applications of this methodology come to mind.
4

Schruben

5.1 Formulating Scheduling Problems

The linear program for the multiple resource simulation
becomes more interesting when the order in which J jobs
are to be processed is to be determined. Translating the
event graph into what now becomes a mixed integer
scheduling program (IP) gives a formulation of the
classical parallel server non-preemptive job scheduling
problem which is in the class of NP hard problems.
Nevertheless, solving this IP for small numbers of jobs
gives us insights into possible efficient heuristics. To add
generality, the order in which jobs arrive can also become a
policy decision (say, to derive an order- release rule).
 For the parallel resource event graph , if the objective
function is changed to Min(FN) added to binary decision
variables for assigning the ith job processing time to the jth
Start event then we have a formulation of the parallel
resource scheduling problem. The solutions to several
small random instances of the above scheduling problem
consistently identified the Longest Processing Time Rule,
known to be efficient for this problem (Pinedo 1995).

5.2 Sensitivity Analysis

The average waiting time for a busy period of N customers
in our FIFO G/G/1 queue is given by W=Σ(Si-Ai)/N.
Viewing W as a surplus variable, we might be able to
smooth its shadow cost and use this along with the shadow
costs for the timed edge constraints to estimate the
sensitivity of W to changes in service time or arrival time
parameters. Analytical values for the derivatives of event
delay times to their parameters might be used in a chain
rule gradient estimator as done in Infinite Perturbation
Analysis.
 However, It might be more straightforward and
practical to do the following:

1. Run the simulation in the usual manner;
2. Use the event times from the simulated sample

path as an initial solution for the optimization
program; and

3. Compute the sensitivity of the system�s
performance to finite differences in a parameter
starting from this solution using the well-
developed methods of mathematical
programming.

6 CONCLUSIONS

In 1999 W. H. Fleming (Fleming 1988) stated in that
��there are no models of discrete event systems that are
mathematically as concise or computationally as feasible as
are differential equations for continuous variable dynamic
systems.� It is hoped that this paper moves event graphs a
step closer to putting discrete event dynamic system
385
modeling on the same footing as that of continuous
systems as first conjectured by Yucesan (1989).

ACKNOWLEDGMENTS

The National Science Foundation under grant DMI-
9713549 and the Semiconductor Research Corporation
under contract 97-FJ-490 supported some of the work
reported in this article. Discussions with Ilan Adler, Paul
Hyden, and Philip Kaminsky were also helpful.

REFERENCES

Fleming, W. H., Report on the panel of future directions in

control theory mathematical perspective, Society for
Industrial and Applied Mathematics, Philadelphia, PA,
1988.

Pinedo, M., Scheduling theory, algorithms, and systems,
Prentice Hall, New Jersey, 1995

Ross, S. M. Introduction to probability models, Academic
Press, 1993.

Schruben, D and L. Schruben, Graphical simulation
modeling using SIGMA, Custom Simulations, 2000.

Yucesan, E. Simulation graphs for design and analysis of
discrete event simulation models, PhD thesis, School
of Operations Research and Industrial Engineering,
Cornell University, 1989.

AUTHOR BIOGRAPHY

LEE SCHRUBEN is a Professor in the Department of
Industrial Engineering and Operations Research at the
University of California, Berkeley. His research is on
discrete event simulation modeling and analysis
methodologies in a variety of applications including
manufacturing, agriculture, health care, banking, and
broadcasting. He holds a BS degree from Cornell, a MS
degree from the University of North Carolina, and a Ph.D.
from Yale University. Prior to joining the Berkeley faculty
in 1999, Professor Schruben was in the School of
Operations Research and Industrial Engineering at Cornell
University where he was the Andrew S. Schultz Jr.
Professor of Industrial Engineering. He has been the
Distinguished Visiting Professor at SEMATCH and the
Principal Investigator for Cornell�s Center for
Semiconductor Manufacturing Research. His current e-
mail address is <schruben@ieor.berkeley.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

