
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

DISTRIBUTED SUPPLY CHAIN SIMULATION IN GRIDS

Rajeev Sudra
Simon J.E. Taylor

Tharumasegaram Janahan

Centre for Applied Simulation Modelling
Department of Information System and Computing

Brunel University, Uxbridge
UB8 3PH, UK

ABSTRACT

Amongst the majority of work done in Supply Chain
Simulation, papers have emerged that examine the area of
model distribution. The executions of simulations on
distributed hosts as a coupled model require both
coordination and facilitating infrastructure. A distributed
environment, the Generic Runtime Infrastructure for
Distributed Simulation (GRIDS) is suggested to provide
the bonding requirements for such a model. The
advantages of transparently connecting the distributed
components of a supply chain simulation allow the
construction of a conceptual simulation while releasing the
modeler from the complexities of the underlying network.
The infrastructure presented demonstrates scalability
without loosing flexibility for future extensions based on
open industry standards.

1 INTRODUCTION

Distributed simulations most frequent area of application is
currently in military simulation. Realization of these
techniques into the commercial sector are slowly
forthcoming. Simulationists can benefit from using this
type of technology by connecting existing models together,
reducing efforts of re-coding and pushing for model reuse.
Internal details of models can also be protected by
providing proprietary interfaces during collaborative
projects. However, investigation into the types of
infrastructures that can support disparate model types and
allow transparency for the entities of a typical coupled
model are forthcoming.

Zeigler et al. (1999) discusses the use of
DEVS/CORBA as a distributed execution environment for
supply chain simulation. The use of CORBA acts as the
linking infrastructure between the distributed components of
the simulation. CORBA, a middleware standard promoted
by the Object Management Group (OMG) for connecting
35
distributed components of software, actually performs a very
similar role to our own extensible infrastructure, GRIDS
(Saville and Taylor 1998, Taylor et al. 1999).

This paper is structured as follows. In section 2 we
review the techniques and reasons for simulating supply
chains. In section 3 we present the Generic Runtime
Infrastructure for Distributed Simulation (GRIDS), our
contribution to the field of distributed simulation, and
discuss the extensible features of the infrastructure as well as
a description of the package interfaces. Section 4 gives a
case study illustrating how the distributed service
mechanism can be applied in supporting a coupled simu-
lation. The paper ends with some conclusions in section 5.

2 SUPPLY CHAIN MANAGEMENT

Supply Chain Management (SCM) is the series of activities
that an organization uses to deliver products, services or a
combination of both to its customers. Recent opinions
coupled with a shift in modern economics have shown a
de-emphasis in the benefits of vertical integration such as
economies of scale towards a focus on the benefits reaped
from being specialized.

Supply Chain Simulations (referred to as SCS in this
paper) are implemented in order to observe how the supply
chains perform. Observations are made on processes such
as customer demand planning and production logistics.
Archibald et al. (1999) present�s a more comprehensive list
of the processes that, when optimized, are suggested to
yield a successful supply chain configuration. Simulation
provides one mechanism for finding these optimizations.

A supply chain of a given organization initially
describes the processes that occur internally but must also
consider the activities of both the suppliers (inputs) and the
customers (outputs) as part of the total supply function.
Actual supply chains usually involve multiple sites and
often different partners are located at disparate positions
geographically resulting in a distribution of models that
6

Sudra, Taylor, and Janahan

require aggregation. These distributed supply chain models
can be linked together and organized into complete chains
covering source materials through to end customers as has
been demonstrated by Zeigler et al. (1999). The paper goes
on to suggests that the distribution of a supply chain
simulation can sometimes benefit from parallel execution
as well basing their foundation on DEVS, a discrete event
formalism. However, for any performance improvement
and also for coordination, parallel and distributed
execution is partially dependent on some type of time
synchronization mechanism (Fujimoto 1999a), which we
address in a later section as a feature of our execution
environment.

3 REVIEW OF GRIDS

GRIDS has already been seen to support Distributed
Interactive Simulation (Taylor et al. 1999). It is an
execution environment capable of supporting a broad range
of simulation types. The infrastructure�s primary function
is to coordinate the activities of distributed components
with additional functionality via the use of a novel service
distribution model known as Thin Agents.

GRIDS is built using the Java language (Arnold and
Gosling 1996). Java was chosen since it offers a large set
of features appropriate to distributed systems construction,
figure 1 describes the protocol layers present in a typical
GRIDS implementation. In particular, Java provides the
facility to load objects from across the network using the
dynamic class loader. Java also allows deployment of its
code across most of the popular operating systems ensuring
an increased potential user base and allows connectivity of
simulations running on several platforms.

Figure 1: Protocol Layers

(simulation application)

Network Transport

TCP/IP

GRIDS Services

Name
Services

State
Services

Simulation
Services

ThinAgent
Services

Distributed Simulation

Java Virtual
Machine

Operating
System

Presentation Services

357
Simulations require services to both supplement and
enhance execution. The GRIDS extensible service
architecture is realized by thin agents. These agents may be
used to support the simulation by providing tasks such as
optimizations and assistance. Figure 2 provides an
illustration of a typical GRIDS coupled model. Simulation
objects/federates are connected to a GRIDS client via the
published interface. Thin agents that are distributed to
participating clients are instantiated to provide the required
services. A description of the execution model and the
client and thin agent interface is now examined.

GRIDS Server

Special
Service

Special
Service

Meta
Database

Information
Agent

Special
Service

Simulation Object

GRIDS Client

Special
Service

Special
Service

Meta
Database

Information
Agent

Special
Service

Simulation Object

GRIDS Client

Special
Service

Special
Service

Meta
Database

Information
Agent

Special
Service

Simulation Object

GRIDS Client

Special
Service

Special
Service

Meta
Database

Information
Agent

Special
Service

Simulation Object

GRIDS Client

Special
Service

Special
Service

Meta
Database

Information
Agent

Special
Service

Figure 2: GRIDS Coupled Model

3.1 GRIDS Execution Model

A GRIDS session has three distinct stages of execution:
Register, Broadcast, and Run.

3.1.1 Stage 1: Register

Registering involves individual simulation nodes making
their presence known to the GRIDS �Boot Server� and
publishing the initial state variables of that node.
Additionally, the Boot Server builds the namespace of all
the clients registering, and constructs a central entity list of
all entities in the simulation. Once all clients are registered
the server closes all incoming connections for registration.

3.1.2 Stage 2: Broadcast

Upon a simulation �Start� event, the boot server broadcasts
to all registered clients the entire entity list built up during
registration. The entity list is stored in the internal database
on each GRIDS client. In addition to broadcasting the

Sudra, Taylor, and Janahan

entity list, the server broadcasts the namespace for all
participating clients to be stored internally within each
GRIDS client.

3.1.3 Stage 3: Run

Once all entity lists and namespaces are broadcast to the
individual clients, the server issues a �go� command to all
the clients, signaling the start of the simulation. At this
point, the server will terminate and cease to be a part of the
simulation. The clients communicate directly as necessary
in a peer to peer fashion. The GRIDS client is responsible
for �ticking� the host application to perform a simulation
cycle, and for synchronizing entity attributes between the
local and remote nodes.

3.2 GRIDS Client Interface

In this section, we describe how a federate within the
coupled simulation model would connect to the GRIDS
client infrastructure. The node would need to implement
the GridsRunnable interface in order to allow GRIDS to
call appropriate methods within the execution loop and
process incoming messages.

GridsClient {
 void setValue (string name, object Value)

throws GridsException;
 object getValue (string name) throws

GridsException;
 void registerServer (GridsServer Server,

string EntityName, gridsRunnable
callback) throws GridsException;

 void registerAgent (string TAClassname)
throws GridsException;

 void sendMessage (string Entity, GridsMessage
message) throws GridsException;

 void timeAdvance (double Time) throws
GridsException;

 double timeElapsed ()throws GridsException;
}

interface GridsRunnable {
 void processIncomingMessage (GridsMessage

message) throws GridsException;
 void processExecutionLoop () throws

GridsException;
}

The published methods getValue and setValue provide
the API calls to modify and retrieve published entity state
properties visible across the coupled model. Where a value
exists on a different node, the GRIDS infrastructure will
transparently either retrieve the value from the relevant
node, or via a supplied thin agent. The registerServer
method registers the node onto the supplied �Boot Server�
and also registers within the GRIDS client infrastructure,
the object class responsible for processing incoming
messages and implementing the execution loop. Thin
agents are registered by the node using the registerAgent
35
method. The thin agents will be transparently sent to the
Boot Server during the Registration Phase. Sending of
messages is provided by the sendMessage method.
Messages are posted direct to the receiving client where it
will be placed within an internal mailbox for processing by
the GRIDS client. Time synchronization control of the
nodes is provided by the timeAdvance and timeElapsed
methods.

The interface GridsRunnable is implemented by the
application to provide GRIDS with two handlers for
processing the application loop, and processing incoming
messages. The processExecutionLoop is called by GRIDS
on a set interval to process a single simulation loop. The
processIncomingMessage method would be called by
GRIDS whenever a message is received by a node.

3.3 Thin Agent Interface Model

This section describes the interface that needs to be
adopted by designers of thin agents for use within a
GRIDS session.

abstract ThinAgent {
 void initialise (GridsClient) throws

GridsException;
 object getAttributeValue (string Name) throws

GridsException;
 void setAttributeValue (string Name, object

value) throws GridsException;
 void startLoop () throws GridsException;
 void endLoop () throws GridsException;
 void sendMessage (GRIDSMessage m);
 void receiveMessage (GRIDSMessage m)
}

A thin agent service needs to implement the above-
published interface in order to be used by the GRIDS
client. Providers of thin agent services need not implement
all the above methods, but rather only implement a
subclass of the generic thin agent class, and override the
relevant methods allowing development of a taxonomy of
thin agent types. Figure 3 describes the process taken to
deploy a thin agent service from sub-classing through to
instantiation on to the target client.

The initialize method is called by GRIDS when
instantiating a thin agent for use by a client. Thin agents
can register themselves within the MetaDatabase to handle
specific simulation attributes. The GRIDS client calls the
getAttributeValue and setAttributeValue methods
whenever the registered data value owned by the thin agent
is accessed by the simulation application. The startLoop
and endLoop methods are called at the start and end of
every execution loop to allow designers of thin agents to be
able to perform any processing required at these stages.
sendMessage is provided to allow the agent to
communicate with a remote node.
8

Sudra, Taylor, and Janahan
GRIDS Client

Service
Bytecode

Service Program

Abstract Service

Service
Bytecode

Subclass

Compile Live
Service

Instantiate

1 Java abstract
 service is
 subclassed

2 Service is
 compiled to
 produce Java
 bytecode

3 Service is
 distributed
 to all GRIDS
 clients

4 Service is
 instantiated on
 demand, to
 produce live
 object

5 Service can
 now be
 queried or
 addressed

Figure 3: Thin Agent Mechanism

4 CASE STUDY

The case study discussed here focuses on the ability of thin
agents to assist the coupling of a distributed model.
Specifically, thin agents are used to coordinate the time
synchronization of the coupled model.

Our scenario is loosely based on the Global Food
Manufacturing case study described by Archibald et al.
(1999). The model is composed of supply chain
simulations that require to be connected into a linked
model. GRIDS is employed as the middleware
infrastructure. The infrastructure�s primary function is to
provide execution context and simulation data services.

An infrastructure to support a supply chain simulation
would need to support the following requirements:

• An event list.
• A simulation clock that is advanced to the time of

the next scheduled event on each iteration of the
simulation.

• State variables containing the state of the simulation.

In order to implement simulation support of the supply
chain simulations within the GRIDS infrastructure, we
extended the interface to the GRIDS client to provide
methods for supporting Discrete Event Simulation. This
resulted in a specific client interface designed for DES in a
similar fashion to proprietary client development. This
section describes the synchronization role of the thin agent
and extending the client interface to work with a SCS
coupled model.

4.1 Synchronization Thin Agent

One of the main tasks of the thin agent is in the
synchronization of events across the coupled model. To
exemplify this approach we use conservative parallel
35

simulation. Fujimoto (1999a, 1999b) provides a detailed
discussion of this field.

Synchronization thin agents that are distributed to all
participating simulations coordinate consistent time
advancement of the coupled model. The thin agents control
access to the two types of event queues, incoming and
outgoing. Events are always sent with non-decreasing time
stamps ensuring arrivals are queued in the order that they
are sent. The thin agent is able to send event messages both
locally as well as remotely. This process ensures that
locally generated events are also processed in the correct
order avoiding local causality errors.

Figure 4 illustrates how the model is arranged. The
thin agents control the passing of events to the simulation
by taking the next event with the lowest timestamp from its
connected incoming queues and internal queue in line with
the conservative approach. The local clock is advanced to
the timestamp of that event and the simulation processes it.
This processing may generate an additional event (either
local or remote) which is handed back to the thin agent to
be scheduled. If the generated event is local, it is redirected
back into its own event link queue, otherwise it is sent to
the remote client�s thin agent link queue. Outgoing events
are scheduled with time stamps avoiding the generation of
causality errors for the target simulation.

GRIDS Client

Warehouse
Simulation

GRIDS Client

Thin
Agent

Factory
Simulation

Thin
Agent

GRIDS Client

Thin
Agent

Retailer
Simulation

Figure 4: Event Queues

Figure 5 shows a more detailed view of the thin agent.

Although only one incoming queue is shown here, there
can actually be more with each one holding time ordered
events from the same or different source simulation.
Fujimoto�s description of null messages is used to avoid
deadlock. This algorithm is implemented in the thin agent.
Time stamps in the null messages are used to advance the
simulations. The null message algorithm introduces a
property known as lookahead that is utilized by virtually all
conservative synchronization algorithms. Lookahead is
used to generate the time stamps of null messages
scheduled in the future and is further discussed by
Fujimoto (1999b).
9

Sudra, Taylor, and Janahan

SYNCHRONIZATION
THIN AGENT

Incoming
Events Queue

Outgoing
Events Queue

Events

Internal
Events Queue

Thin Agent - Simulation Interface

Simulation

Figure 5: Synchronization Thin Agent

4.2 GRIDS Proprietary Interface to support SCS

To implement the synchronization thin agent, we needed to
extend the GRIDS client interface to add support for
requirements of SCS. A description of the additional
methods is presented.

gridsSCSClient extends gridsClient{
 void registerServer
 (gridsServer Server,
 string EntityName, gridsSCSRunnable

callback) throws GridsException;
 void scheduleEvent
 (string Entity, SCSEvent event, double

scheduleTime) throws GridsException;
}

interface gridsSCSRunnable {
 void processEvent (SCSEvent event) throws

GridsException;
}

class SCSEvent {
 Long EventUID; //unique number for the event
 String targetName;
 double scheduleTime
 String Value;
}

SCSAgent extends ThinAgent{
 void scheduleEvent
 (string Entity, SCSEvent event, double

scheduleTime) throws GridsException;
}

The registerServer() method is modified to only allow
a callback class that implements the gridsSCSRunnable
Java interface. The method scheduleEvent() within the
GRIDS interface is a proxy method used to invoke the
SCSAgent, a specialized version of our ThinAgent class.
360
Events dispatched by this thin agent increment a local
counter. These counters can be matched globally to check
if there are any events that have not arrived into event
queues, these are known as transient messages (Fujimoto
1999a). When an event needs to be processed the
infrastructure calls the processEvent() method in the
application with the event as the parameter.

This description of the extended interface is actually a
move towards a proprietary supply chain simulation client.
This involves taking the generic GRIDS client and adding
the required behaviors for the given simulation type. It can
be seen that several different types of interface can be
generated and specifically applied to a range of simulation
types. This feature allows connectivity of simulations
without compromising internal structure and allows for
additional services not directly catered for in the core
GRIDS distribution. A major goal of GRIDS is
extensibility and this is provided in part by using thin
agents and also by subclassing the GRIDS client.

5 CONCLUSIONS

This paper has reviewed the need for supply chain
simulations to aid the decision processes involved in its
management. The distribution of simulations as a result of
mutually exclusive development has created a demand for
building connecting infrastructure. This replaces the need
to rebuild simulations and rather relies on the use of
existing models. Additionally, model reuse is promoted
reducing the effort of redevelopment. We have introduced
a novel paradigm for implementing the middleware
technology in GRIDS and provided another example of its
extensible services architecture using mobile objects. The
potential exists for organizations to publish proprietary
interfaces, partly to protect models and also to allow easier
integration of stakeholder�s simulations with other models.

This contribution primarily demonstrates an
alternative approach to distributed simulation. It serves as
an exemplar of GRIDS support for a range of simulation
types. The works continued use of Java as the
implementation vehicle serves to further evaluate its
capabilities in the distributed simulation area. Issues
surrounding speed, usability and reliability are the focus
here and feedback from our research group is available on
request. More so, it is our intention to prototype possible
architectures. If this kind of architecture was to meet with
success then it is possible that a high speed implementation
could be implemented in C++ or possibly future versions
of Java (with optimization). This work is continuing
through further development of the infrastructure and its
applicability to problem domains other than DES (web-
based simulation and our continued efforts in DIS).
Examples of the GRIDS implementation are available from
<www.brunel.ac.uk/ research/casm>.

Sudra, Taylor, and Janahan

REFERENCES

Archibald, G., N. Karabakal, and P. Karlsson. 1999.

Supply chain vs. supply chain: Using simulation to
compete beyond the four walls. In Proceedings of the
1999 Winter Simulation Conference. P.A.. Farrington,
H.B. Nembhard, D.T. Sturrock, and G.W. Evans, eds,
pp 1207-1214. Phoenix, AZ

Arnold, K. and J. Gosling. 1996. The java programming
language. Addison-Wesley, USA.

Fujimoto, R.M. 1999a. Parallel and distributed simulation. In
Proceedings of the 1999 Winter Simulation Conference.
ed, P.A. Farrington, H.B. Nembhard, D.T. Sturrock, and
G.W. Evans, 122-131.

Fujimoto, R.M. 1999b. Parallel and distributed simulation
systems (Wiley series on parallel and distributed
computing). John Wiley & Sons, New York, NY.

Saville, J. and S.J.E Taylor. 1997. Interest management:
dynamic group multicasting using mobile java
policies. In Proceedings of the Fall 1997 Simulation
Interoperability Workshop. Orlando, FL, USA.

Taylor, S.J.E., J. Saville, and R. Sudra. 1999. Developing
interest management techniques in distributed
interactive simulation using java. In Proceedings of
the 1999 Winter Simulation Conference. ed, P.A.
Farrington, H.B. Nembhard, D.T. Sturrock, and G.W.
Evans, 518-523.

Zeilger, B.P., D. Kim, and S.J. Buckley. 1999. Distributed
supply chain simulation in a DEVS/CORBA execution
environment. In Proceedings of the 1999 Winter
Simulation Conference. ed, P.A. Farrington, H.B.
Nembhard, D.T. Sturrock, and G.W. Evans, 1333-
1340.

AUTHOR BIOGRAPHIES

RAJEEV SUDRA is a Ph.D. candidate in the Department
of Information Systems and Computing at Brunel
University, UK. He received his B.Sc. in Computer
Science and Economics also from Brunel University. He
has gained much experience working in industry ranging
from distributed systems software development to
designing and deploying large-scale computer networks.
His research focuses on interoperability issues with
simulation and agent-based systems.

SIMON J.E. TAYLOR is the Chair of the Simulation
Study Group of the UK Operational Research Society. He
is a Senior Lecturer in the Department of Information
Systems and Computing and is a member of the Centre for
Applied Simulation Modelling, both at Brunel University,
UK. He was previously part of the Centre for Parallel
Computing at the University of Westminster. He has an
undergraduate degree in Industrial Studies (Sheffield
Hallam), a M.Sc. in Computing Studies (Sheffield Hallam)
361
and a Ph.D. in Parallel and Distributed Simulation (Leeds
Metropolitan). His main research interests are distributed
simulation and applications of simulation health care. He
has also been known to occasionally tread the boards.

THARUMASEGARAM JANAHAN is a Ph.D. candidate
in the Department of Information Systems and Computing
at Brunel University, UK having completed a B.Sc. there.
His research has focused on Distributed Interactive
Simulation and Parallel and Distributed Simulation. He has
previous industrial experience in Defense, Banking and
Engineering.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

